We generate insights on the dynamics of complex systems through experiments, theoretical analysis, and simulation. Aims of the research include enabling the efficient control and processing of these systems which are used in a wide range of industries, products, and emerging technologies.
Faculty
Charles Hages
Assistant ProfessorBiography
DEVELOPING NEXT-GENERATION SEMICONDUCTORS for energy research is the primary focus of our group. Fundamental device physics and unique processing routes are combined to design new materials and device architectures, with particular focus on developing high-performance, low-cost electronics from low-energy, high-throughput processing techniques and earth-abundant resources. Using holistic material research techniques – including material simulation, synthesis, device fabrication, and optoelectronic characterization – enhanced understanding and rapid feedback between processing parameters and fundamental device properties is achieved to accelerate the material development process.
NEW MATERIAL DISCOVERY in our lab starts with screening for desired material properties from first-principles theoretical calculations. Next, solution-based techniques are used to synthesize nanomaterial films and low-dimensional electronic materials. Subsequently, controlled recrystallization techniques can be applied to form thin-films. Lastly, state-of-the-art electronic devices are fabricated. The use of nanomaterials in this process allows for unique device architectures, novel control over material optoelectronic properties, as well as highly-tunable recrystallization routes. Furthermore, such solution-based techniques are well suited for high-throughput research and the fabrication of next-generation technology such as light-weight, low-cost flexible electronics.
ADVANCED OPTOELECTRONIC CHARACTERIZATION at all stages of the material development process is a key aspect of material development in our lab. Such characterization provides rapid feedback for the accurate screening of relevant optoelectronic properties and optimal synthesis parameters in early-stage materials. We specialize in the characterization of non-ideal semiconductors – common to such early-stage materials – as well as novel all-optical measurement techniques to extract relevant material and device properties at very early stages of development. Our work combines a unique blend of engineering, chemistry, materials science, and physics resulting in highly-collaborative research at the forefront of modern chemical engineering.
Education
Post-doc, 2015-2018, Helmholtz-Zentrum Berlin, Dept. of Structure & Dynamics of Energy Materials
Ph.D., 2015, Purdue University, Chemical Engineering
B.S., 2010, University of California, Santa Barbara, Chemical Engineering
AWARDS & DISTINCTIONS
- Sony Faculty Innovation Award, 2021
- NSF CAREER Award, 2020
- Faculty Fellowship to Israel, 2019
selected Publications
- Yang, R., Jess, A. D., Fai, C., Hages, C. J., Low-Temperature, Solution-Based Synthesis of Luminescent Chalcogenide Perovskite BaZrS3 Nanoparticles. (2022). Journal of the American Chemical Society, 144(35), pp. 15928-15931
- Fai, C., Ladd, A. J. C., Hages, C. J., Machine learning for enhanced semiconductor characterization from time-resolved photoluminescence. (2022). Joule, 6, pp. 1-26
- Jess, A., Yang, R., Hages, C. J., On the Phase Stability of Chalcogenide Perovskites. (2022). Chemistry of Materials, 34(15), pp. 6894-6901