Whitney Stoppel » Faculty

Photo of Whitney Stoppel

Whitney Stoppel

Assistant Professor
Work Office: CHE 321 Lab: CHE 411 and 413 1006 Center Drive Gainesville FL 32611 Work Phone: (352) 392-6205 Website: Stoppel Lab

Research Summary

Our research team is focused on the design and optimization of natural biomaterials for a variety of clinical applications. Experimental research explores the mechanical and transport properties of elastic and viscoelastic materials, aiming to determine a predictive set of material characteristics that have a known function in the body. We aim to harness the power of the immune system to alter the way that these materials integrate following implantation, providing a new strategy for classifying materials for clinical applications. 

MATERIAL DESIGN AND IN VITRO CHARACTERIZATION

Natural materials and polymer composites derived from biopolymers such as silk fibroin, alginate, or decellularized extracellular matrix can be combined to form a variety of material shapes, architectures and mechanical properties. In turn, the format for the biomaterial can have a significant impact on cellular function and biological processes. We determine specific material properties and compositions that consistently alter or direct cell function through time-dependent analysis of cell-material interactions. These materials have applications in soft tissue repair and as in vitro platforms for understanding disease progression.

QUANTIFYING BIOMATERIAL PERFORMANCE IN VIVO

Understanding complex interactions between the immune system, local stromal cell populations, and implanted biomaterials necessitates spatiotemporal analysis of biomaterial degradation and histogenesis. We quantify how biomaterial composition and structure alter the rate of degradation and the composition and strength of new tissue that replaces the material. On-going efforts aim to understand how secondary diseases, biological sex, and age influence the kinetics of degradation and tissue formation.

Education

Ph.D., 2014, University of Massachusetts, Amherst

Research Areas

Biomaterials
Cell-Material Interactions in vitro and in vivo
Tissue Engineering and Regenerative Medicine
Rheology