Separation and Mass Transfer Operations Laboratory
ECH 4404L Sections 12962, 12963, 23979

Class Days: Wednesday, Thursday, or Friday
Class Periods: 2-5 (8:30 am – 12:35 pm)
Location: Unit Operations Lab (CHE 100-300), NRF for SM1 and SM2
Academic Term: Spring 2020

Instructor: Dr. LiLu Tian Funkenbusch
Office: CHE 219
E-mail: lilu.funkenbusch@ufl.edu
Office Phone: none
Office hours: Monday 2:00-4:00pm or by appointment

Peer Tutors & Supervised Teaching Assistants: *Please contact via Canvas

<table>
<thead>
<tr>
<th></th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD</td>
<td>Anna Bal</td>
<td>Laura Piedrahita Sardi</td>
<td>Anthony Arrowood</td>
</tr>
<tr>
<td>CD</td>
<td>Jacob Hay</td>
<td>Jean Vasquez-Rivera</td>
<td>Alex Shishlov</td>
</tr>
<tr>
<td>LLE</td>
<td>Laura Piedrahita Sardi</td>
<td>Nate Bauer</td>
<td>Nate Bauer</td>
</tr>
<tr>
<td>CT</td>
<td>Xingyi Lyu</td>
<td>Ashlyn Petro</td>
<td>Whitney Schramm</td>
</tr>
<tr>
<td>SM1</td>
<td>Chaker Fares</td>
<td>Chaker Fares</td>
<td>?</td>
</tr>
<tr>
<td>SM2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Description
Laboratory work in unit operations involving separation and mass transfer; 2 credit hours.

Course Pre-Requisites:
ECH 3101 (Process Thermodynamics),
ECH 3203 (Fluid and Solid Operations)
ECH 3223 (Energy Transfer Operations)
ECH 4403 (Separation Process)
ECH 4424L (Unit Op Lab I)
ENC 3246 (Professional Communication for Engineers)

Course Co-Requisite: ECH 4714L (Safety and Experimental Evaluation)

Recommended Literature
4. Perry, R. H., D. W. Green, and J. O. Maloney, Perry’s Chemical Engineers’ Handbook [E-book is available through UF Library website]

There is no required textbook for this class.
Course Objectives

1. Reinforce classroom theory by the collection and use of data in practical experiments with all their inherent problems and limitations.
2. Gain proficiency in writing technical reports.
3. Gain experience in working in teams.
4. Create a sense of professional responsibility for the quality and integrity of engineering work.
5. Learn safe working procedures.
6. Learn equipment, instrumentation, and procedures not covered in lectures.

Professional Component (ABET):

This course is focused on experimental studies of thermodynamics and heat and momentum transfer in the context of unit operations. Theoretical concepts learned in other courses are illustrated by experiments. Technical communications are emphasized.

Relation to Program Outcomes (ABET):

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Coverage*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. An ability to identify, formulate, and solve engineering problems by applying principles of engineering, science, and mathematics</td>
<td>High</td>
</tr>
<tr>
<td>2. An ability to apply both analysis and synthesis in the engineering design process, resulting in designs that meet desired needs</td>
<td>Low</td>
</tr>
<tr>
<td>3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions</td>
<td>High</td>
</tr>
<tr>
<td>4. An ability to communicate effectively with a range of audiences.</td>
<td>High</td>
</tr>
<tr>
<td>5. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.</td>
<td>Medium</td>
</tr>
<tr>
<td>6. An ability to recognize the ongoing need for additional knowledge and locate, evaluate, integrate, and apply this knowledge appropriately.</td>
<td>High</td>
</tr>
<tr>
<td>7. An ability to function effectively on teams that establish goals, plan tasks, meet deadlines, and analyze risk and uncertainty</td>
<td>High</td>
</tr>
</tbody>
</table>

Coverage is given as high, medium, or low. An empty box indicates that this outcome is not part of the course.

Unit Operations Lab Website: http://ww2.che.ufl.edu/unit-ops-lab//ech4404L.htm

Contains descriptions of experiments, safety guidelines, and guidelines for writing reports. This has not been updated. The Canvas website (http://elearning.ufl.edu/) has the same information, is more up to date, and will be used for submission of reports and posting of grades and announcements.

Attendance Policy, Class Expectations, and Make-Up Policy

Students are required to attend all lab sessions. Excused absences must be consistent with university policies in the undergraduate catalog (https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx) and require appropriate documentation. To make up for a missed lab, the students will be required to perform the missed experiment with another group. Unexcused absences and tardiness will result in a grade reduction. After 1 unexcused absence or 2nd tardiness, one grade of final score will be reduced, and another grade down for each additional tardiness. Any missed labs must be made up, including excused absences.
Course Schedule

The course consists of the following six experimental modules:

- **BD**: Batch Distillation (final report)
- **CD**: Continuous Distillation (final report)
- **CT**: Cooling Tower (final report)
- **LLE**: Liquid-Liquid Extraction (final report)
- Semiconductor Module 1: A-Oxide Growth, B-Thermal Evaporation (postlab questions)
- Semiconductor Module 2: A-Photolithography, B- Wet and Dry Etching (postlab questions)

Each module is two weeks long. Each course section is divided into groups, which rotate through all six modules. **Regardless of individual contributions, each team member is responsible for understanding all elements of each project. *See Canvas course’s Front Page for lab group assignments and rotation schedule***

Evaluation of Grades

The grade will be determined according to the following weighting criteria:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Worth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Homework</td>
<td>50 pts</td>
</tr>
<tr>
<td>Quizzes (x4)</td>
<td>25 pts each</td>
</tr>
<tr>
<td>First Memo (x4)</td>
<td>50 pts each</td>
</tr>
<tr>
<td>Second Memo (x4)</td>
<td>50 pts each</td>
</tr>
<tr>
<td>Third Memo (x4)</td>
<td>100 pts each</td>
</tr>
<tr>
<td>SM Pre-Labs (x4)</td>
<td>25 pts each</td>
</tr>
<tr>
<td>SM Post-Labs (x4)</td>
<td>75 pts each</td>
</tr>
<tr>
<td>Peer & PT/ST Evaluations</td>
<td>5 pts each</td>
</tr>
<tr>
<td>Participation</td>
<td>90 pts</td>
</tr>
</tbody>
</table>

The participation grade will be based on the Peer Tutor feedback, peer evaluations, and the instructor’s observations. **A failing grade for participation will result in a failing course grade.**

Grading Policy

<table>
<thead>
<tr>
<th>Percent</th>
<th>Grade</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>94.0 – 100.0</td>
<td>A</td>
<td>4.00</td>
</tr>
<tr>
<td>90.0 – 93.9</td>
<td>A-</td>
<td>3.67</td>
</tr>
<tr>
<td>87.0 – 89.9</td>
<td>B+</td>
<td>3.33</td>
</tr>
<tr>
<td>84.0 – 86.9</td>
<td>B</td>
<td>3.00</td>
</tr>
<tr>
<td>80.0 – 83.9</td>
<td>B-</td>
<td>2.67</td>
</tr>
<tr>
<td>77.0 – 79.9</td>
<td>C+</td>
<td>2.33</td>
</tr>
<tr>
<td>74.0 – 76.9</td>
<td>C</td>
<td>2.00</td>
</tr>
<tr>
<td>70.0 – 73.9</td>
<td>C-</td>
<td>1.67</td>
</tr>
<tr>
<td>67.0 – 69.9</td>
<td>D+</td>
<td>1.33</td>
</tr>
<tr>
<td>64.0 – 66.9</td>
<td>D</td>
<td>1.00</td>
</tr>
<tr>
<td>60.0 – 63.9</td>
<td>D-</td>
<td>0.67</td>
</tr>
<tr>
<td>0.0 – 59.9</td>
<td>E</td>
<td>0.00</td>
</tr>
</tbody>
</table>

More information on UF grading policy at: https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx
Safety

Students are expected to know and follow safe operating procedures of the equipment as well as proper handling of hazardous materials. The students are required to attend a safety orientation session at the beginning of the semester. **Failure to follow safe operating procedures will result in a significant grade reduction.** Examples of safety violations are listed below (this list is not exhaustive):

<table>
<thead>
<tr>
<th>Safety violation</th>
<th>Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaving the lab without shutting down an experimental system</td>
<td>Failing grade</td>
</tr>
<tr>
<td>Not wearing PPE required by an experiment</td>
<td>Letter grade reduction</td>
</tr>
<tr>
<td>Not disposing of hazardous waste properly</td>
<td>Letter grade reduction</td>
</tr>
<tr>
<td>Not handling a chemical spill properly</td>
<td>Letter grade reduction</td>
</tr>
<tr>
<td>Causing a spill due to negligence (e.g., by opening wrong valves).</td>
<td>Letter grade reduction</td>
</tr>
<tr>
<td>Bringing food or drink into the lab</td>
<td>Letter grade reduction</td>
</tr>
</tbody>
</table>

Memo Policy

- All memos should be completed as a group. These should be submitted via Canvas as a Word or PDF file.
 - 1st Memo: Due midnight the day before the 1st run day
 - 2nd Memo: Due midnight the day before the 2nd run day
 - 3rd Memo: Due midnight one week after the 2nd run day

- **A failing grade for that lab will be assigned to groups who do not submit a first memo.**
- Late submissions will be accepted only if a group was not able to complete the assignment on time due to an acceptable reason (see the attendance policy).

Pre-lab Homework Policy

- Pre-lab homework should be completed individually by each student and is due 24 hours before each new experiment. Pre-lab homework should be submitted via Canvas as a Word or PDF files.

- **A failing grade will be assigned to students whose cumulative pre-lab homework grade is less than 50%.**
- Late homework submissions will be accepted only if a student was not able to complete the homework on time due to an acceptable reason (see the attendance policy).

Quiz Policy

- Quizzes are scheduled at the beginning of each experimental session.
- Quizzes will be rescheduled only for those students who missed them due to an acceptable reason (see the attendance policy). Whenever possible, the student should notify the instructor about the situation ASAP.
- Students may not use their notes, manuals, or any other material during the quizzes.
- A score of <50% will result in failure of the individual for that lab. They will not be allowed to participate in the lab on either day.
Schedule for each experiment

Before the experiment:
1. Review theory, safety manual, and operating instructions posted on the Lab website.
2. If necessary, meet with the instructor to discuss the upcoming experiment.
3. Answer pre-lab questions posted on Canvas as an individual or complete the first memo as a group.

During the experiment:
1. Take the quiz individually. (Day 1)
2. Your group’s experimental design will be reviewed by the Peer Tutors and will contribute to your lab participation grade. (Day 1)
3. Get acquainted with equipment.
4. Learn proper start-up and shutdown procedures.
5. Learn how to perform measurements.
6. Learn about limits of the system.
7. Experiment with the system under various conditions.
8. Perform basic checks of your data (e.g., mass and energy balances) during the experiment. Avoid a situation in which you collect data just to discover that it does not satisfy the mass or energy balance after you are out of the lab and writing your report. It is necessary to perform the basic checks during the lab and repeat an experiment, if necessary.

After Day 1 of the experiment:
Analyze your data and write the second memo or a post-lab homework. Memos are group assignments; post-lab homework are individual assignments. You are required to submit the following:
1. 2nd memo for: Continuous Distillation, Batch Distillation, Cooling Tower and Liquid-Liquid Extraction.
2. Post-lab homework for: Oxide Growth or Photolithography

After Day 2 of the experiment:
Analyze your data and write a report or a post-lab homework. All reports and post-lab homeworks are group assignments. You are required to submit the following:
1. 3rd Memo for: Continuous Distillation, Batch Distillation, Cooling Tower and Liquid-Liquid Extraction.
2. Post-lab homework for: Thermal Evaporation or Etching
Guidelines for Assignments

1. Guidelines and grading rubrics are posted on Canvas. Reports will be graded on both technical content and communication effectiveness.

2. Reports should be written using complete sentences, with correct spelling and grammar. All symbols should be defined on their first use. Clarity and brevity will be rewarded; sloppy thinking and writing will be penalized.

3. Do not copy theoretical derivations from a textbook or a website. Instead, clearly state assumptions behind a derivation, provide relevant derivation results, and cite your sources.

4. All reports should be submitted via e-learning either in Word or PDF format. No need to submit hard copies.

5. In addition to a report file, your submission should contain all supporting information, such as spreadsheet files with your data and files with your computer codes. However, your reports should be self-contained, i.e. one should be able to understand your work by reading your report without referring to supporting materials.

6. Late submissions will be penalized by a 10% grade reduction for each day the report is overdue.

Guidelines for Experiments and Data Analysis

1. Check energy and material balances.

2. Investigate effects of all control parameters on the experimental results.

3. Almost all experiments should be performed at a steady state. Exceptions are the batch filtration and the 3-tank experiments.

4. Clearly identify and justify all assumptions in your theoretical calculations.

5. Compare the measured data with your theoretical calculation.

6. Check reproducibility of your data. Whenever possible, perform at least three runs for each experimental condition and obtain error estimates by computing standard deviations based on these runs. Report the average values and error estimates in the main text of the report and provide an appendix containing data for all experimental runs.

7. Report any anomalous results and discuss their possible sources.

8. Use spreadsheets (e.g., Excel or OpenOffice) to store your data. Use Python (or another equivalent programming language) for data analysis and theoretical calculations. Use of spreadsheets for complex calculations is discouraged due to difficulty of their debugging.

9. Make sure that your objectives can be met with your operating conditions. It is easy to choose conditions that are outside of the performance limits of the apparatus or produce results with no measurable difference. Carefully study the limitations of the existing experimental apparatus as a part of the planning process rather than finding out in the laboratory that the experimental values obtained are useless.
University Honesty Policy
UF students are bound by The Honor Pledge which states, “We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honor and integrity by abiding by the Honor Code. On all work submitted for credit by students at the University of Florida, the following pledge is either required or implied: “On my honor, I have neither given nor received unauthorized aid in doing this assignment.” The Honor Code (https://www.dso.ufl.edu/scct/process/student-conduct-honor-code/) specifies a number of behaviors that are in violation of this code and the possible sanctions. Furthermore, you are obligated to report any condition that facilitates academic misconduct to appropriate personnel. If you have any questions or concerns, please consult with the instructor or TAs in this class.

Cooperation Policy
• Students are expected to work in teams on their experiments and memos.
• Pre-lab and post-lab homework should be answered by each student individually.
• No consultation among students is allowed during quizzes.

Plagiarism
Students are not permitted to represent as their own work any portion of the work of another person. Plagiarism includes (but is not limited to) submitting a document or assignment which in whole or in part(2,6),(996,985) is identical or substantially identical to a document or assignment not authored by the student. All sources used in preparation of the reports should be cited.

Falsification of Information
Students are not permitted to use or report any invented or fabricated information or data. This includes both experimental results and theoretical calculations.

Sanctions for Violations of Honor Code
Since ethical behavior in science and engineering is equal in importance to specific knowledge, the instructor will assign a non-passing letter grade to students who violate academic honesty standards, regardless of the violator's grade performance in class.

Students Requiring Accommodations
Students with disabilities requesting accommodations should first register with the Disability Resource Center (352-392-8565, https://www.dso.ufl.edu/drc) by providing appropriate documentation. Once registered, students will receive an accommodation letter which must be presented to the instructor when requesting accommodation. Students with disabilities should follow this procedure as early as possible in the semester.

Course Evaluation
Students are expected to provide feedback on the quality of instruction in this course by completing online evaluations at https://evaluations.ufl.edu/evals. Evaluations are typically open during the last two or three weeks of the semester, but students will be given specific times when they are open. Summary results of these assessments are available to students at https://evaluations.ufl.edu/results/.

Software Use
All faculty, staff, and students of the University are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against University policies and rules, disciplinary action will be taken as appropriate. We, the members of the University of Florida community, pledge to uphold ourselves and our peers to the highest standards of honesty and integrity.

Student Privacy
There are federal laws protecting your privacy with regards to grades earned in courses and on individual assignments. For more information, please see: http://Registrar.ufl.edu/catalog0910/policies/regulationferpa.html
Commitment to a Safe and Inclusive Learning Environment
The Herbert Wertheim College of Engineering values broad diversity within our community and is committed to individual and group empowerment, inclusion, and the elimination of discrimination. It is expected that every person in this class will treat one another with dignity and respect, regardless of gender, sexuality, disability, age, socioeconomic status, ethnicity, race, and culture.

If you feel like your performance in class is being impacted by discrimination or harassment of any kind, please contact your instructor or any of the following:

- Your academic advisor or Graduate Program Coordinator
- Robin Bielling, Director of Human Resources, 352-392-0903, rbielling@eng.ufl.edu
- Curtis Taylor, Associate Dean of Student Affairs, 352-392-2177, taylor@eng.ufl.edu
- Toshikazu Nishida, Associate Dean of Academic Affairs, 352-392-0943, nishida@eng.ufl.edu
Campus Resources:

Health and Wellness

U Matter, We Care:
Your well-being is important to the University of Florida. The U Matter, We Care initiative is committed to creating a culture of care on our campus by encouraging members of our community to look out for one another and to reach out for help if a member of our community is in need. If you or a friend is in distress, please contact umatter@ufl.edu so that the U Matter, We Care Team can reach out to the student in distress. A nighttime and weekend crisis counselor is available by phone at 352-392-1575. The U Matter, We Care Team can help connect students to the many other helping resources available including, but not limited to, Victim Advocates, Housing staff, and the Counseling and Wellness Center. Please remember that asking for help is a sign of strength. In case of emergency, call 9-1-1.

Counseling and Wellness Center: http://www.counseling.ufl.edu/cwc, and 392-1575; and the University Police Department: 392-1111 or 9-1-1 for emergencies.

Sexual Assault Recovery Services (SARS)
Student Health Care Center, 392-1161.

University Police Department at 392-1111 (or 9-1-1 for emergencies), or http://www.police.ufl.edu/.

Academic Resources

E-learning technical support, 352-392-4357 (select option 2) or e-mail to Learning-support@ufl.edu. https://lss.at.ufl.edu/help.shtml.

Career Resource Center, Reitz Union, 392-1601. Career assistance and counseling. https://www.crc.ufl.edu/.

Library Support, http://cms.uflib.ufl.edu/ask. Various ways to receive assistance with respect to using the libraries or finding resources.

Teaching Center, Broward Hall, 392-2010 or 392-6420. General study skills and tutoring. https://teachingcenter.ufl.edu/.

Writing Studio, 302 Tigert Hall, 846-1138. Help brainstorming, formatting, and writing papers. https://writing.ufl.edu/writing-studio/.
