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LIST OF SYMBOLS

Roman

A lumped parameter in expression for impedance response of reactions with

adsorbed intermediate, S/cm2s, see equation (4–14)

A constant used for the velocity expansion for a rotating disk in equations (6–12)

and (6–13), A = 0.934

a constant used for the velocity expansion for a rotating disk in equations (6–10)

and (6–11), a = 0.51023

B lumped parameter in expression for impedance response of reactions with

adsorbed intermediate, 1/s, see equation (4–14)

B constant used for the velocity expansion for a rotating disk in equations (6–12)

and (6–13), B = 1.208

b constant used for the velocity expansion for a rotating disk in equation (6–11),

b = 0.616

b kinetic parameter, βF/RT or (1− β)F/RT , V−1

C0 double-layer capacitance, µF/cm2

c constant used for the velocity expansion for a rotating disk in equations (6–12)

and (6–13), c = 0.88447

ci concentration of species i, mol/cm3

Di diffusion coefficient of species i, cm2/s

F dimensionless fluid velocity in the radial direction

F Faraday’s constant, 96,487 C/equiv

f frequency, Hz

H dimensionless fluid velocity in the axial direction

I total current, A

i current density, A/cm2

i0 exchange current density, A/cm2
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iC double-layer charging current density, A/cm2

iF Faradaic current density, A/cm2

ilim mass-transfer-limited current density, A/cm2

J dimensionless exchange current density

j complex number,
√
−1

K dimensionless frequency

k reaction rate constant, A/cm2 or Acm/mol

n number of electrons transferred in electrode reaction

Ni flux of species i, mol/cm2s

Q CPE coefficient, sα/Ωcm2

q surface charge density, C/cm2

R universal gas constant, 8.314 J/molK

r radial distance, cm

r0 radius of disk electrode, cm

Re electrolyte or Ohmic resistance, Ω or Ωcm2

Rt charge-transfer resistance, Ω or Ωcm2

si stoichiometric coefficient of species i

T temperature, K

t time, s

ui mobility of species i, cm2mol/Js

v fluid velocity, cm/s

V interfacial potential, V

V0 equilibrium potential, V

υr fluid velocity in the radial direction, cm/s

υy fluid velocity in the axial direction, cm/s

y axial distance, cm

Z global impedance, Ω or Ωcm2
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Z0 global interfacial impedance, Ω or Ωcm2

Ze global Ohimc impedance, Ω or Ωcm2

ZF global Faradaic impedance, Ω or Ωcm2

z local impedance, Ωcm2

z0 local interfacial impedance, Ωcm2

ze local Ohmic impedance, Ωcm2

zF local Faradaic impedance, Ωcm2

zi charge associated with species i

Greek

α CPE exponent

α constant used in the interpolation function (6–15) to weigh the velocity expan-

sions for a rotating disk

β symmetry factor

δ thickness, cm

ε dielectric constant

ε0 permittivity of vacuum, 8.8542 × 10−14 F/cm

η total overpotential, V

ηc concentration overpotential, V

ηs surface overpotential, V

Γ maximum surface coverage, mol/cm2

Γi surface excess concentration of species i, mol/cm2

γ fractional surface coverage

κ electrolyte conductivity, S/cm

ν electrolyte viscosity, cm2/s

Ω rotation speed of disk, rad/s

ω angular frequency, rad/s

Φ electric potential, V
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φ phase angle, rad or degree

ζ dimensionless distance from the disk

General Notation

〈X〉 averaged value of X over electrode surface

X̃ oscillating part of X(t)

Re {X} real part of X

X steady-state part of X(t)

Subscripts

0 at the inner limit of diffusion layer

a anodic half reaction

c cathodic half reaction

d in the diffuse layer

ihp at inner Helmholtz plane

j imaginary part of impedance

m at metal surface

ohp at outer Helmholtz plane

r real part of impedance

∞ in the bulk solution or far away from electrode surface
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Distributions of current and potential associated with the electrode geometry are

essential issues in studying the electrochemical systems. The nonuniform distributions

that cause time-constant dispersion along the electrode surface can obscure results

from the electrochemical measurements and lead to an incorrect interpretation of

experimental data. The electrode configuration of interest is a disk electrode embedded

in an insulator, which is one of the most popular geometries used in the electrochemical

measurements. The geometry effect can be observed at high frequencies for a blocking

disk electrode and for a disk electrode subject to a single Faradaic reaction. The present

study involves more complicated electrode processes that include, first, a coupled

Faradaic reactions by an adsorbed intermediate, and then incorporate the nonuniform

mass transfer on a rotating disk electrode (RDE) for a general redox reaction.

On a stationary disk electrode, while the frequency or time-constant dispersion due

to the dependence of the radial distribution of interfacial potential was shown to have

an effect at high frequencies, the time-constant dispersion was also found to influence

the impedance response at low frequencies due to the potential dependence of the

fractional surface coverage of the adsorbed intermediate. The geometry effects were

reflected in values for the local Ohmic impedance, which had complex behavior at both

high and low frequencies. The dispersion of time constant was described in terms of a

local constant-phase element (CPE) that represented the impedance response at low
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frequencies as well as at high frequencies. The geometry effect can be eliminated by

use of a recessed electrode on which the current and potential distributions are uniform.

Experimental verification was obtained by applying local electrochemical impedance

spectroscopy (LEIS) on an iron disk electrode immersed in a 1 M sulfuric acid solution.

The nonuniform mass transfer distribution together with the effect of electrode

geometry was investigated on a RDE below the mass-transfer-limited current. A two-

dimensional impedance model was proposed to study the influence of nonuniform

current and potential distributions associated with both mass-transfer and Ohmic

effects on the global and local impedance response. The concentration and potential

distributions were calculated simultaneously throughout the system domain by taking

into account the transport of species from diffusion, electric migration, and convection.

Under the assumption that the Faradaic reaction and the charging of the double

layer cannot be separated a priori, part of the flux of reacting species contributes to the

charging of the interface as well as to Faradaic reaction. A double-layer model following

the Gouy-Chapman type of double layer was used to assess the charge density on

electrode without specific adsorption, and to evaluate interfacial properties, such as

the double-layer capacitance and the change of charge associated with the variation of

ionic concentrations. The local interfacial impedance showed a depressed semicircle

that cannot be attributed to the geometry-induced current and potential distributions.

The appearance of CPE behavior was attributed to the frequency-dependent effective

double-layer capacitance that accounted for the contribution of flux in charging the

double layer.
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CHAPTER 1
INTRODUCTION

Electrochemical impedance spectroscopy (EIS) is a transient technique that is

widely used to characterize electrode process. Impedance measurement is performed

by applying a small perturbation of potential or current to an electrochemical system

at steady state and measuring the output response (current or potential) at different

perturbation frequencies. The features of EIS include capturing the real-time changes

of electrode process without destroying the specimen surface and also characterizing

different electrode processes by their associated time constants within just one single

measurement over a sufficient broad range of frequency.

While EIS is particularly useful to distinguish among transport and kinetic phe-

nomena, geometry-induced current and potential distributions give rise to frequency

dispersion that distorts the impedance response and could lead to an incorrect estima-

tion of kinetic and transport parameters.4 The frequency or time-constant dispersion

was originally attributed to the dispersion of double-layer capacitance or the depen-

dence of capacitance on frequency. It is now generally attributed to the nonuniform

current and potential distributions associated with factors such as electrode morphology

and heterogeneity.

Among all kinds of electrode, disk electrode is one of the popular geometries used

in electrochemical measurements. The geometry of a disk electrode embedded in an

insulator is simple to construct and easy to perform post processing on the electrode

surface. The well-defined geometry also makes possible the analytical solutions for

current and potential distributions, frequency dispersion, and fluid mechanics on a disk

electrode.1,5,6 The contributions related to the use of disk electrodes in the area of elec-

trochemistry are shown in Figure 1-1. The amount of studies increases dramatically

since the 1980’s and keep increasing after 2000. The application of impedance tech-

nique accounts 10% of these work. Therefore, it is important to understand the effect of
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Figure 1-1. Online records for the use of disk electrodes in the area of electrochemistry
provided by Engineering Village database before June, 2010.

disk geometry on impedance response and give a proper interpretation to experimental

results.

Numerous approaches have been apply to study the transient behavior of a disk

electrode in the presence of a time-constant dispersion. Analytical solutions were

obtained for the transient potential and current responses under galvanostatic and

potentiostatic control.7–9 Numerical simulations facilitated the calculation of impedance

response of a disk electrode that was ideally polarized10,11 or was subject to a single

Faradaic reaction.12 Local electrochemical impedance spectroscopy (LEIS) could pro-

vide local information of electrode surface and confirm the variation of local impedance

resulting from the nonuniform current and potential distributions.2,13,14 The presence of

geometry-induced current and potential distributions causes a depression of impedance

plot that deviates from the standard semicircle. The measured global impedance, or

the conventional impedance, cannot be properly interpreted by known electrical circuit

elements such as resistor, capacitors, and inductors, and is generally expressed in

terms of a constant-phase element (CPE) in equivalent circuits.
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In this dissertation, fundamental concepts for the transient technique, EIS and LEIS,

and the relevant issues such as geometry-induced current and potential distributions,

and the origin of CPE behavior are presented in Chapter 2. Theoretical developments

and simulation and experimental studies on the impedance response associated with

nonuniform current and potential distributions on a disk electrode and mass-transfer

distribution on a rotating disk electrode are reviewed in Chapter 3.

In a series of papers presented by Huang and coworkers,10–12 the nonuniform

current and potential distributions on a disk electrode were shown to influence the

impedance response only at high frequencies. The work suggested experimentalists

could avoid the associated complications by simply performing impedance measure-

ments below a critical frequency given as a function of disk radius, disk capacitance,

and solution conductivity. As an extension to this series of work, the objective of the

present work is to investigate whether the geometry effect may also play a role at lower

frequencies. The mathematical development, the calculated local and global impedance

results, and the discussion on CPE behavior and complex Ohmic impedance are pre-

sented in Chapter 4. The impedance model is expected to predict experimental results

and to provide guidelines of inspection and interpretation of the measured impedance

data. An experimental verification performed on an iron disk electrode in acidic solution

is presented in Chapter 5.

For reactions associated with mass transfer of reacting species, the current and

potential distributions are affected by the nonuniform mass transfer on electrode. The

rotating disk electrode (RDE) is used extensively in electrochemistry and the fluid

mechanics is well understood. The current distribution is uniform only at the mass-

transfer-limited current where the concentration of reacting species is equal to zero over

the entire disk. One-dimensional models cannot account for the radial distribution of

convective diffusion at currents below the limiting current.15 Newman considered both

the radial and axial distribution of mass transfer in a thin diffusion layer above electrode
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surface. Two-term velocity expansions were used for fluid flow near the electrode

surface. For exploring the nonuniform mass transfer in addition to the geometry effect

on a RDE, a two-dimensional model is presented in Chapter 6 to account for the flux

of each species in electrolyte associated with diffusion, migration, and convection.

The system is treated as a single integral domain governed by the convective diffusion

equation. An analytic velocity expression valid for the entire domain is developed using

an appropriate interpolation function to weight inner and outer velocity expansions.

This approach is preferable to dividing the domain of interest into a diffusion region

near the electrode surface, and an outer region with uniform concentration as was

done by Newman.1 The steady-state analysis of the nonuniform current distribution

below the mass-transfer-limited current can be used to explore the contribution of the

radially dependent convective diffusion to the impedance response which is presented in

Chapter 8.

Most impedance models assume negligible contribution of mass flux to the charging

of electric double layer at the electrode-electrolyte interface, i.e., the mass flux only

contributes to the charge-transfer reactions. The assumption of the a priori separation

of Faradaic and double-layer charging currents is relaxed in the present study. A simple

double-layer model following the Gouy-Chapman theory is given in Chapter 7. The

nonuniform mass and potential distributions result in a nonuniform charge distribution,

and therefore a nonuniform distribution of double-layer capacitance in the interfacial

region. The current and the flux of each species at electrode boundary are corrected

by the presence of double-layer charging. The improved two-dimensional model is

expected to provide a more general approach in assessing the impedance response

on a RDE associated with the electrode geometry and mass-transfer effects. The

impedance response with the correction of double-layer effect is also presented in

Chapter 8.
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CHAPTER 2
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

Electrochemical impedance spectroscopy (EIS) is a powerful technique that has

been widely used in studying the interfacial electrochemistry. The change of electrode

properties are revealed during impedance measurements. The electrode process

associated with reaction kinetics and surface morphology can therefore be diagnosed.

The impedance measurement involves the perturbation of an electrochemical

system with a small sinusoidal signal and recording the output response. As shown

in Figure 2-1, the output signal responds to the input signal with the same frequency

and a phase shift. The conversion of the time-dependent signals into frequency domain

gives the transfer function a complex feature. Impedance is therefore a complex quantity

defined by the ratio of potential and current

Z =
|4V |
|4I|

ejφ = Zr + jZj (2–1)

where φ is the phase difference between the potential and current, j is a complex

number equal to
√
−1, and Zr and Zj are the real and imaginary components of the

impedance, respectively. If the potential and current are in phase, the impedance is a

real number and is actually a resistance

Zresistor = R (2–2)

If the current leads or lags the applied potential by 90 degrees, the impedance is a pure

imaginary number, which relates to capacitance or inductance by

Zcapacitor =
1

jωC
(2–3)

and

Zinductor = jωL (2–4)
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Figure 2-1. Perturbation of an electrochemical system at steady state with a small
sinusoidal signal, where 4V and 4I represent the potential and current
oscillating at the same frequency ω. The phase difference between potential
and current is φ.

In an electrochemical system, the measured impedance is usually a complex number

having real and imaginary components, which means that the system can be described

by a combination of resisters, capacitors, and inductors.

Impedance data are often represented in a complex plane, which is also known

as the Nyquist plot. Figure 2-2 shows a typical impedance plot corresponding to a RC

circuit (the combination of a double-layer capacitance in parallel with a polarization

resistance). The value of the polarization resistance can be read from the low-frequency

limit. The characteristic frequency or time constant for the system

f =
1

2πω
=

1

2πRC
(2–5)

can be obtained from the peak at which the negative value of imaginary part of the

impedance is maximum. One of the attractive features of EIS is the characterization

of different electrode processes by their associated time constants within one single

measurement over a sufficient broad range of frequency. The transient response of
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Figure 2-2. Nyquist plot of impedance data corresponding to a RC circuit of
Rt = 100Ω-cm2 and C0 = 10µF/cm2. The resistance from the electrolyte is
not shown in this figure.

current and potential about their steady-state values gives the information of electron

and mass transfer at the electrode-electrolyte interface. The charging of the electric

double layer can be observed at high frequencies, and the diffusion of ionic species to

the interfacial region is more significant at lower frequencies. Therefore, EIS is useful to

distinguish among transport and kinetic phenomena.

While the impedance data given in Figure 2-2 traces a perfect semicircle, experi-

mental data rarely show ideal behavior in real systems. The nonideal behavior for an

electrode process is observed in the impedance plane of a depressed semicircle, which

is difficult to be explained by simple circuit elements. The impedance data reflecting a

nonuniform distribution of reactivity on electrode surface cab be described by using a

constant-phase element (CPE) in equivalent circuits.

2.1 Constant-Phase Element

A constant-phase element literally means a circuit element that displays a constant

phase angle, such as the resistor, capacitor, and inductor. The term, however, has been
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specifically used to describe the nonideal behavior of the interfacial capacitance show-

ing a frequency-dependent phase angle different from 90 degrees.16 The impedance

expression of the CPE is given by

ZCPE =
1

(jω)αQ
(2–6)

where α and Q are constant. When α = 1, Q has units of a capacitance, i.e., F/cm2,

and resembles as an ideal capacitor. When α 6= 1, Q has units of sα/Ω-cm2. Usually, the

electrochemical interface of a real cell is not ideal and behaves like a CPE in which the

exponent α is between 0.5 and 1.

The nonideal behavior leading to a CPE can be attributed to the frequency or time-

constant distribution along the area of the electrode or along the direction normal to the

electrode surface. The surface distribution may arise from the surface heterogeneities

such as different crystalline size or faces with different electrochemical characteristics.17

A normal distribution may be attributed to the change of composition of oxide layers18 or

to the surface roughness and porosity.19,20 The schematic representations for surface

and normal distributions at electrode are given in Figure 2-3 by using equivalent

circuits. The variations of reaction reactivity and double-layer capacitance at the

electrode-electrolyte interface, and the variation of film properties in the oxide layer

cause a frequency or time-constant distribution at electrode surface. This distributions

are observed during the impedance measurements in the form of a CPE.

The presence of CPE behavior, however, is very common even for a homogenous

and relatively smooth surface. The accessibility to the electrode surface could be

constrained by the configuration of electrode with the surrounding insulator, and cause a

geometry-induced time constant dispersion leading to CPE behavior.

2.2 Current and Potential Distributions

Current and potential distributions are essential properties of an electrode.

Impedance response can be strongly influenced by the nonuniform distributions of
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Figure 2-3. Schematic representation of a time-constant distribution A) at the
electrode-electrolyte interface, and B) in the oxide layer, where Rt is the
charge-transfer resistance, C0 is the double-layer capacitance, and Rf and
Cf are the resistance and capacitance of an oxide film.

current and potential associated with the geometry of electrode under study. One of the

common geometries used in electrochemical measurements is a disk electrode embed-

ded in an insulator. The geometry of the disk constrains the current flow and potential

distribution in such a manner that both cannot simultaneously be uniform. Under the as-

sumption of negligible concentration gradient, Newman1,5 solved the Laplace’s equation

for potential using rotational elliptic coordinate. The distributions are considered to be

primary or secondary depending on the presence of electrode polarization.

2.2.1 Primary Distribution

When the polarization resistance at electrode is small compared to the Ohmic

resistance in electrolyte, the potential in solution adjacent to the electrode can be

depicted by an equipotential surface. The current flows to electrode following the Ohm’s

law. This condition is taken as a primary distribution. The primary current distribution on
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Figure 2-4. Primary current and potential distributions on a disk electrode.1

a disk electrode embedded in an infinite insulating plane is given by

i

iavg

=
1

2
√

1− (r/r0)2
(2–7)

where r0 is the radius of the disk, and iavg is the average current density on the elec-

trode. The total current to the disk is

I = 4κ∞r0Φ0 (2–8)

where κ∞ is the conductivity of the bulk solution, and Φ0 is the potential is solution

adjacent to the electrode surface. The analytical result shown in Figure 2-4 illustrates

an infinite current density at the edge and half the value of average current density at

the center of the disk when the electrode is subject to a uniform potential distribution.

The primary distribution represents an extreme case where the Ohmic resistance

dominates and the current distribution is the most nonuniform.
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On the other hand, the primary potential distribution was calculated under the

condition when the current is limited by the mass transfer of reacting species to the

disk.1 The potential curve in Figure 2-4 is normalized by the total current given in

equation (2–8) so as to easily compare with the primary current distribution. A larger

Ohmic potential drop is present at electrode center, and a smaller potential drop is

observed at electrode periphery. The potential distributes in such a way that more

current is forced to flow from the periphery to the center of the disk in order to maintain

a uniform current density on the electrode surface as compared to the primary current

distribution.

A classic solution for the Ohmic resistance on a disk electrode was provided by

Newman5 as

Re =
1

4κ∞r0

(2–9)

This simple form was obtained assuming that a hemispherical counter electrode is

placed at infinity. The Ohmic resistance is only associated with the geometry factor of

the disk, i.e., the electrode radius, and the value of Ohmic resistance varies when the

probe position changes.

2.2.2 Secondary Distribution

When electrode kinetics is taken into account, the potential adjacent to electrode

is affected by the charge-transfer reactions taking place in the interfacial region, and

can no longer be considered as an equipotential surface. The current is controlled by

the Ohmic potential drop and the interfacial potential, and the distribution is taken as a

secondary distribution.

The secondary current distribution were discussed in two cases where the elec-

trode reactions follow the linear kinetics at small current densities, and the Tafel kinetics

at larger current. In both cases, the current distributions are determined by the relative

contribution from the charge-transfer resistance and the Ohmic resistance. A dimen-

sionless parameter J was given to weigh the contribution from the two resistances
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A B

Figure 2-5. Secondary current distribution on a disk electrode for A) linear kinetics and
B) Tafel kinetics.1

as

J =
4

π

Re

Rt

(2–10)

Larger values of J are seen when the Ohmic resistance is important, and smaller values

are seen when the system is dominated by slow electrode kinetics. The calculated

secondary current distributions for linear and Tafel polarizations are shown in Figure

2-5 as a function of J . When J approaches infinity, fast kinetics applies and the Ohmic

potential drop in solution dominates. The current under this condition is considered to

be the primary distribution. When J approaches zero, a uniform current distribution is

observed implying that the current is only dependent on the nature of the polarization

reaction and not the electrode geometry.
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2.2.3 Tertiary Distribution

Tertiary current and potential distributions apply when the assumption of uniform

concentration is relaxed. The concentrations of charged species are now taken into

account in addition to the potential. Newman1 solved the convective diffusion equation

for concentration within the diffusion layer, and the Laplace’s equation for potential

in the bulk solution. These equations were solved simultaneously and were coupled

through the flux and current density at electrode boundary. A dimensionless parameter

N , similar to J in the secondary distribution, was used in representing the relative

importance of the Ohmic resistance and the mass-transfer resistance. More discussions

on the effect of concentration polarization on the current and potential distributions are

given elsewhere.1,21

The assumption of concentration variation only in the diffusion layer is relaxed

in the present study. The approach made by Newman is modified by coupling the

concentrations and potential through the mass conservation and charge conservation

equations. The mathematical development and the calculation results for the current

and potential distributions on a rotating disk electrode are presented in Chapter 6.

2.3 Local Electrochemical Impedance Spectroscopy

The results of conventional EIS represent an average response over the entire

surface. Local impedance measurements provide local information of specimen surface

and are useful in studying the time-constant distribution leading to a CPE behavior. The

influence of electrode geometry on the impedance response were studied numerically

and experimentally by Orazem and coworkers2,3,10–14,22,23 in which the LEIS technique

was used to confirm the resulting nonuniform behavior.

2.3.1 Experimental Configuration

The use of local electrochemical impedance spectroscopy (LEIS) was pioneered

by Isaacs et al.24–26 for the determination of surface heterogeneities. The technique

35



Figure 2-6. Schematic representation of the electrochemical cell used to perform local
electrochemical impedance measurements.2

is performed with a bielectrode consisting of two platinum wires. The schematic rep-

resentation of LEIS measurements is given in Figure 2-6. A perturbation of potential

is applied to the electrode. The potential difference between the probes 4Vprobe(ω)

are measured at different perturbation frequencies. The local current density iloc(ω)

oscillated at the same frequency can be obtained through the Ohm’s law following

iloc(ω) =
4Vprobe(ω)κ

d
(2–11)

where κ is the electrolyte conductivity, d is the distance between the probes, and ω is the

oscillation frequency. The local impedance z(ω) is then defined by

z(ω) =
Ṽ (ω)− Φref,∞

iloc(ω)
=

Ṽ (ω)

4Vprobe(ω)

d

κ
(2–12)

where Ṽ (ω) is the perturbation of electrode potential and Φref,∞ is the potential of

reference electrode placed in the bulk solution.
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Figure 2-7. Local equivalent circuits correspond to local impedances that vary with the
radial positions on the electrode surface.

The use of a bielectrode enables the measurement of local current density. The

Commercial LEIS instrumentation yields a resolution with a dimension of about 1 mm.

Custom-built instrumentation can yield resolutions on the order of 100 µm.14,27 With

a four-channel frequency response analyzer, the global and local impedances can be

measured simultaneously.11

2.3.2 Definition of Terms

The notations of local impedance presented in this study follow the definitions pro-

posed by Huang et al.10 where the lower-case letter z was used to represent the local

impedance, and the upper-case letter Z was used to represent the global impedance

obtained from the conventional EIS measurements. To help envision the local and global

properties, equivalent circuits are used to describe the interfacial electrochemistry. As

seen in Figure 2-7 a series of equivalent circuits are present at the electrode surface.

Each equivalent circuit corresponds to a local electrode process consisted of a double-

layer capacitance in parallel with a Faradaic impedance. Blocks are used to stand for

undetermined reaction mechanisms at the electrode surface. The electrolyte properties

are also depicted by blocks in order to reflect the complex feature of the Ohmic contri-

bution. The perturbation of electrode potential is denoted by Φ̃m, and the oscillation in
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the adjacent solution in response to the electrode perturbation is denoted by Φ̃0. The

position of Φ̃0 is located at the outer limit of the diffuse double layer. These potentials

are referenced to a distant electrode which value is zero. The definitions of local and

global impedances are given as follow using the conventions illustrated in Figure 2-7.

The local impedance variables are dependent on radial position along the electrode

surface and are calculated from local current densities and potentials defined at different

locations. The local impedance involves the electrode potential with respect to a distant

electrode and is expressed by

z(r) =
Φ̃m

ĩ(r)
(2–13)

where ĩ is the oscillation of the local current density. The local interfacial impedance

involves the potential difference across the electrode-electrolyte interface and is defined

by

z0(r) =
Φ̃m − Φ̃0(r)

ĩ(r)
(2–14)

The local Ohmic impedance involves the Ohmic potential drop in the solution and is

given by

ze(r) =
Φ̃0(r)

ĩ(r)
(2–15)

From the definitions of the local impedance variables given above, the local impedance

z(r) = z0(r) + ze(r) (2–16)

can be represented by the sum of local interfacial and local Ohmic impedances.

The global impedance variables represent averaged properties of the electrode

surface and are not dependent on radial positions. The global impedance, similar to the

local impedance, involves the electrode potential with respect to the reference electrode

placed far away from the disk, and is defined by

Z =
Φ̃m − Φ̃0

I
(2–17)
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where the oscillation of total current is related to the local current density by

I =

∫ r0

0

ĩ(r)2πrdr (2–18)

The global impedance can also be obtained from the local impedance values by

1

Z
=

∫ r0

0

1

z(r)
2πrdr (2–19)

which is actually the global admittance represent by the integration of local admittance

over the disk surface. Following the same strategy, the global interfacial impedance can

be obtained by integrating the local interfacial admittance

Z0 =

[∫ r0

0

1

z0(r)
2πrdr

]−1

(2–20)

The global Ohmic impedance is therefore defined to be

Ze = Z − Z0 (2–21)

which is the difference between the global and global interfacial impedances. The

high-frequency limit of the global impedance, which corresponds to the global Ohmic

impedance, should reach a dimensionless value of 0.25 which is obtained from the

analytical solution by Newman.5
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CHAPTER 3
LITERATURE REVIEW

Impedance models are usually based on the assumption of uniformly active

electrode surface. Electrochemical systems, however, rarely show an ideal behavior

because the current and potential adjacent to the electrode are constrained by electrode

geometry. Numerous studies were made to investigate the current and potential

distributions associated with electrode geometry. A literature review is presented in this

Chapter for the geometry-induced current and potential distributions and the nonuniform

mass transfer on a rotating disk electrode.

3.1 Geometry-Induced Current and Potential Distributions

The current and potential distributions in the electrolyte adjacent to a disk electrode

embedded in an insulating plane are constrained by the electrode geometry. Newman

has shown that the Ohmic potential drop in solution causes a nonuniform current distri-

bution at the electrode surface.5 He also calculated the secondary current distribution,

which accounts for the additional influence of the charge-transfer resistance.1 The

presence of potential drop across the electrode-electrolyte interface reduces the contri-

bution from the Ohmic potential drop in solution and therefore makes the distributions of

current and potential more uniform. Nisancioglu and Newman7,8 have investigated the

transient response of a disk electrode with a single Faradaic reaction subject to a step

change in applied current and a step change in applied potential. The model did not ac-

count for mass transfer effects, and the analytical solution to the Laplace’s equation was

obtained using a transformation to rotational elliptic coordinates with a series expansion

in terms of Legendre polynomials.

Geometry-induced current and potential distributions cause a frequency dispersion

that distorts the impedance response and reflects a distribution of electrode reactivity.6

The frequency or time-constant dispersion was originally attributed to the dispersion

of double-layer capacitance or the dependence of capacitance on frequency. It is now
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generally attributed to the nonuniform current and potential distributions associated with

factors such as electrode morphology,20 heterogeneity,17 or composition variation in

oxide layers,18 and is generally expressed in terms of a constant phase element (CPE)

in equivalent circuits.16 The frequency dispersion resulting from electrode geometry is

apparent in systems where the Ohmic resistance dominates, leading to a CPE behavior.

The nonuniform current and potential distributions could lead to an error in esti-

mation of both the charge-transfer resistance and the interfacial capacitance.4 Huang

and coworkers2,10–12 have presented a series of papers describing the influence of

electrode geometry on the impedance response. They defined three local impedances

in addition to the global impedance obtained from the usual impedance measurements.

Simulations showed that the local impedance and local Ohmic impedance exhibited

time-constant dispersion associated with the disk geometry, and the calculated global

impedance had quasi-CPE behavior at high frequencies for blocking electrode10,11

and electrodes subject to a single Faradaic reaction.12 The geometry effect was re-

flected in the local Ohmic impedance in which nonzero imaginary components were

observed. These effects can be eliminated by recording the impedance data below the

characteristic frequency. Predictions made by Huang et al.10–12 were in agreement with

observations of Frateur et al.2 for the local electrochemical impedance spectroscopy

(LEIS) measurements on a stainless steel electrode. Jorcin et al.13 also observed a

CPE behavior on a disk electrode made of magnesium alloy that may be associated with

a radial distribution of local resistance.

The origin of Ohmic impedance was discussed by Blanc et al.23 The local variations

of axial and radial current densities cause the Ohmic contribution to be represented by a

complex number. The complex character of the Ohmic impedance is not only a property

of electrolyte conductivity, but also a property of electrode geometry and interfacial

impedance.
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3.2 Nonuniform Mass Transfer on a Rotating Disk Electrode

The well-developed hydrodynamics and convective transport characteristics make

rotating disk electrode (RDE) a popular tool to study the reaction kinetics and mass

transfer in the diffusion layer. At the mass-transfer-limited current, the concentration of

reacting species is zero over the entire surface of the disk and the convective fluid

brings fresh reactant to the electrode surface. Under such condition, the current

distribution may be uniform on the electrode surface and the fluid velocity in the radial

direction can be neglected. Levich28 calculated the mass-transfer-limited current by

using the first term of velocity expansion in the axial direction,29 which satisfies only

when the Schmidt (Sc) number is infinitely large. Newman30 provided a correction for

a Sc number of 1,000 which reduced 3% of the value of limiting current from Levich’s

results.

The assumption of uniform current distribution was relaxed by Newman1 by taking

into account the concentration distribution in both radial and axial directions in the

diffusion layer. The convective diffusion equation is given by

υr
∂c

∂r
+ υy

∂c

∂y
= D

∂2c

∂y2
(3–1)

where c is the concentration and D is the diffusion coefficient of the reacting species,

and υr and υy are the radial and axial components of the velocity which can be ex-

pressed by Cochran’s29 two-term expansion for fluid velocity near the electrode surface.

Outside the diffusion layer assuming a uniform concentration in bulk solution, the

electrolytic potential can be obtained from Laplace’s equation following

∇2Φ = 0 (3–2)

The migration of species was modified by transference number. The nonuniform current

distribution on electrode surface was then calculated for electrode reaction of metal
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deposition. This approach was extended for general electrode reactions depending on

both reactant and product concentrations.31

The steady-state solution for the uniform distributions of concentration and cur-

rent cannot be applied to the development of impedance model due to the fact that

impedance is a transient technique that relies on the perturbation of potential or cur-

rent below the mass-transfer-limited current. Deslouis et al.32,33 developed analytical

solutions for the responses of current and potential to a sinusoidal perturbation of ro-

tation speed, also known as electrohydrodynamic (EHD) impedance spectroscopy, at

the mass-transfer-limited plateau. They used only the first term of the axial velocity

expansion. The theoretical solutions were in agreement with the experimental results

obtained from redox reactions with fast kinetics and large values of Sc number (Sc =

3,400 and 8,600). In the unsteady-state calculations, neglecting high order terms in the

velocity expansion could result in a larger error when assessing the Sc number. For

a Sc number of 1,000, an error of 24.4% was found,34 which is more significant than

that derived from steady-state calculations. Tribollet and Newman15 used two terms of

the velocity expansion in the derivation of EHD impedance and tabulated the Warburg

impedance as a function of Sc number. The use of this look-up table reduces the time

for regression to experimental results. The application of these one-dimensional models

to impedance measurements, however, are not valid below the mass-transfer-limited

current and often lead to anomalously large Sc numbers.

The nonuniform mass transfer on a RDE and the nonuniform Ohmic potential

drop due to electrode geometry result to a distribution of current on electrode surface

that requires a two-dimensional analysis at both steady and unsteady states. Appel

and Newman35 provided a mathematical model that considered the radial convective

diffusion. The disk electrode was subject to a step change in concentration and the

oscillating concentration distribution was calculated. This preliminary development,

valid for infinite Sc number, could be used as part of a model for the influence of radially
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dependent convective diffusion on the impedance response. Durbha and Orazem36

extended the work to a steady-state treatment of current and potential distributions that

accounted for a finite value of Sc number and for a distribution of charge in the diffuse

part of double layer. Similar to Newman’s calculation,1 three terms of the radial and axial

velocity expansions were used. In the subsequent work,37 a two-dimensional impedance

model was developed. Discrepancies were seen between the two-dimensional and

one-dimensional models. Although the one-dimensional model provided a good fit to

experimental data, the regressed Sc number could be as much as 22% higher than the

expected value in cases where the discrepancy between models was significant.38
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CHAPTER 4
ELECTRODE REACTION WITH ADSORBED INTERMEDIATES: MODEL

The behavior of adsorbed intermediates in Faradaic processes has been studied

in the 1950s.39,40 The procedures involving electrosorption steps in H2 evolution or O2

evolution reaction have an adsorption capacitance which is related to the coverage by

intermediates dependent on electrode potential.41 Epelbin and Loric42 analyzed systems

for metal dissolution and the measured impedances showed low-frequency inductive

loops caused by adsorbed intermediates. The kinetics of reactions was discussed by

Armstronget al.43 with considering the diffusion of species in solution and by Epelboinet

al.44 with more than one adsorbed species.

Systematic classifications of the impedance response for multi reactions involv-

ing an adsorbed intermediate under potentiostatic control was given by Armstrong

and Edmondson45 and Cao.46 The high-frequency impedance loop is attributed to the

charging of double layer and charge-transfer reactions at electrode surface, and the

low-frequency loop is related to the relaxation of surface coverage by adsorbed inter-

mediates.44 Bai and Conway47 discussed the dependence of impedance response on

electrode potential and characterized the values of surface coverage at steady state. For

a reversible reaction with two electron-transfer steps, the relative value of rate constant

for each reaction step had an effect on the shape of impedance. Low-frequency induc-

tive loops were observed in a narrow potential range near the maximum or minimum

value of the surface coverage.

In this chapter, the geometry-induced current and potential distributions are applied

to electrochemical systems with adsorbed intermediates. A general discussion for the

influence of electrode geometry on the global and local impedance response is pre-

sented. This work is an extension of the previous studies for a blocking electrode,10,11

and for electrode with single Faradaic reaction.12 The objective of the present study is to
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investigate whether the geometry effects may play a role at low frequencies where the

relaxation of surface coverage is observed.

4.1 Mathematical Development

The approach presented here to account for low-frequency impedance loops

associated with adsorbed intermediates was pioneered by Epelboin et al.44,48 The first

part of this section demonstrates that such low-frequency loops cannot be observed

for reactions represented by linear kinetic expressions. The subsequent parts provides

the model development under the assumption of Tafel kinetics and potential distribution

constrained by electrode geometry.

4.1.1 Linear Kinetics near the Equilibrium Potential

The general reactions for two successive charge-transfer steps with an adsorbed

intermediate can be described by

M 
 X+
ads + e− (4–1)

and

X+
ads 
 P2+ + e− (4–2)

Reactions near equilibrium potential can be expressed as linear functions of surface

overpotential. Thus, the current density at the electrode surface for reactions (4–1) and

(4–2) can be expressed by

iM = KM(1− γ)(bMa + bMc)V (4–3)

and

iX = KXγ(bXa + bXc)V (4–4)

where KM and KX are the effective rate constants, γ is the surface coverage by the

adsorbed intermediate X+
ads, V is the interfacial potential defined by the difference

between the electrode potential Φm and the solution potential adjacent to the electrode
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Φ0, and bM and bX are kinetic parameters for reactions (4–1) and (4–2) where the

subscripts a and c, respectively, represent the anodic and cathodic half reactions. The

summation of the current density of each reaction yields the Faradaic current density as

iF = iM + iX (4–5)

The variation of the surface coverage is related to the reaction rates as

dγ

dt
=
iM − iX

ΓF
(4–6)

where Γ is the maximum surface concentration by intermediate, and F is the Faraday

constant. At steady state, the reaction rates reach constant values, and the surface

coverage does not change with time, i.e., dγ/dt = 0. The steady-state value of γ can

therefore be calculated from equations (4–3) and (4–4) as

γ̄ =
KM(bMa + bMc)

KM(bMa + bMc) +KX(bXa + bXc)
(4–7)

where the bar notation represents the steady-state condition. Equation (4–7) indicates

that, in the linear regime, the steady-state surface coverage is not dependent upon the

surface overpotential. The surface coverage remains uniform along the electrode and is

a function of kinetic parameters only. The current density for each reaction, however, is

a function of surface overpotential, and therefore the Faradaic impedance of the system

is the charge-transfer resistance given by

Rt =
∂V

∂iF
=

1

KM(1− γ)(bMa + bMc) +KXγ(bXa + bXc)
(4–8)

As the Faradaic impedance is in parallel with the double-layer capacitance, the

impedance diagram shows a single capacitive loop in the Nyquist plane. Inductive

and capacitive loops are not evident at low frequencies under the assumption of lin-

ear kinetics. In order to investigate the influence of adsorbed intermediates on the

impedance response, the electrode kinetics is assumed to be in the anodic Tafel regime.
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4.1.2 Tafel Kinetics for Anodic Reactions

When the surface overpotential is large, the electrode behavior obeys Tafel kinetics.

Reactions (4–1) and (4–2) are now taken to be irreversible as

M→ Xads
+ + e− (4–9)

and

Xads
+ → P2+ + e− (4–10)

The reactant could be a metal M which dissolves through an adsorbed intermediate

Xads
+, and then further reacts to form the final product P2+. Similar mechanisms were

proposed by Epelboin and Keddam48 for calculating the impedance of iron dissolution

through two steps involving an adsorbed FeOH intermediate, and by Peter et al.49 for

the impedance model of the dissolution of aluminum in three consecutive steps with

two adsorbed intermediates. Under the assumption of Tafel kinetics and negligible

diffusion processes, the steady-state current densities for reactions (4–9) and (4–10) are

expressed by

iM = KM(1− γ) exp[bMV ] (4–11)

and

iX = KXγ exp[bXV ] (4–12)

The expression for steady-state surface coverage can be calculated from equations

(4–11) and (4–12) as

γ =
KM exp[bMV ]

KM exp[bMV ] +KX exp[bXV ]
(4–13)

In contrast to the surface coverage given in equation (4–7) for linear kinetics, equation

(4–13) shows that the steady-state surface coverage is dependent on the surface

overpotential under the assumption of Tafel kinetics.
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Following the method developed by Epelboin et al.,44 the Faradaic impedance ZF at

a given potential is given by
1

ZF

=
1

Rt

+
A

jω +B
(4–14)

where the charge-transfer resistance Rt is defined by

1

Rt

=
1

Rt,M

+
1

Rt,X

= bM|iM|+ bX|iX| (4–15)

and parameters A and B are potential dependent variables given by

A =
∂iF
∂γ

∂

∂V

(
dγ

dt

)
=

(R−1
t,M −R

−1
t,X)[KX exp(bXV )−KM exp(bMV )]

ΓF
(4–16)

and

B = − ∂

∂γ

(
dγ

dt

)
=
KX exp(bXV ) +KM exp(bMV )

ΓF
(4–17)

While B is always positive, the sign of A varies with the potential across the electrode-

electrolyte interface, and the feature of the impedance plane changes according to the

sign of A.

As shown in Figure 4-1 for the Faradaic impedance ZF in parallel with the double

layer capacitance C0 at electrode surface, and in series with the Ohmic resistance

Re in electrolyte, the overall impedance has different features at low frequencies with

different signs of A. At high frequencies, the Faradaic impedance is observed through

the charge-transfer resistance Rt, which is the first term of equation (4–14), and the

impedance shows a high-frequency capacitive loop corresponding to Rt in parallel with

C0 (Rt||C0). At low frequencies, the Faradaic impedance is observed through the second

term of equation (4–14). The low-frequency loop exhibits inductive behavior when A

is positive, and capacitive behavior when A is negative. When A is equal to zero, the

two terms of the numerator in equation (4–16) cancel, i.e., ∂iF/∂γ = 0. In this case,

the reaction current density is not dependent on the surface coverage, and, therefore,

the impedance plot shows a single capacitive loop corresponding to Rt||C0 with no

low-frequency loop.
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Figure 4-1. Impedance plots in response to different signs of A.

4.1.3 Potential Distribution

The potential distribution implied by Figure 2-7 results from the geometry of a disk

electrode with radius r0 embedded in an insulating plane. The counterelectrode was

assumed to be placed infinitely far from the disk electrode. The potential in the solution

can be solved by using Laplace’s equation in cylindrical coordinates, i.e.,

∇2Φ = 0 (4–18)

The system is assumed to have cylindrical symmetry such that the potential in solution

is dependent only on the radial position (r) along the electrode surface and the normal

distance (y). In response to an alternating current with a particular angular frequency ω

(ω = 2πf ), the potential can be separated into steady and time-dependent parts as

Φ = Φ +Re{Φ̃ejωt} (4–19)
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where Φ is the steady-state solution for potential and Φ̃ is the complex oscillating

component, which is a function of position only. Therefore, Laplace’s equation becomes

1

r

∂

∂r
(r
∂Φ̃

∂r
) +

∂2Φ̃

∂y2
= 0 (4–20)

The boundary conditions at insulators and far from the electrode surface are given by

∂Φ̃

∂y

∣∣∣∣
y=0

= 0 at r > r0 (4–21)

and

Φ̃ = 0 as r2 + y2 →∞ (4–22)

The current density at the electrode surface can be expressed as

i = C0
∂V

∂t
+ iM + iX = −κ∂Φ

∂y

∣∣∣∣
y=0

(4–23)

where C0 is the interfacial capacitance and κ is the electrolyte conductivity.

The current at the electrode surface can be written by use of the reaction kinetics

developed in equations (4–11) and (4–12), and expressed in frequency domain by

KjṼ + J1Ṽ + J2Ṽ = −r0
∂Φ̃

∂y

∣∣∣∣
y=0

(4–24)

where Ṽ is the oscillation of surface overpotential defined by

Ṽ = Φ̃m − Φ̃0 (4–25)

where Φ̃m is the imposed perturbation in electrode potential and Φ̃0 is the corresponding

oscillation in the solution potential adjacent to electrode surface, and K is the dimen-

sionless frequency defined by

K =
ωC0r0

κ
(4–26)
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The parameters J1 and J2 are dimensionless functions dependent on angular frequency

and radial position on the electrode surface, i.e.,

J1(r, ω) = JM(r)−
|iM(r)|
1−γ(r)

[JM(r)− JX(r)]

ΓFjω +
|iM(r)|
1−γ(r)

+
|iX(r)|
γ(r)

(4–27)

and

J2(r, ω) = JX(r)−
|iX(r)|
γ(r)

[JM(r)− JX(r)]

ΓFjω +
|iM(r)|
1−γ(r)

+
|iX(r)|
γ(r)

(4–28)

The parameters JM and JX are defined to be the dimensionless current densities for

reactions (4–9) and (4–10), respectively, and are functions of radial position on the

electrode surface, as given by

JM(r) =
bM|iM(r)|r0

κ
(4–29)

and

JX(r) =
bX|iX(r)|r0

κ
(4–30)

respectively. The sum of JM and JX represents the dimensionless current density which

flows through the charge-transfer steps

J(r) = JM(r) + JX(r) =
r0

κ
[KMbM(1− γ) exp(bMV ) +KXbXγ exp(bXV )] (4–31)

The relationship between the parameter J and the charge-transfer and Ohmic resis-

tances can be established using the high-frequency limit for the Ohmic resistance to a

disk electrode obtained by Newman5

Re =
πr0

4κ
(4–32)

where Re has units of Ω cm2. The parameter J can therefore be expressed in terms of

the Ohmic resistance Re and charge-transfer resistance Rt as12

J =
4

π

Re

Rt

(4–33)
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Table 4-1. The values of kinetic parameters used for the simulations.

Symbol Meaning Value Units
bM αMF/RT 40 V−1

bX αXF/RT 10 V−1

KM Effective reaction constant for reaction (4–9) 77.2 A/cm2

KX Effective reaction constant for reaction (4–10) 0.19 A/cm2

Φm Steady-state electrode potential
For 〈A〉 > 0 (0.011 S/cm2s) -0.15 V
For 〈A〉 = 0 (−6.6× 10−4 S/cm2s) -0.10 V
For 〈A〉 < 0 (−0.83 S/cm2s) 0.10 V

Φ̃m Perturbation of electrode potential 0.01 V

Large values of J are seen when the Ohmic resistance is much larger than the charge-

transfer resistance, and small values of J are seen when the charge-transfer resistance

dominates. The definition of parameter J in equation (4–33) is the reciprocal of the

Wagner number,50 which is a dimensionless quantity that measures the uniformity of the

current distribution in an electrolytic cell.

Simulations were performed to investigate the electrochemical impedance behavior

for different potentiostatic situations when the surface-average value of 〈A〉 is positive,

negative, and zero. The values of kinetic parameters used for the simulations are

given in Table 4-1. The values in Table 4-1 for bM and bX are close to the values of

38.4 V−1 and 7 V−1 reported by Keddam et al.51 for the dissolution of iron in acidic

media. The calculated result for each simulation corresponds to a particular value of J ,

representing different contributions from the Ohmic and the charge-transfer resistances.

The equations were solved by using the finite-element package COMSOL Multiphysicsr

with the conductive media DC module in a 2D axial symmetric coordinate system. A

quarter-circle was constructed with an axis of symmetry at r = 0 and the electrode

positioned at y = 0. The domain size shown in Figure 4-2 was 2,000 times larger than

the disk electrode dimension in order to meet the assumption that the counterelectrode

was located infinitely far from the electrode surface.
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Figure 4-2. The domain used for the finite-element simulations. The solid lines represent
steady-state iso-potential planes, and dashed lines represent steady-state
trajectories for flow of current.

4.2 Calculated Impedance Results

As indicated by equation (4–13), the steady-state fraction of surface coverage

varies with the interfacial potential (V = Φm − Φ0). While Φm is assumed to be uniform

on a conductive electrode, the potential outside the diffuse double layer Φ0 is a function

of radial position. Thus, Φm − Φ0 and γ are functions of radial position. The distribution

of the normalized steady-state fractional surface coverage is presented in Figures 4-3A

and 4-3B for positive and negative average values of 〈A〉, respectively. The value of

average surface coverage 〈γ〉 is 0.069 for curve 1, and 0.98 for curve 9. The parameter

A is itself a function of radial position due to its dependence on interfacial potential.

The range of the value of A from electrode center to electrode periphery is 0.0109 to

0.00509 S/cm2s for curve 4, 0.0106 to -0.0665 S/cm2s for curve 5, and -0.109 to -7.60

S/cm2s for curve 6. The variation for local value A along the electrode surface is larger

as the applied potential is increased.

The relationship between the surface-averaged values of 〈A〉 reported in Figures

4-3A and 4-3B and the applied steady-state electrode potential is presented in Figure
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Figure 4-3. Radial distribution of the normalized steady-state fractional surface coverage
on a disk electrode: A) for positive surface-averaged values of 〈A〉; B) for
negative surface-averaged values of 〈A〉; C) the relationship between the
surface-averaged values of 〈A〉 reported in parts (A) and (B) and the applied
steady-state electrode potential; and D) the corresponding surface-averaged
values of 〈J〉 to the applied steady-state electrode potential.
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4-3C. The coverage by intermediate is most nonuniform at Φm = -0.1 V, where the

corresponding average value of 〈A〉 is equal to zero. It becomes more uniform at larger

or smaller values of Φm. The corresponding surface-averaged value of 〈J〉 to the applied

potential at steady state was calculated from equation (4–31) and is given in Figure

4-3D. As Φm increases, the value of 〈J〉 increases and the sign of 〈A〉 changes from

positive to negative. The sign of 〈A〉 determines the shape of low-frequency features

of the impedance plot. In order to understand the impedance behavior under different

potentiostatic conditions, three cases for 〈A〉 > 0, 〈A〉 = 0, and 〈A〉 < 0 (points 4, 5, and

6 in Figure 4-3C) are discussed.

The maximum variability of surface coverage was shown in Figures 4-3A and 4-3B

to occur for 〈A〉 = 0. Interestingly, the potential yielding the maximum variability of

surface coverage does not coincide with the potential yielding the most nonuniform

distribution of current or potential. The adsorption isotherm given in Figure 4-4A shows

an inflection at 〈A〉 = 0, representing the stronger dependence of the surface coverage

on the interfacial potential; whereas, at 〈A〉 = −0.83 S/cm2s, the isotherm crosses the

largest potential interval, indicating the most nonuniform potential distribution on the

electrode surface. The distribution of current can also be observed in Figure 4-4B, which

shows a more nonuniform distribution of current when the applied potential is increased.

For 〈A〉 = −0.83 S/cm2s, the parameter J has the largest value, meaning, as shown

in equation (4–33), that the Ohmic resistance is much larger than the charge-transfer

resistance. Hence the current distribution is more nonuniform.21

The discussion presented below follows the influence of kinetic parameters on the

global, local interfacial, local Ohmic, and local impedances.

4.2.1 Global Impedance

The global impedance represents an averaged response of the electrode. The

calculated results of global impedance for the cases with 〈A〉 > 0 (0.011 S/cm2s),

〈A〉 = 0, and 〈A〉 < 0 (−0.83 S/cm2s) are presented in Nyquist format in Figures 4-5A,
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Figure 4-4. The variation of A) steady-state surface coverage density, and B)
steady-state current density with the interfacial potential. Dashed squares
are used to identify the range of current and surface coverage corresponding
to the simulations performed at Φm = −0.15V (〈A〉 = 0.011 S/cm2s),
Φm = −0.1V (〈A〉 = 0 S/cm2s), and Φm = 0.1V (〈A〉 = −0.83 S/cm2s). The
position r = 0 corresponds to the lower-left corner of each box.
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4-5B, and 4-5C, respectively. The solid lines in Figure 4-5 represent the simulation

results by solving the Laplace’s equation coupling the boundary conditions that account

for the time-constant dispersion associated with the electrode geometry. The dashed

curves represent the global impedances calculated by use of a mathematical expression

Z = Re +
1

1/ZF + jωC0

(4–34)

associated with the Ohmic resistance in solution and a combination of Faradaic reaction

and electric double layer at electrode. The Ohmic resistance developed by Newman5

is given in equation (4–32). The Faradaic impedance is calculated from equation

(4–14) in terms of the surface-average parameters given from equation (4–15) to

(4–17) and therefore did not account for the influence of electrode geometry. The

geometry of the disk electrode is shown to distort the global impedance response. The

geometry-induced distortion of impedance response and corresponding depressions of

semicircles at high and low frequencies are more obvious in Figure 4-5C where 〈A〉 < 0.

The charge-transfer resistance Rt for the coupled reactions can be evaluated from

the diameter of the high-frequency loop of the global impedance, and the low-frequency

loop yields the resistance Rγ associated with the concentration of adsorbed species.

A comparison between the effective kinetic parameters Rt,eff and Rγ,eff , which account

for electrode geometry, to the respective values that assume an uniform electrode

is presented in Figure 4-6 as a function of 〈J〉. The relationship between 〈J〉 and

the electrode potential Φm is given in Figure 4-3D. The ratios Rt,eff/Rt and Rγ,eff/Rγ

approach unity as 〈J〉 → 0. The value of Rt,eff/Rt increases when 〈J〉 increases, which

is in agreement with the result presented by Huang et al.12 that the influence of time-

constant dispersion is greater when 〈J〉 is large. The value of Rγ,eff/Rγ is largest for 〈J〉

close to 3.09 where 〈A〉 = 0. The surface coverage by the reaction intermediate has

the greatest nonuniformity at 〈A〉 = 0, as shown in Figure 4-3A and 4-3B, and hence a

significant error in Rγ,eff is seen when 〈A〉 approaches zero.
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Figure 4-5. Calculated Nyquist representation of the global impedance response for a
disk electrode considering the influence of electrode geometry (solid lines)
and in the absence of geometry effect (dashed lines): A) 〈A〉 > 0 (0.011
S/cm2s); B) 〈A〉 = 0; and C) 〈A〉 < 0 (−0.83 S/cm2s).
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Figure 4-6. The value of Rt,eff/Rt and Rγ,eff/Rγ evaluated from the global impedance as
a function of 〈J〉.

The results for global impedance can be understood through the examination of

the local impedance distributions. In the following sections, the calculated results for

local, local interfacial and local Ohmic impedance are presented and compared for three

different potentiostatic conditions: Φm = −0.15 V (〈A〉 = 0.011 S/cm2s), Φm = −0.1 V

(〈A〉 = 0 S/cm2s), and Φm = 0.1 V (〈A〉 = −0.83 S/cm2s).

4.2.2 Local Interfacial Impedance

Nyquist plots for the calculated local interfacial impedance are presented in Figures

4-7A, 4-7B, and 4-7C for 〈A〉 > 0, 〈A〉 = 0, and 〈A〉 > 0, respectively, with normalized

radial position r/r0 as a parameter. The impedance diagrams are superposed at high

frequencies, showing that current flows mainly through the double-layer capacitance

which was assumed to be uniform at the electrode surface. The shape of the low-

frequency Faradaic loop is dependent on the sign of parameter 〈A〉. The local interfacial

impedance has a low-frequency inductive loop at all positions on the electrode when

〈A〉 > 0, and shows low-frequency capacitive features when 〈A〉 < 0. For 〈A〉 = 0,

although only a single capacitive loop is observed in the global impedance (Figure

60



0.00 0.04 0.08 0.12 0.16 0.20

-0.04

0.00

0.04

0.08

0.12

0.16

K=10-5

K=10

K=1

 

-z
0,

jκ
 / 

r 0π
 

z0,rκ / r0π

 r/r0=0       r/r0=0.8
 r/r0=0.5     r/r0=0.96

A

0.00 0.04 0.08 0.12 0.16 0.20

0.00

0.02

0.04

0.06

0.08

0.10

K=10

K=1

 

 

-z
0,

jκ
 / 

r 0π
 

z0,rκ / r0π

 r/r0=0
 r/r0=0.5
 r/r0=0.8
 r/r0=0.96

B

0.00 0.02 0.04 0.06 0.08
0.00

0.01

0.02

0.03

0.04

0.05

K=10

K=10-5

 

 

-z
0,

jκ
 / 

r 0π
 

z0,rκ / r0π

 r/r0=0
 r/r0=0.5
 r/r0=0.8
 r/r0=0.96

C

Figure 4-7. Calculated Nyquist representation of the local interfacial impedance
response of a disk electrode with normalized radial position r/r0 as a
parameter: A) 〈A〉 > 0 (0.011 S/cm2s); B) 〈A〉 = 0; and c) 〈A〉 < 0 (−0.83
S/cm2s).
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4-5B), two time constants are seen in the local interfacial impedance. At the periphery

of the electrode, a low-frequency capacitive loop is seen, representing a local positive

value of A. Near the electrode center, a low-frequency inductive loop is observed,

indicating the local negative value of A. The different low-frequency features seen

at different radial positions demonstrates that the global impedance is an average

representation of the electrode surface.

For the three potentiostatic conditions, the values of the local interfacial impedance

are larger at the electrode center and smaller at the periphery, indicating a greater

accessibility near the edges of the electrode. The applied electrode potential is the

largest in the case 〈A〉 < 0, driving larger current densities through the electrode-

electrolyte interface, thus the interfacial impedance has the smallest value when 〈A〉 is

negative.

4.2.3 Local Ohmic Impedance

The calculated local Ohmic impedances for 〈A〉 > 0, 〈A〉 = 0, and 〈A〉 < 0 in Nyquist

format are shown in Figures 4-8A, 4-8B, and 4-8C, respectively, with normalized radial

position as a parameter. As discussed by Huang et al. ,10–12 the resistance in the

electrolyte is not a pure resistance, but acts as an impedance with complex features.

The high-frequency loops at K > 10−2 are in agreement with the previous studies

for a blocking electrode and a disk electrode subject to a single Faradaic reaction, in

which the geometry-induced current and potential distributions are observed.12 In the

present case, however, low-frequency loops can also be observed. The size of these

low-frequency loops increases with applied potential, i.e., for 〈A〉 < 0.

The dependence of the local Ohmic impedance with frequency is shown more

clearly in the representation of the real and imaginary components as given in Figure

4-9. For the real component, the values at high-frequency limit are independent of 〈A〉;

whereas, at the low-frequency limit, the difference of real values between the electrode

center and the periphery is larger for 〈A〉 < 0. The nonzero values in the imaginary
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Figure 4-8. Calculated Nyquist representation of the local Ohmic impedance response
of a disk electrode with normalized radial position r/r0 as a parameter: A)
〈A〉 > 0 (0.011 S/cm2s); B) 〈A〉 = 0; and C) 〈A〉 < 0 (−0.83 S/cm2s).
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Figure 4-9. Calculated real and imaginary parts of the local Ohmic impedance response
of a disk electrode as a function of dimensionless frequency K: A) real part
for 〈A〉 = 0.011 S/cm2s; B) imaginary part for 〈A〉 = 0.011 S/cm2s; C) real
part for 〈A〉 = 0; D) imaginary part for 〈A〉 = 0; E) real part for 〈A〉 = −0.83
S/cm2s; and F) imaginary part for 〈A〉 = −0.83 S/cm2s.
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component of the impedance at 10−7 < K < 10−2 indicate the complex behavior

at low frequencies which does not appear in the system of a single Faradic reaction

without adsorbed reaction intermediates. Complex features are more significant at low

frequencies and less significant at high frequencies when the applied potential to the

electrode increases, but the ranges of dimensionless frequency where the complex

Ohmic impedance are observed (10−7 < K < 10−2 and 10−2 < K < 102) are the same

for all values of 〈A〉.

According to the expression for the dimensionless frequency K in equation (8–17),

the frequency that applies in the impedance measurement is given by

f =
1

2π

Kκ

r0C0

(4–35)

For an electrochemical system with conductivity κ = 0.01 S/cm (corresponding to

a 0.1 M NaCl solution) and a double-layer capacitance C0 = 10 µF/cm2 at a disk

electrode with radius r0 = 0.1 cm, the frequency range corresponding to the calculated

dimensionless values 10−7 < K < 10−2 is 0.16 mHz < f < 16 Hz, which is well within the

range of typical experimental measurements.

4.2.4 Local Impedance

The calculated local impedance is shown in Nyquist format in Figure 4-10 with

radial position as a parameter. The local impedance shows distortion from the ideal

semicircle appearing in the local interfacial impedance. A high-frequency inductive loop

is observed at all radial positions, and, in addition, capacitive or inductive loops are ob-

served at low frequencies. As it represents a summation of the local interfacial and local

Ohmic impedances, the high-frequency inductive behavior in the local impedance plot

must be seen as well in the local Ohmic impedance. The features at lower frequencies

are strongly dependent on the radial position.

The changes in sign of the imaginary part of the the local impedance are evident

in Figure 4-11, where the absolute value of the imaginary part of the local impedance
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Figure 4-10. Calculated Nyquist representation of the local impedance response of a
disk electrode with normalized radial position r/r0 as a parameter: A)
〈A〉 > 0 (0.011 S/cm2s); B) 〈A〉 = 0; and C) 〈A〉 < 0 (−0.83 S/cm2s).
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Figure 4-11. Calculated representation of the imaginary component of the local
impedance response on a disk electrode as a function of dimensionless
frequency K: A) 〈A〉 > 0 (0.011 S/cm2s); B) 〈A〉 = 0; and C) 〈A〉 < 0 (−0.83
S/cm2s).
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is presented as a function of the dimensionless frequency K. Changes in sign are

evident in the frequency range 1 < K < 100, which accounts for the appearance of

the high-frequency inductive loop in the Nyquist plot. This result is consistent with the

results obtained by Huang et al.12 for a single Faradaic reaction on a disk electrode. A

second change in sign is observed at frequencies near 10−2 < K < 10−3, which can be

attributed to the role of the adsorbed intermediate. For the case 〈A〉 < 0, yet another

crossover is observed at even lower frequencies (10−4 < K < 10−6). This effect is seen

because the complex behavior of the local Ohmic impedance is more significant when a

higher electrode potential is applied, driving more current.

4.3 Validation of Calculations

The potential distribution was solved numerically by use of the finite-element

method. The calculation was verified by refining the mesh until the solution reached a

stable value. The number of elements generated at the electrode boundary was 200,

and the total number of elements in the domain was about 32,000. For dimensionless

frequencies K < 100, the differences between solution potential adjacent to the

electrode with different mesh densities were less than 0.001 percent. The calculated

current flux for different mesh densities had differences less than 0.5 percent, and the

calculated local impedances had differences less than 0.6 percent.

The numerical method was also applied to solve the system with a single Faradaic

reaction in order to compare to the results obtained by Huang et al. ,12 who used a

collocation method. At K < 100, the differences between calculated local impedance

obtained from the two numerical methods were less than 0.5 percent.

The role of electrode geometry in creating the low-frequency dispersion reported

here was also verified by examining the impedance response of a recessed electrode.

Frateur et al.14 have demonstrated that a uniform primary distribution can be achieved

by use of a recessed electrode with the depth twice the electrode radius(P = p/r0 = 2).

The impedance response presented in Figure 4-12 was obtained for a recessed
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Figure 4-12. The impedance response for a recessed electrode: A) 〈A〉 > 0; and B)
〈A〉 < 0.
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electrode with P = 4. The local impedance response at different radial positions shows

no dispersion along the electrode surface. In addition, ideal features were observed in

the global impedance plots. The elimination of the geometry effect by use of a recessed

electrode demonstrates that the complex behavior for the local Ohmic impedance at

both low and high frequencies can not be attributed to calculation artifacts.

4.4 Evaluation of CPE Exponent

Geometry-induced current and potential distributions were shown to have influence

on the impedance response only at dimensionless frequency K > 1 for a blocking elec-

trode6,10 and a disk electrode subject to a single Faradaic reaction.11,12 The results of

the present work showed that, for a more complicated system with reactions associated

with an adsorbed intermediate, the impedance response is affected by the geometry of

the disk electrode at low frequencies as well as at high frequencies.

The concept that the non-ideal impedance caused by geometry-induced current

and potential distributions could be expressed in terms of CPE behavior at high frequen-

cies has been discussed by Huang et al.11,12 The parameter α in the CPE expression

was obtained in their work from the slope of the magnitude of the imaginary part of

the global impedance plotted as a function of frequency in logarithmic scales. This

approach worked well for the high-frequency behavior. In the present study, however,

the slope for the low-frequency inductive or capacitive loops could not be clearly re-

solved because the range of frequency was too short. The impedance data within this

frequency range was influenced by the high-frequency loop which obscured the slope.

Another approach for graphical quantification for CPE behavior can be developed

by exploring how the shape of a single impedance loop deviates from that of a perfect

semicircle. The maximum magnitude of the imaginary part of impedance ∆Zj and

the difference between high and low-frequency asymptotes for the of real part of the

impedance ∆Zr shown in Figure 4-13 for a single loop correspond to the radius and the

diameter for a semicircle, respectively. The absolute ratio of ∆Zj and ∆Zr is related to
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Figure 4-13. A graphical representation of a single impedance loop separated into a
higher-frequency (hf) half and a lower-frequency (lf) half.

the CPE parameter α by ∣∣∣∣∆Zj∆Zr

∣∣∣∣ =
1

2
tan(

απ

4
) (4–36)

If α = 1, |∆Zj/∆Zr| = 0.5, which represents a perfect semicircle in the impedance

plane. If an electrode exhibits a local CPE behavior, the value of |∆Zj/∆Zr| is less than

0.5 and a depressed semicircle in the impedance plot is observed. The distortion of

the impedance response can be found by dividing the impedance loop into a higher-

frequency half and a lower-frequency half as shown in Figure 4-13. The dependence of

|∆Zj/∆Zr,hf | and |∆Zj/∆Zr,lf | to the parameter α can be found from equation (4–36) to

be ∣∣∣∣ ∆Zj
∆Zr,hf

∣∣∣∣ or

∣∣∣∣ ∆Zj
∆Zr,lf

∣∣∣∣ = tan(
απ

4
) (4–37)

If the values of the two ratios are different, the impedance loop is not symmetric and

does not correspond to a true CPE for which α must be constant.

The shape of the global impedance loops can be observed in Figure 4-5. The

calculated values of α from equations (4–36) and (4–37) for the impedance loops

are presented in Table 4-2. For the three potentiostatic conditions, Φm = −0.15 V
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Table 4-2. Values of CPE exponent α calculated using equations (4–36) and (4–37) for
the high-frequency and low-frequency impedance loops in Figure 4-5.

Higher-frequency half Lower-frequency half Average
〈A〉 > 0 (0.011 S/cm2s)
High-frequency loop 0.928 0.995 0.960
Low-frequency loop 0.998 0.997 0.997
〈A〉 = 0 S/cm2s
High-frequency loop 0.919 0.991 0.954
〈A〉 < 0 (−0.83 S/cm2s)
High-frequency loop 0.905 0.975 0.939
Low-frequency loop 0.881 0.926 0.903

(〈A〉 = 0.011 S/cm2s), Φm = −0.1 V (〈A〉 = 0 S/cm2s), and Φm = 0.1 V (〈A〉 = −0.83

S/cm2s), all high-frequency loops show depressed semicircles and the corresponding

α values are smaller than unity. In contrast to the results given by Huang et al.12 for a

single Faradaic reaction, the lower-frequency half shows CPE behavior instead of an

ideal impedance response because the characteristic frequency of the high-frequency

loop shifts to a higher value as the applied electrode potential increases and, thus, the

CPE features induced by the electrode geometry can be seen in the lower-frequency

half.

For the present study, the low-frequency loops for 〈A〉 6= 0 are also depressed. For

〈A〉 = 0 there is no low-frequency loop observed. The deviation of α from unity becomes

larger when A is negative, representing the more nonuniform current and potential

distributions as V increases. The time-constant dispersion associated with the geometry

of the disk electrode results in a CPE behavior at low frequency due to the relationship

between the radial distribution of adsorbed intermediate and the radial distribution of

interfacial potential. As described by Huang et al.,12 CPE behavior is seen as well at

high frequencies due to the radial distribution of interfacial potential.

The α values calculated from the global impedance response of a recessed

electrode were equal to unity for both high-frequency and low-frequency loops. This
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ideal behavior shows that the potential and current were uniform for the recessed

electrode geometry.

The evidence of a frequency or time-constant dispersion has relevance to the use

of microelectrodes to study the kinetics of fast electrochemical reactions. For simple

reactions, it is sufficient to design the electrode such that the characteristic frequency

that yields K = 1 is sufficiently larger than the characteristic frequency for the reaction.

This can be achieved by making the electrode smaller. For reactions involving adsorbed

intermediates, however, frequency or time-constant dispersion will be observed at low

frequencies as well, thus complicating the interpretation of the experimental results.
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CHAPTER 5
ELECTRODE REACTION WITH ADSORBED INTERMEDIATES: EXPERIMENTAL

The geometry-induced current and potential distributions were investigated in a

Faradaic system involving an adsorbed intermediate. The dispersion of impedance

response was predicted to be observed not only at high frequencies, but also at low

frequencies in which the characteristic frequency for the adsorption reaction was

involved. An experimental verification of the theoretical results is provided in this chapter

using the iron dissolution as an example.

5.1 Dissolution of Iron

As most of the electrochemical systems do not follow the simple case of linear

kinetics, the impedance model presented here is assumed to be in the Tafel regime.

The system of interest is the corrosion of a pure iron electrode in 0.5 M sulfuric acid.

Bockris and coworkers52 proposed a reaction model in which two consecutive steps are

coupled by an adsorbed intermediate. The anodic dissolution of iron can be described in

simplified form as

Fe
K1−→ Fe+

ads + e− (5–1)

and

Fe+
ads

K2−→ Fe2+ + e− (5–2)

The iron first oxidizes and forms a monovalent intermediate adsorbed on the electrode

surface. This reaction is followed by the oxidation of the intermediate. The ferrous ion

is soluble and diffuses away from the electrode. For this work, the system was at a

potential such that the system remained in the active dissolution domain.

Under the assumption of Tafel kinetics, the reaction rates for reactions (5–1) and

(5–2) can be expressed by

i1 = K1(1− γ) exp[b1(Φm − Φ0)] (5–3)
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and

i2 = K2γ exp[b2(Φm − Φ0)] (5–4)

where K1 and K2 are the effective rate constants, and b1 and b2 are the Tafel slopes for

each reaction.

The variation of surface coverage is associated with the two anodic reactions by

∂γ

∂t
=
i1 − i2

ΓF
(5–5)

When the steady state is achieved, the surface coverage at steady state can be calcu-

lated from equations (5–3) and (5–4) as

γ =
K1 exp[b1(Φm − Φ0)]

K1 exp[b1(Φm − Φ0)] +K2 exp[b2(Φm − Φ0)]
(5–6)

In contrast to the case presented in equation (4–7) for linear kinetics, equation (5–6)

shows that the steady-state surface coverage is dependent on the surface overpotential

under the assumption of Tafel kinetics.

The Faradaic impedance associated with the Tafel kinetics is expressed by equation

(4–14) with the charge-transfer resistance

Rt =
1

K1(1− γ)b1 exp[b1(Φm − Φ0)] +K2γb2 exp[b2(Φm − Φ0)]
(5–7)

and the parameters A and B are given by

A = {K2γb2 exp[b2(Φm − Φ0)]

−K1(1− γ)b1 exp[b1(Φm − Φ0)]}K1 exp[b1(Φm − Φ0)]−K2 exp[b2(Φm − Φ0)]

ΓF

(5–8)

and

B =
K1 exp[b1(Φm − Φ0)] +K2 exp[b2(Φm − Φ0)]

ΓF
(5–9)

respectively. According to the values of the kinetic parameters, A can be positive or

negative, but B is always positive. Substitution of equation (5–6) into equations (5–3)
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and (5–4) yields the steady-state polarization curve expressed as

i =
2K1 exp[b1(Φm − Φ0)]K2 exp[b2(Φm − Φ0)]

K1 exp[b1(Φm − Φ0)] +K2 exp[b2(Φm − Φ0)]
(5–10)

The Faradaic impedance was then calculated from equation (4–14).

In the case of linear kinetics developed Section 4.1.1, it is easy to verify that A = 0.

The Faradaic impedance is only a charge-transfer resistance which is in agreement with

equation (4–14).

The dispersion of local impedances was discussed in Chapter 4 for electrochemical

reactions involving one adsorbed intermediate. While the global impedance at a given

potentiostatic condition may have a specific low-frequency feature, e.g., capacitive

or inductive, the local impedances show a variation of low-frequency features along

the electrode surface, which results from the distribution of potential and corresponds

to different values of the local parameters A and B. The global impedance could be

considered to provide an average representation of the electrode surface, and the low-

frequency feature is determined by the surface average values of 〈A〉 and 〈B〉. As the

polarization condition changes along the current-voltage (I-V ) curve, the low-frequency

loop in the global impedance diagram could change from inductive to capacitive, and

vice versa.

5.2 Experimental Setup

The disk electrode used in the experiment was a 0.5 cm diameter pure iron elec-

trode embedded in an insulating epoxy resin. The electrolyte solution was a 0.5 M

H2SO4 solution prepared with distilled water.

The experimental measurements of LEIS were performed with a bielectrode that

consisted of two platinum wires sealed in a borosilicate bicapillary. The configuration

and preparation of the bielectrode were described in earlier papers.2,14 The use of a

four-channel frequency response analyzer allowed the global, local, and local-interfacial

impedances to be measured simultaneously. All impedance measurements were
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Figure 5-1. The polarization curve for a stationary iron electrode in 0.5 M H2SO4: A) a
scan including both the active and passivated regions; B) zoomed portion of
the box in part (A) showing the potential at which the impedance
measurements were performed.

performed at room temperature (about 19◦C). The potential applied to the iron electrode

was selected to achieve the active dissolution of iron on the polarization curve.

The impedance measurement was performed using a 50 mV peak-to-peak sinu-

soidal perturbation, a frequency range of 65,000 Hz to 0.1 Hz, and seven points per

decade of frequency. The 50 mV perturbation amplitude was selected to maximize the

signal-to-noise ratio while maintaining linearity.53,54 The linear response was confirmed

by measuring the impedance using different amplitudes and determining the maximum

amplitude that did not change the impedance response. The definitions for all the local

impedances were presented by Huang et al.10 theoretically and by Frateur et al.2 in

an experimental perspective. The same notation will be used through out the following

results and discussion.

5.3 Experimental Results

The current-potential curve obtained on a stationary iron electrode in 0.5 M sulfuric

acid solution is presented in Figure 5-1A. The scan rate was 2 mV/sec. The potential

was applied to the iron electrode from the open-circuit potential, activating the iron
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Figure 5-2. Global electrochemical response for a pure iron electrode in 0.5 M H2SO4:
A) global impedance response measured at potential I as indicated in Figure
5-1B; and B) global impedance response measured at potential II.

electrode, to a higher potential, passivating the electrode surface. The potentials I and

II in Figure 5-1B represent the two steady-state conditions for which the impedance

measurements were performed. The global impedance responses given in Figure

5-2A and 5-2B show low-frequency loops which are associated with the formation of

Fe(I) species adsorbed on the electrode surface, and correspond to different values of

surface-average value 〈A〉. To facilitate the comparison of results, all frequencies were

made dimensionless according to

K =
ωC0r0

κ
= 4ωC0r

2
0Re (5–11)

where r0 is the electrode radius, C0 is the double-layer capacitance, which was assumed

to be uniform, κ is the electrolyte conductivity, and Re is the electrolyte resistance. The

parameters C0 and Re were determined from the global impedance measurements. The

electrolyte resistance Re was evaluated from the limiting value of the real part of the

impedance in the high-frequency range; whereas, C0 can be easily determined from
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Figure 5-3. Experimental local impedance for a pure iron electrode in 0.5 M H2SO4

measured at A) potential I; and B) potential II in Figure 5-1B.

the characteristic frequency of the first RC time constant, which represents the high-

frequency capacitive loop corresponding to Rt in parallel with C0. When the electrode

potential increases, the feature of the impedance diagram at low frequencies changes

from an inductive to a capacitive behavior, implying that 〈A〉 changes sign.

The experimental local impedance diagrams obtained with a bielectrode located

at different positions on the disk electrode are depicted in Figure 5-3. When measure-

ments were performed at the polarization point I, the variations of the local impedance

show different reactivity as a function of the probe location over the iron electrode. Such

a behavior is attributed to the geometry-induced current and potential distributions.10–12

In Figure 5-3A, the low-frequency inductive loop is larger at center of the electrode and

smaller at the periphery, which is in agreement with a previous study3 and indicates

a greater accessibility and more reactive domain near the edges of the electrode. In

Figure 5-3B, only the local impedance at the center of the disk is presented. The mea-

surement is difficult to perform at a more anodic potential (i.e., at potential II or for larger
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potentials) because of an increase in the reaction rate leading to an increase in the rate

of iron dissolution, especially at electrode edges. There may also be some accumulation

of corrosion product species. At low frequencies, the local electrochemical impedance

shows an inductive feature which is different from the capacitive behavior shown in the

global impedance plot in Figure 5-2B, representing a locally positive value of A at the

electrode center.

The contribution of the local Ohmic impedance can be calculated from the differ-

ence of the local and local-interfacial impedance measurements. For the steady-state

condition I, the local Ohmic impedance is presented in Figure 5-4A with the radial

position of the probe as a parameter. As already observed for blocking electrodes or for

simple electron transfer reactions,10–12 this contribution acts as an impedance with com-

plex features and is strongly dependent on the radial position along the electrode radius.

However, when an adsorbed intermediate is involved, complex behaviors are observed

at low frequencies as well as at high frequencies. Expanded low-frequency regions are

presented in Figures 5-4B and 5-4C for the local Ohmic impedance at the center and

edge of the electrode, respectively. As discussed in Chapter 4, such a geometry effect is

a typical feature at low frequencies for electrochemical system involving an adsorbed in-

termediate. From the representation of the imaginary parts of local Ohmic impedance as

a function of the dimensionless frequency in Figure 5-5, nonzero values are observed

at low frequencies, but these variations remain smaller than those observed at high

frequencies.

As the electrode potential is biased to a more anodic potential, low-frequency

complex features in the local Ohmic impedance become more significant as shown in

Figure 5-6, which is in agreement with the previous study.3 The characteristic frequency

at low frequencies is associated with the potential dependence of the surface coverage

by the adsorbed intermediate. The characteristic frequency depends on the effective

rate constants and may not be the same for a different reaction system.
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Figure 5-4. Local Ohmic impedance for a pure iron electrode in 0.5 M H2SO4 at potential
I in Figure 5-1B. A) Local Ohmic impedance at the center and the edge of
the electrode; B) the enlargement for the low-frequency end of the local
Ohmic impedance at electrode center; and C) a similar enlargement for the
electrode edge.
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Figure 5-6. Local Ohmic impedance for a pure iron electrode in 0.5 M H2SO4 at potential
II in Figure 5-1B. A) Nyquist plot for the local Ohmic impedances at center of
the electrode; and B) imaginary part of the local Ohmic impedance as a
function of dimensionless frequency.
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Table 5-1. Parameters used in the simulations of iron dissolution in sulfuric acid solution.

Symbol Meaning Value Units
b1 α1F/RT 38.2 V−1

b2 α2F/RT 8.05 V−1

K1 effective rate constant for reaction (5–1) 3× 1013 A/cm2

K2 effective rate constant for reaction (5–2) 30 A/cm2

C0 double-layer capacitance 55 µF/cm2

κ electrolyte conductivity 0.2 S/cm
Γ maximum surface coverage by intermediate 1× 10−8 mole/cm2

5.4 Simulation Results

The mathematical development for the calculation of impedance was described

by in Chapter 4. At the electrode surface, the potential perturbation was coupled by

the current associated with the charging of the electrical double layer and the Faradic

reactions. The potential in the bulk solution satisfies Laplace’s equation and was solved

in cylindrical coordinates.

The experimental polarization curve was first fitted by equation (5–10) allowing

the determination of the kinetic parameters K1, K2, b1, and b2. The LEIS results were

strongly dependent on these parameters. Then, the kinetic variables were varied

to obtain simulations in agreement with both the polarization curve and the global

impedances at the two steady-state conditions. The values of kinetic variables and

other parameters used in the simulations are given in Table 5-1. It should be mentioned

that the sole purpose of the comparison of experiment and simulations is to verify the

prediction made in Chapter 4 that the Ohmic impedance for systems involving adsorbed

intermediates may have complex characters at both low and high frequencies. As will

be described in the Discussion section, this work was not intended to determine the

kinetic constants for the reaction system. Thus, calculated results presented in this

section can be used to show a qualitative comparison with the experimental data.

The experimental curves can potentially be fitted by other sets of kinetic parameters.

The parameters presented in Table 5-1 are in agreement with those presented by
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Figure 5-7. The calculated global impedance corresponding to A) polarization point I
and B) point II in Figure 5-1B. These results are to be compared to the
experimental results presented in Figure 5-2A and 5-2B.

Epelboin and Keddam.48 The values of α1 and α2 obtained from the values of b1 and b2,

respectively, differ from 0.5, consistent with non-elementary step reactions.21

The simulation results for the global impedances corresponding to potential I

and II in the experimental polarization curve are presented in Figure 5-7A and 5-

7B, respectively, and should be compared to experimental EIS diagrams presented

in Figures 5-2A and 5-2B. The impedance values for the simulation curves are in

agreement with the experimental results, with the exception that the characteristic

frequency has a smaller value for steady-state condition II. This can be attributed to

the uncertainties in the estimation of the kinetic parameters. The calculated global

impedance has a low-frequency inductive loop at potential I, corresponding to a positive

value of 〈A〉. The low-frequency feature at potential II is not very obvious, but a slight

capacitive behavior can still be observed in the enlarged region at the low frequency

limit, corresponding to a small negative value of 〈A〉.
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Figure 5-8. The calculated local impedance corresponding to A) polarization point I and
B) point II in Figure 5-1B. These results are to be compared to the
experimental results presented in Figure 5-3.

The calculated local impedance values are shown in Figure 5-8 for two different

steady-state conditions. In Figure 5-8A, the local impedance calculated at potential I

shows little differences between electrode center and electrode edge, in contrast to the

experimental results in Figure 5-3A, especially the inductive loops at low frequencies.

The reason for the larger differences in the experimental data could result from the

dissolution of iron electrode during the impedance measurements at low frequencies.

The iron electrode is recessed more at the edge of the electrode, and, therefore, the

impedance data were measured at different heights. The discrepancy of the local

impedance among different positions is larger at a higher potentiostatic condition, which

is also in good agreement with the above explanation. At potential II, the calculated

impedance at the center of the electrode has a inductive loop at low frequencies as

shown in the enlarged region, which is in agreement with the experimental result

in Figure 5-3B. It corresponds to a local positive value of A at the electrode center.

The calculated impedance at the electrode edge has a capacitive feature, which

85



corresponds to a local negative value of A. Such a behavior is in accordance with the

results presented in Chapter 4 that predicted a local variation of A with the electrode

radius.

The calculated local Ohmic impedances for steady-state condition I are presented

in Figure 5-9. As compared to Figure 5-4, the local Ohmic impedances at the center

and the edge of the electrode have similar behaviors. Complex features are evident at

low frequencies in both experimental (Figures 5-4B and 5-4C) and simulation results

(Figures 5-9B and 5-9C). However, from the dependence of the imaginary part of the

local Ohmic impedance on frequency shown in Figure 5-10, the complex values at low

frequencies are very small as compared to that at high frequencies and are therefore

barely evident.

The variation of the imaginary part of the local Ohmic impedance with frequency at

potential II are given in Figure 5-11. For dimensionless frequencies 10−5 < K < 10−2,

small values of the imaginary part are observed. This result demonstrates that the

distributions of current and potential are evident at lower frequencies in which the local

Ohmic impedances exhibit complex behaviors as the applied potential is increased.

For a better qualitative analysis, the experimental results measured at higher potential

(potential II) are compared with the calculation presented in Chapter 4 for the case of

〈A〉 = 0. The calculated local Ohmic impedance at the electrode center in Figure 5-12A

is presented in dimensionless format and has similar behavior as compared to that in

Figure 5-6A. In Figure 5-12B, the nonzero values for the imaginary component of the

local Ohmic impedance at low frequencies are more significant and can no longer be

neglected.

5.5 Discussion

There were two reasons that only a qualitative comparison could be made between

experimental and calculated results. The calculated impedance response corresponds

to values at the electrode surface; whereas the experimental measurements necessarily

86



0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2- 3
- 2
- 1
0
1
2
3

P o t e n t i a l  I

K = 1K = 1 0

K = 1
K = 1 0

 c e n t e r
 e d g e

 

 

-z e,j
 / Ω

z e , r  /  Ω
A

6 . 3 8 6 . 3 9 6 . 4 0- 0 . 0 1

0 . 0 0

0 . 0 1

K = 0 . 0 0 1

 

 

 

-z e,j
 / Ω

z e , r  /  Ω

c e n t e r

K = 0 . 0 1

B

4 . 3 7 0 4 . 3 7 5 4 . 3 8 0 4 . 3 8 5 4 . 3 9 0- 0 . 0 1 0

- 0 . 0 0 5

0 . 0 0 0

0 . 0 0 5

0 . 0 1 0
e d g e

K = 0 . 0 0 1
K = 0 . 0 1  

 

-z e,j
 / Ω

z e , r  /  Ω
C

Figure 5-9. The local Ohmic impedance calculated at potential I in Figure 5-1B. A) Local
Ohmic impedance at the center and the edge of the electrode; B) the
enlargement for the low-frequency end of the local Ohmic impedance at the
electrode center; and C) the electrode edge. These results are to be
compared to the experimental results presented in Figure 5-4.
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dimensionless frequency calculated at potential I in Figure 5-1B. This plot
is to be compared to the experimental result presented in Figure 5-5.
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Figure 5-11. The imaginary part of the local Ohmic impedance as a function of the
dimensionless frequency calculated at potential II in Figure 5-1B. This plot
is to be compared to the experimental result presented in Figure 6-1B.
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Figure 5-12. Calculated local Ohmic impedance for the case 〈A〉 = 0 presented by Wu
et al.3 A) Nyquist plot for the local Ohmic impedances at the center of the
electrode; and B) imaginary part of the local Ohmic impedance as a
function of the dimensionless frequency. These results are to be compared
to the experimental results presented in Figure 5-6.

are made a small distance above the electrode surface. In addition, the rapid dissolution

of the iron electrode caused the distance between the probe and the electrode to

change with time. During the course of a cyclic voltammetry measurement, for example,

the electrode receded by 2 mm. Impedance measurements at frequencies lower than

0.1 Hz, i.e., K < 4 × 10−5, could not be made because the time required led to

significant electrode recession. In the simulation, the electrode surface is assumed to be

smooth, with a position that is independent of time, and with an active area unaffected

by deposition of corrosion products. Therefore the simulation cannot give a quantitative

comparison to the measured results.

Nevertheless, the qualitative comparison between the experimental and the

calculated impedance response provides significant supports for the simulation results.

The experimental local Ohmic impedance exhibits complex values at low frequencies.

These complex behaviors are more evident at a higher potential, in agreement with the

theoretical calculations. Moreover, the radial dependence of the low-frequency response
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demonstrates that the geometry-induced current and potential distributions influence

the impedance response at low frequencies when adsorbed intermediates are involved

in the reactions. The calculations are in better agreement with the experimental results

at steady-state condition I. At steady-state condition II, the applied potential is more

anodic, and the configuration of the iron electrode changed during the course of the

experiment. However, these results show a distribution of local impedance caused by

the nonuniform distributions of current and potential in agreement with the prediction

presented in Chapter 4.
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CHAPTER 6
INFLUENCE OF MASS TRANSFER ON STEADY-STATE CURRENT AND POTENTIAL

DISTRIBUTIONS

In this chapter, we are to explore the current and potential distributions associated

with the nonuniform mass transfer and the electrode geometry. The theoretical devel-

opment incorporating the potential distribution with the mass transfer and electrode

kinetics is provided. The coupled solutions for the potential and concentration at steady

state are discussed in two redox systems: reduction of ferricyanide and oxidation of

ferrocyanide, and electrochemical deposition and dissolution of silver.

6.1 Mathematical Development

Instead of using Newman’s1 approach of dividing the problem into separate but

coupled domains consisting of a inner diffusion region near the electrode surface and

an outer region with uniform concentration, the flux of each species is now considered

in a integral domain governed by the convective diffusion equation. A mathematical

development for the steady-state potential and concentration distributions on a RDE is

presented in this section.

6.1.1 Mass Transport in Dilute Solutions

The mass transport of species in a dilute solution can be described by three types

of motion: convection if the species is moving with the fluid of bulk velocity v, diffusion if

there is a concentration gradient ∇ci, and migration for species of charge zi subjected to

an electric field −∇Φ. The flux of a species i can be expressed by

Ni = −ziuiFci∇Φ−Di∇ci + civ (6–1)

where ui is the mobility of species i and is related to the diffusion coefficient Di by

ui =
Di

RT
(6–2)
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in a dilute solution. The electric current is related to the flux of the charged species by

i = F
∑
i

ziNi (6–3)

The mass of each species is conserved and can be expressed by the mass balance

equation following
∂ci
∂t

= −∇ ·Ni +Ri (6–4)

where Ri represents the source or sink of material due to homogeneous reactions in the

bulk solution. Assuming that there is no homogeneous reaction in the electrolytic system

and the diffusion coefficient of each species is constant, substitution of equation (6–1)

into equation (6–4) yields the mass balance equation for each ionic species as

v · ∇ci = ziuiF∇ · (ci∇Φ) +Di∇2ci (6–5)

The above equation applies at steady state and uses the relation for incompressible

fluid, i.e., ∇ · v = 0. For an aqueous system with n species, there are n mass balance

expressions in the form of equation (6–5). The electrical potential Φ can be obtained by

adding the conservation of charge

∇ · i = ∇ ·

[
F
∑
i

zi (−ziuiFci∇Φ−Di∇ci)

]
= 0 (6–6)

as the additional equation.

The concentration of each species and the solution potential are governed by the

mass and charge conservation equations. Before applying the boundary conditions to

get the coupled solution for concentration and potential, the fluid velocity in the mass

conservation equation (6–5) needs to be defined.

6.1.2 Fluid Flow on a Rotating Disk Electrode

The fluid mechanics for flow on a RDE is well-understood.29,21,55 The rotation of

disk with an angular velocity Ω drags the fluid at its surface with the same velocity.

Because of the centrifugal force, the fluid near the disk surface is driven outward from
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the center to the disk periphery, resulting a velocity distribution in the radial direction.

The fluid at electrode surface is refilled by the flow that brings fluid from the distance to

the disk, resulting a velocity distribution in the axial direction.

Von Kármán55 and Cochran29 solved the equations of continuity and motion

for a steady motion of incompressible fluid, and derived the velocity profile by using

cylindrical coordinates. The solution was obtained by using separation of variables with

a dimensionless distance from the disk

ζ = y

√
Ω

ν
(6–7)

and the dimensionless velocities in radial and axial directions

υr = rΩF (ζ) (6–8)

and

υy =
√
νΩH(ζ) (6–9)

where ν is the solution viscosity. For small distances above the disk surface, the

dimensionless radial velocity F and axial velocity H are expressed in power series of ζ

as

F = aζ − 1

2
ζ2 − 1

3
ζ3 + ... (6–10)

and

H = −aζ2 +
1

3
ζ3 +

b

6
ζ4 + ... (6–11)

with coefficients a = 0.51023 and b = −0.616. For larger distances from the disk, the

dimensionless velocity are expressed in powers of e−cζ as

F = Ae−cζ − A2 +B2

2c2
e−2cζ +

A(A2 +B2)

4c4
e−3ζ + ... (6–12)

and

H = −c+
2A

c
e−cζ +

A2 +B2

2c2
e−2cζ + ... (6–13)
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Figure 6-1. Velocity profiles on a rotating disk electrode: A) radial and B) axial
components of the dimensionless velocity.

with coefficients c = 0.88447, A = 0.934, and B = 1.208.

To solve the mass and charge conservation equations, a velocity profile is required

to describe the fluid flow in the whole domain, i.e.,

υ = (1− f)υζ→0 + fυζ→∞ (6–14)

where f is an interpolation function that is used to weigh the velocity expansions in the

inner and outer regions of diffusion layer following

f =
1

1 + e−α(ζ−ζ0)
(6–15)

where α and ζ0 are constant. This interpolation function is similar to the Fermi-Dirac

function applied in quantum mechanics for describing the distribution of fermions. In the

present calculation, we used α = 25 and ζ0 = 1 to estimate the fluid velocity profile.

Figure 6-1 shows the radial and axial components of the dimensionless velocity as

a function of dimensionless distance from the electrode surface. The velocity expression

applying the interpolation function satisfies the velocities for small and large values of ζ,
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and shows a smooth transition in the medium distance from the disk surface. Therefore,

the use of the velocity profile in equation (6–14) on a RDE is justified.

6.1.3 Flux and Current at Electrode Boundary

At electrode boundary, the flux of each species is determined by the potential and

concentration gradients at electrode surface by

Ni = −ziuiFci
∂Φ

∂y

∣∣∣∣
y=0

−Di
∂ci
∂y

∣∣∣∣
y=0

(6–16)

The flux is also related to the current density of an electrode reaction by

Ni = − si
nF

i (6–17)

where si is the stoichiometric coefficient of species i, and n is the number of electrons

transferred in that electrode reaction. For an electrochemical reaction influenced by

the transport of reactants, the reaction rate is dependent on the concentrations of the

reactants in addition to the potential at electrode surface. For a general redox reaction

R 
 O + ne− (6–18)

the reaction rate is given by

i = kacR,0 exp

(
(1− β)nF

RT
V

)
− kccO,0 exp

(
−βnF
RT

V

)
(6–19)

where ka and kc are the rate constants for the anodic and cathodic reactions, respec-

tively, cR,0 and cO,0 are the concentrations for the reductant R and the oxidant O, re-

spectively, measured at the inner limit of diffusion layer, and V is the interfacial potential

defined by the difference between the electrode potential Φm and the solution potential

adjacent to the electrode Φ0. The symmetry factor β, or transfer coefficient, represents

the fraction of energy or potential that is used to promote the cathodic reaction. The rate

expression in equation (6–19) assumes that both the anodic and cathodic reactions are

first-order.
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When the net current for the reaction is zero, the system is at equilibrium. The

equilibrium potential can be obtained by rearranging equation (6–19) and is expressed

by

V0 =
RT

nF

[
ln

(
kc

ka

)
− ln

(
cO,0

cR,0

)]
(6–20)

The departure of V from its equilibrium value V0 is defined as the surface overpotential,

i.e.,

ηs = V − V0 (6–21)

Substitution of the surface overpotential into equation (6–19) yields the Butler-Volmer

equation as

i = i0

{
exp

[
(1− β)nF

RT
ηs

]
− exp

[
−βnF
RT

ηs

]}
(6–22)

where the exchange current density

i0 = kβak
1−β
c cβR,0c

1−β
O,0 (6–23)

is a function of ionic concentrations at the electrode surface, and, therefore, is a function

of potential.

Another expression for the Butler-Volmer equation can be obtained by using the

total overpotential η in the rate equation

i = i∞0

{
cR,0

cR,∞
exp

[
(1− β)nF

RT
η

]
− cO,0

cO,∞
exp

[
−βnF
RT

η

]}
(6–24)

where cR,∞ and cO,∞ are the bulk concentrations for the reactants R and O, respec-

tively. The total overpotential is the summation of the surface overpotential and the

concentration overpotential,

η = ηs + ηc (6–25)

where the concentration overpotential is defined by

ηc =
RT

nF

[
ln

(
cR,∞

cR,0

)
− ln

(
cO,∞

cO,0

)]
(6–26)
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The exchange current density in reaction (6–24)

i∞0 = kβak
1−β
c cβR,∞c

1−β
O,∞ (6–27)

is now dependent on the composition of the bulk solution and is not a function of

electrode potential. With the use of appropriate expressions for the surface flux and

current density at electrode, the concentrations of each species and the potential in the

solution can be obtained by solving the conservation equations (6–5) and (6–6).

6.2 Numerical Simulation

Simulations were applied to two electrochemical systems including the ferro/ferricyanide

redox couple

Fe(CN)4−
6 
 Fe(CN)3−

6 + e− (6–28)

and the silver redox reaction

Ag 
 Ag+ + e− (6–29)

The reduction of ferricyanide and oxidation of ferrocyanide have fast kinetics and are

often used to study mass transfer in electrolytic systems.36,37,56 The solution under

study was consisted of K3Fe(CN)6 and K4Fe(CN)6 of equal concentration 0.01 M,

and supporting electrolyte KCl of concentration 1 M. The rate constants were chosen

to make the equilibrium potential be 0.23 V and the exchange current density be

0.3 A/cm2.38,57 For the silver redox reaction, the diffusion of silver ion was assumed to

have negligible effect on the anodic dissolution reaction. The solution was considered

to be 0.1 M AgNO3 in the presence of different concentrations of supporting electrolyte

KNO3. The rate constants were chosen to make the equilibrium potential be 0.799 V,21

and the exchange current density be 1 A/cm2.58,59 The solution compositions and kinetic

parameters used in both systems are listed in Table 6-1.

The equations were solved by using the finite-element package COMSOL Multi-

physicsr with the Nernst-Planck module in a 2D axial symmetric coordinate system. A

quarter-circle was constructed with an axis of symmetry at r = 0 and the electrode of
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Table 6-1. Parameters used for calculating the steady-state current and potential
distributions on a RDE at room temperature.

Redox of ferricyanide/ferrocyanide Electrodeposition of silver
cK3Fe(CN)6,∞ 0.01×10−3 mol/cm3 cAgNO3,∞ 0.01×10−3 mol/cm3

cK4Fe(CN)6,∞ 0.01×10−3 mol/cm3 cKNO3,∞ 1×10−3 mol/cm3

cKCl,∞ 1×10−3 mol/cm3 0.1×10−3 mol/cm3

DFe(CN)−3
6

0.896×10−5 cm2/s 0.01×10−3 mol/cm3

DFe(CN)−4
6

0.739×10−5 cm2/s DAg+ 1.648×10−5 mol/cm3

DCl− 2.032×10−5 cm2/s DNO−3
1.902×10−5 mol/cm3

DK+ 1.957×10−5 cm2/s DK+ 1.957×10−5 mol/cm3

ν 0.951×10−2 cm2/s ν 1×10−2 cm2/s
β 0.5 β 0.5
ka 340 A-cm/mol ka 1.75×10−7 A/cm2

kc 2.64×106 A-cm/mol kc 5.72×1010 A-cm/mol

radius 0.25 cm was positioned at y = 0. The domain size was 2,000 times larger than

the disk radius in order to meet the assumption that the counter electrode was located

infinitely far from the electrode surface.

The meshed domain used to calculate the coupled solution for potential and

concentrations are shown in Figure 6-2. A coarse mesh was used in the most of the

domain distant from the electrode to reduce physical memory usage and calculation

time. A finer mesh was applied in the region that is 20 times larger than the disk radius

to capture the variation of potential in the vicinity of electrode. Since the concentration

of ionic species varies only in a small distance above the electrode surface, a much

finer mesh was constructed in the region that is ten times larger than the characteristic

thickness of the diffusion layer

δ =

(
3Di

aν

)1/3 ( ν
Ω

)1/2

(6–30)

to capture the concentration variation in the thin region. For a typical electrolytic system

with ionic diffusivity Di = 1×10−5 cm2/s and viscosity ν = 1×10−2 cm2/s, and for the disk

rotation speed of 120 rpm, the diffusion layer thickness has a value of 0.005 cm. The

number of element at the electrode-insulator boundary (0.25 ± 0.001 cm) is 100.
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6.3 Simulation Results

The coupled steady-state solution for potential and concentration in the system

containing ferro/ferricyanide redox couple and the silver redox reaction are presented

in this section. The influence of nonuniform mass transfer on the potential and current

distributions are discussed for different fractions of limiting current and at different

rotation speeds.

6.3.1 Potential and Concentration Profiles near Electrode Surface

The motion of ionic species in an electrolytic solution is determined by the electrode

reaction and the contributions of diffusion, migration, and convection to the mass

flux. The 2D surface plots of the potential and concentration distributions in systems

of reduction of ferricyanide and deposition of silver ion are shown in Figures 6-3A

and 6-3B, respectively. The contour lines indicate the potential distributions and the

surface colors represent the concentration variations of ferricyanide (Figure 6-3A)

and silver (Figure 6-3B). In both figures, the concentrations vary only in a thin region

above the electrode surface showing the presence of a concentration diffusion layer.

The equipotential lines are smooth in the bulk solution and show a transition near the

diffusion layer boundary. The transition is more significant in the system of reduction

of ferricyanide due to the larger charge numbers associated with ferricyanide and

ferrocyanide.

The potential and concentration profiles normal to the electrode surface for re-

duction of ferricyanide and deposition of silver are given in Figures 6-4 and 6-5,

respectively. The potential gradient for the system of reduction of ferricyanide shows a

clear change at the position where the concentration of each species approaches the

bulk value. At electrode center, the net current in the radial direction is zero. The flux

of supporting species is also zero at electrode surface. The flux of potassium ion at
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A

B

Figure 6-3. Steady-state potential and concentration distributions for A) reduction of
ferricyanide and B) deposition of silver at one-fourth of limiting current on a
rotating disk electrode rotating at 120 rpm. The surface colors represent the
concentration variations of A) ferricyanide and B) silver ion. The contour
lines represent the potential distributions. The inserts show the potential and
concentration profiles near electrode surface.
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Figure 6-4. Profiles of A) potential and B) concentration at electrode center for reduction
of ferricyanide on a rotating disk electrode of rotation speed 120 rpm and at
one-fourth of the limiting current.
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Figure 6-5. Profiles of A) potential and B) concentration at electrode center for
deposition of silver on a rotating disk electrode of rotation speed 120 rpm
and at one-fourth of the limiting current.
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Figure 6-6. Polarization behavior for the reduction of ferricyanide and oxidation of
ferrocyanide on a rotating disk electrode.

electrode is given by

NK+ = −zK+uK+FcK+

∂Φ

∂y

∣∣∣∣
y=0

−DK+

∂cK+

∂y

∣∣∣∣
y=0

= 0 (6–31)

Since the concentration gradient of potassium ion is negative in both systems, the

potential gradient at electrode must be positive to balance the diffusion of potassium ion

by the migration of itself, and gives a zero flux at electrode surface. The sign of potential

gradient can also be determined from the concentration gradients of other supporting

species in the electrolyte. The potential gradient in solution is affected by the current

density and the concentrations of all ionic species, and therefore the potential gradient

has different values within the diffusion layer and in the bulk solution.

6.3.2 Current Distribution on Electrode Surface

The polarization behavior for the reduction of ferricyanide and oxidation of ferro-

cyanide is shown in Figure 6-6 with rotation speed as as parameter. At higher poten-

tials, the electrode reaction is limited by the mass transfer of reacting species to the

electrode surface. The cathodic and anodic limiting currents have different values due to
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Figure 6-7. Calculated current distributions for the reduction of ferricyanide on a rotating
disk electrode rotating at A) 120, B) 600, and C) 2400 rpm.

the fact that the diffusion coefficients for ferricyanide and ferrocyanide are different. The

value of limiting current is proportional to the square root of the rotation speed.28

The current distributions on electrode surface are calculated at one-fourth, one-half,

and three-fourths of the cathodic limiting current as shown in Figure 6-7. The surface

current density is normalized by the average current density obtained at each fraction of

limiting current. The surface current exhibits nonuniform distributions in spite of the use

of excess supporting electrolyte. These results are in agreement with the calculations of

Durbha and Orazem.36 At a larger fraction of limiting current, the surface current density
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Figure 6-8. Polarization behavior for the dissolution and deposition of silver on a rotating
disk electrode of rotation speed 120 rpm. The solution consists of 0.1 M
AgNO3 and 1 M, 0.1 M, and 0.01 M of supporting electrolyte KNO3.

becomes more uniform because the mass transfer resistance is more important than the

Ohmic resistance of electrolyte. For the same reason, the overall current distribution is

more uniform at higher rotation speed.

The reaction kinetics of reduction of ferricyanide and oxidation of ferrocyanide

are highly related to the concentration of cation, i.e., the concentration of supporting

electrolyte.60 To ignore the effect of reaction kinetics, the redox reaction of silver is

applied to investigate the role of supporting electrolyte on the current distribution. The

polarization curves for the deposition and dissolution of silver in different concentrations

of supporting electrolyte are given in Figure 6-8. In the case of metal deposition, the

absence of supporting electrolyte increases the Ohmic potential drop in the bulk solution

and also strengthen the electric field in the diffusion layer. Therefore, the migration

of reacting species in the diffusion layer enhances the limiting current density. In the

presence of an excess supporting electrolyte, the limiting current on a rotating disk
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electrode is expressed by61

ilim,D = −sinFDi
c∞,i
δ

1

Γ(4/3)
(6–32)

which is also called the diffusion limiting current. The effect of migration in an electrolytic

system can be estimated by the ratio of the observed limiting current to the diffusion

limiting current ilim/ilim,D. The migration enhances the limiting current when the ratio is

greater than one, and reduces the limiting current when the ratio is smaller than one.

The migration of reactant makes no contribution when the ratio is unity. For the system

under study, the ratio of ilim/ilim,D has a value of 1.48 when the solution contains 0.1 M

AgNO3 and 0.01 M KNO3, meaning that the migration of silver ion in the diffusion layer

enhances the limiting current by a factor of 1.48.

Figure 6-9 shows the current distributions on the disk surface in different concen-

trations of supporting electrolyte. The reduced Ohmic potential drop in the presence

of excess supporting electrolyte makes the distribution of current more uniform. The

current density increases with the increasing overpotential towards the edge of the

disk. When the overpotential is sufficiently large and the concentration of reactant is

sufficiently small at electrode edge, the electrode reaction is limited by the mass transfer

of reactant. Therefore, the current density starts to decrease at electrode edge as seen

in Figure 6-9C for the case of larger fraction of limiting current.

In the system of fast electrode kinetics, the current and potential distributions on a

rotating disk electrode are affected by the nonuniform mass transfer and the electrode

geometry. The effect of mass transfer can be reduced with higher rotation speed or

eliminated by performing the reaction at the mass-transfer-limited current. However, the

distributions of current and potential can never be uniform even with the use of excess

supporting electrolyte. The reason is because a nonuniform Ohmic potential drop is

present in the bulk solution associated with the electrode geometry. The opposing

effects of the Ohmic resistance and the mass-transfer resistance can be observed
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Figure 6-9. Calculated current distributions for silver deposition on a rotating disk
electrode rotating at 120 rpm. The solution contains 0.1 M AgNO3 and A)
1 M, B) 0.1 M, and C) 0.01 M KNO3.
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when both values are large in solutions of small conductivities and approaching the

mass-transfer-limited conditions.
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CHAPTER 7
MODEL OF ELECTRICAL DOUBLE LAYER

The nature of the electrode-electrolyte interface involves the distribution of elec-

trons, ions, and molecules. A charged electrode holds excess ions in the adjacent

solution, and a diffuse layer of charge is formed. The electric behavior of the interface is

therefore very different from that of the bulk solution, and is related to the excess or de-

ficient concentration of species and the potential drop in the thin interfacial region. The

term “electrical double layer” came from the image of the interface as consisting of two

layers of charge, one at the electrode surface and the other in the adjacent electrolyte.

The real structure of interface is surely more complicated when taking into account the

orientation of dipoles and the specific adsorption of ionic species.

Numerous models62,63 have been applied to describe the thermal behavior of

the charged ions in the electrical double layer. In the present study, we use the Gouy-

Chapman-Stern model to describe the electrical behavior in the diffuse double layer.

The change of surface charge density resulting from the variations of potential and

concentrations at the interface are discussed in this chapter. These properties of the

interface will be used to modify the electrode process associated with the double-layer

charging and the Faradaic charging currents, which are important in studying the

impedance response of systems with mass transfer.

7.1 The Gouy-Chapman-Stern Theory

The classical Gouy-Chapman theory shows an exponential decay of potential in a

diffuse region of charge extending from the electrode surface. Stern’s modification to the

Gouy-Chapman model assumes a compact layer between the electrode and the diffuse

layer. The outer limit of the compact layer is also referred to as the outer Helmholtz

plane (OHP) which is the locus of centers of mobile species in their position of closet

approach to the electrode surface. When there is specific adsorption on electrode

surface, the locus of centers of adsorbed species is taken to be the inner Helmholtz
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Figure 7-1. The structure of electrical double layer. The sketch is not to scale.

plane (IHP). The structure of the electrical double layer is illustrated in Figure 7-1. The

thickness of the double layer is very thin. Hence the double layer is often considered

to be a part of the electrode-electrolyte interface. The interfacial region as a whole

obeys electrical neutrality, i.e., the excess surface charge density at electrode must be

balanced by the surface charges at the IHP and in the diffuse part of the double layer

such that

qm + qihp + qd = 0 (7–1)

The surface charge density is related to the surface excess concentration of charged

species by

qm = − (qihp + qd) = −F
∑
i

ziΓi (7–2)

The mean electrostatic potentials at the metal surface, the IHP, and the OHP are de-

noted by Φm, Φihp, and Φohp, respectively. The surface concentrations ci,0 and potential

Φ0 used in the rate expressions are usually evaluated at the outer limit of the diffuse

layer, or the inner limit of the diffusion layer.

Beyond the OHP, the total charge in the diffuse part of the double layer is not

electrically neutral. The ionic concentrations in the diffuse layer are assumed to have a
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Boltzmann distribution

ci = ci,∞ exp

(
−ziFΦ

RT

)
(7–3)

and the Poisson equation gives the correlation between the concentrations and potential

by
d2Φ

dy2
= − F

εdε0

∑
i

zici = − F

εdε0

∑
i

zici,∞ exp

(
−ziFΦ

RT

)
(7–4)

where y is the distance from the electrode, εd is the dielectric constant in the diffuse

layer, and ε0 is the permittivity of vacuum (ε0 = 8.8542 × 10−14 F/cm). Integration of the

Poisson equation gives the relation of potential gradient to the surface charge density in

the diffuse layer as
dΦ

dy
=

qd

εdε0
at y = δ (7–5)

where δ is at the inner limit of the diffuse layer. At equilibrium, the potential approaches

zero in a large distance from the electrode surface, i.e.,

Φ→ 0 as y →∞ (7–6)

The Poisson equation can then be solved by applying the boundary conditions, and the

charge density in the diffuse layer is found to be

qd = ∓

{
2RTεdε0

∑
i

ci,∞

[
exp

(
−ziFΦohp

RT

)
− 1

]} 1
2

(7–7)

The upper sign is used if the potential is positive and, conversely, the lower sign is used

if the potential is negative. The charge density associated with individual species can be

further obtained by an integral over the potential drop in the diffuse region following

qd,i = ∓
∫ Φohp

0

ziFci,∞
[
exp

(−ziFΦ
RT

)
− 1
]{

2RT
εdε0

∑
k ck,∞

[
exp

(−zkFΦ
RT

)
− 1
]} 1

2

dΦ (7–8)
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If there is no specific adsorption of species on the IHP, i.e., qihp = 0, the individual

charge density is related to the surface concentration by

qd,i = ziFΓi (7–9)

The above expressions for charge densities are derived by assuming a true equilibrium

of the system in which the ionic concentrations at the outer limit of the diffuse layer

are the same as the bulk values, ci,0 = ci,∞, and the potential at the outer limit of the

diffuse layer is equal to that of a reference electrode placed at a distance; thus, Φ0 = 0.

When the net current flowing to the electrode is not equal to zero, the system is not at

equilibrium, i.e., Φ0 6= 0. Equations (7–7) and (7–8) become

qd = ∓

{
2RTεdε0

∑
i

ci,0

[
exp

(
−ziF (Φohp − Φ0)

RT

)
− 1

]} 1
2

(7–10)

and

qd,i = ∓
∫ Φohp

Φ0

ziFci,0
[
exp

(−ziFΦ
RT

)
− 1
]{

2RT
εdε0

∑
k ck,0

[
exp

(−zkFΦ
RT

)
− 1
]} 1

2

dΦ (7–11)

respectively. The charge densities in the diffuse layer are now related to the concentra-

tions and potential at the outer limit of the diffuse layer, which can be obtained by solving

the mass and charge conservation equations outside the diffuse region of charge.

The evaluation of the surface charge density in equation (7–7) or (7–10) requires

additional information in the electrical double layer. Gauss’s law relates the surface

charge density to the electric field within the OHP by

qm = −qd =
εε0
δ

(Φm − Φohp) (7–12)

where ε is the dielectric constant between the metal surface and the OHP. Equation

(7–12) can be used as a second equation to solve qm and Φohp in the electrical double

layer.
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7.2 Numerical Approach

The nonlinear equations relating to the charge and potential distributions in the

electrical double layer were solved by using the Newton-Raphson method. For nonequi-

librium systems, a local equilibrium was assumed in which the concentrations and

potential at the outer limit of the diffuse layer were given by the steady-state solutions

calculated in Chapter 6. The radially dependent surface concentrations and potential

gave a radial distribution of charge over the electrode surface. The surface-averaged

value of charge was obtained from the surface-averaged values of concentration and po-

tential. The charge in the diffuse layer associated with individual species was obtained

by subsequent numerical integration of equation (7–8) or (7–11), using the MATLAB

integration function, the adaptive Gauss-Kronrod quadrature method. The thickness of

the compact layer between the metal surface and the OHP was assumed to be 3 Å. The

dielectric constant in the compact region within the OHP was approximately 6 according

to Bockris63 for a fully oriented water layer next to the electrode surface. The dielectric

constant in the diffuse layer was assumed to be 78, which is the value of water at room

temperature.

The calculation of surface charge density in the electrical double layer was applied

to systems of ferro/ferricyanide redox couple and electrolytic deposition and dissolution

of silver.

7.3 Surface Charge in the Diffuse Part of the Double Layer

The calculated charge density and the charge associated with individual species in

the diffuse part of the double layer are shown in Figure 7-2 for the system containing

ferro/ferricyanide. The total charge density is equal to zero when the electrode is at

the potential of zero charge Φpzc, which is assumed to be zero in this system. The

contribution of charge from each species is affected by the redox reaction taking place

at the interface. The concentrations of each species calculated at the outer limit of the

diffuse layer are shown in Figure 7-3. When the electrode potential is negative, the

113



-0.4 -0.2 0.0 0.2 0.4
-10

-8

-6

-4

-2

0

2

4

6

8

10
 total
 Fe(CN)6

4-        Cl-

 Fe(CN)6
3-        K+

 

 

〈
q d〉

or
 〈

q d,
i〉

(μ
C

/c
m

2 )

Φm (V)

Figure 7-2. Calculated total charge density in the diffuse part of the double layer and the
contribution of each ionic species. The electrolytic solution contains 0.01 M
K3Fe(CN)6, 0.01 M K4Fe(CN)6 and 1 M KCl.
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Figure 7-4. Calculated total charge density in the diffuse part of the double layer and the
contribution of each ionic species. The electrolytic solution contains 0.1 M
AgNO3 and A) 1 M, and B) 0.01 M KNO3.

reaction is in the cathodic limited case where the concentration of ferricyanide is zero.

The charge density associated with ferricyanide is also zero at negative potentials as

seen in Figure 7-2. The charge contribution from ferrocyanide is positive, representing

a depletion of ferrocyanide species in the diffuse region. When the electrode potential

becomes positive, the charge density associated with ferricyanide increases due to

the production of ferricyanide from the oxidation of ferrocyanide. The charge density of

ferricyanide keeps increasing at even higher potentials when the anodic limited condition

is attained because the positive charge on the electrode tends to hold more negative

charged species in the diffuse layer. The charge density associated with ferrocyanide

also increases when the electrode potential turns positive. However, when approaching

the equilibrium potential (V0 = 0.23 V), the concentration of ferrocyanide starts to

decrease due to the oxidation reaction, resulting a decrease of charge contribution from

the ferrocyanide species.

For the reaction of silver deposition and dissolution, the silver ion is the only react-

ing species. The calculated charge density in the diffuse layer and the concentrations of

each species at the outer limit of the diffuse layer are presented in Figure 7-4 and Fig-
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Figure 7-5. Calculated averaged ionic concentrations at the outer limit of the diffuse.
The electrolytic solution contains 0.1 M AgNO3 and A) 1 M, and B) 0.01 M
KNO3.

ure 7-5, respectively. The potential of zero charge for the silver electrode is assumed to

be Φpzc = -0.44 V.63 The silver ion starts to have a contribution to the total charge when

the deposition of silver is not limited by the mass transfer of silver ion. The negative

charge contribution from the silver ion at positive potentials represents the depletion of

silver ion in the diffuse layer. The dependence of charge density on electrode potential

is associated with the mass transfer of silver ion. As seen in Figure 7-4, the slope for qd

changes at the potential corresponding to the increase of silver concentration observed

in Figure 7-5.

Under the assumption that there is no specific adsorption, the surface charge on

the electrode side is balanced by the charge density in the diffuse part of the double

layer to maintain electroneutrality in the interfacial region. Since the surface charge

density is dependent on the interfacial potential and concentrations of each species,

the variation of the surface charge density is associated with the variation of interfacial

potential and the variation of concentration of individual species by

dqm =

(
∂qm

∂V

)
ci,0

dV +
∑
i

(
∂qm

∂ci,0

)
V,cj,0,j 6=i

dci,0 (7–13)
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The two derivatives, (∂qm/∂V )ci,0 and (∂qm/∂ci,0)V,cj,0,j 6=i
, are essential properties of the

electrical double layer. Grahame64 and Delahay62,65–67 discussed the method to evaluate

these properties. In this section, the calculation for the change of surface charge

density resulting from the variation of the interfacial potential and the concentration are

presented.

7.3.1 Variation of Surface Charge with Potential: Double-Layer Capacitance

The derivative of the surface charge density with respect to the interfacial potential

at constant composition is known as the double-layer capacitance

C0 =

(
∂qm

∂V

)
ci,0

(7–14)

Since the interfacial potential is defined by

V = Φm − Φ0 = (Φm − Φohp) + (Φohp − Φ0) (7–15)

the derivative of potential with respect to the surface charge density yields(
∂V

∂qm

)
ci,0

=

(
∂(Φm − Φohp)

∂qm

)
ci,0

+

(
∂(Φohp − Φ0)

∂qm

)
ci,0

(7–16)

or
1

C0

=
1

Cm−ohp

+
1

Cd

(7–17)

where Cm−ohp is the capacity of the compact layer next to the electrode surface within

OHP, and Cd is the capacity of the diffuse part of the double layer. From the integrated

form of Gauss’s law, Cm−ohp can be calculated by assuming a uniform dielectric constant

between the metal and the OHP expressed by

Cm−ohp =
εε0
δ

(7–18)

The analytical expression for the capacity in the diffuse layer is obtained from the

derivative of surface charge in equation (7–10) with respect to the potential drop across
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Figure 7-6. Potential dependence of double-layer capacitance for system of
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the diffuse layer

Cd = ±
−F

∑
i zici,0 exp

(
− ziF(Φohp−Φ0)

RT

)
{

2RT
εdε0

∑
i ci,0 exp

[
− ziF
RT

(Φohp − Φ0)− 1
]} 1

2

(7–19)

With the above definitions, the capacitance of the double layer can be evaluated with the

use of appropriate parameters instead of assuming a certain value in the subsequent

calculation of impedance response.

The surface-averaged double-layer capacitance for an inert electrode in contact

with ferro/ferricyanide redox couple is presented in Figure 7-6. The double-layer

capacitance was calculated under two conditions. The first assumed the equilibrium

condition (Φ0 = 0), in which case the concentrations and potential at the outer limit

of the double layer were equal to the values far away from the electrode. The second

condition (Φ0 6= 0) used the the steady-state solutions for the concentrations and

potential calculated at the outer limit of the diffuse region of charge. When the system
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Figure 7-7. Radially dependent double-layer capacitance calculated at different fractions
of limiting current for reduction of ferricyanide in the presence of an excess
supporting electrolyte.

is at equilibrium, the calculated capacitance at the electrode interface should follow

the typical behavior predicted by the Gouy-Chapman model of diffuse layer, that is,

a symmetric capacitance over the potential of zero charge (Φpzc = 0). Since the

electrolytic solution contains asymmetric ionic species, the capacitance-potential curve

shifts to a potential negative than Φpzc. When the composition of electrolyte adjacent

to the electrode is different from the bulk solution, the double-layer capacitance shows

a hump near the equilibrium potential, which should be related to the relative charge

contributions from the reacting species in the diffuse region.

The variations of surface concentrations and potential along electrode surface result

in a distribution of surface charge density, and, therefore, a distribution of double-layer

capacitance associated with the electrode geometry and kinetics. As shown in Figure

7-7, the variation of double-layer capacitance with radial position is not significant and

the capacitance is almost uniform. The presence of supporting electrolyte suppresses

the potential gradient and leads to a smaller variation of overpotential over the electrode
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Figure 7-8. Potential dependence of double-layer capacitance for a silver electrode in
solution containing 0.1 M AgNO3 and different concentrations of supporting
electrolyte when the system is A) at equilibrium and B) not at equilibrium.

surface. Therefore, the assumption of using a uniform double-layer capacitance in

systems with excess supporting electrolyte is justified.

To investigate the effect of supporting electrolyte, the reactions of silver deposition

and dissolution were considered. For electrolytic solution containing symmetric elec-

trolyte, the capacitance-potential curves are symmetric over Φpzc when the system is at

equilibrium as shown in Figure 7-8A. When the system is not at equilibrium (Figure 7-

8B), the minimum value of the double-layer capacitance is observed at a potential more

negative to Φpzc = -0.44 V. The double-layer capacitance shows larger dependency on

electrode potential when the solution concentration is smaller, indicating the increasing

potential gradient in the interfacial region with the decreasing solution conductivity.

Figure 7-9 shows the distributions of double-layer capacitance on a silver electrode

in contact with AgNO3 and different concentrations of supporting electrolyte KNO3.

When a small amount of supporting electrolyte is present, the distribution of the double-

layer capacitance is more nonuniform. Although the overall variations are still not

significant, the absence of supporting electrolyte increases the interfacial potential and

leads to a more nonuniform distribution of double-layer capacitance.
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Figure 7-9. Radially dependent double-layer capacitance calculated at different fractions
of limiting current for silver deposition in solution containing 0.1 M AgNO3

and A) 1 M, B) 0.1 M, and C) 0.01 M KNO3.
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Figure 7-10. Potential dependence of ∂qm/∂ci,0 in A) linear scale and B) logarithm scale
for reduction of ferricyanide and oxidation of ferrocyanide.

7.3.2 Variation of Surface Charge with Concentration

The variation of the surface charge density with the concentration of each species

at constant potential shown in (7–13) is expressed by

(
∂qm

∂ci,0

)
V

= ±
exp

(
−ziF(Φohp−Φ0)

RT

)
− 1{

2
RTεdε0

∑
i ci,0

[
exp

(
−ziF(Φohp−Φ0)

RT

)
− 1

]} 1
2

(7–20)

The upper sign is used when the potential across the diffuse part of the double layer is

larger than the potential of zero charge, i.e., Φohp−Φ0 > Φpzc, and, conversely, the lower

sign is used when Φohp − Φ0 < Φpzc. From equation (7–20), the variation of the surface

charge density with ionic concentrations at a fixed potential is only dependent on the

charge of each species.

The potential dependence of ∂qm/∂ci,0 for the system of reduction of ferricyanide

and oxidation of ferrocyanide is shown in Figures 7-10. Since the charge associated

with ferrocyanide is the largest among all ionic species, the variation of charge on metal

surface is highly dependent on the concentration of ferrocyanide. In the system of silver

deposition and dissolution, silver ion and potassium ion have the same charge number.
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Figure 7-11. Potential dependence of ∂qm/∂ci,0 in A) linear scale and B) logarithm scale
for deposition and dissolution of silver.

Hence the variations of surface charge with the concentrations of these two species

are the same as shown in Figure 7-11. The surface charge is highly dependent on the

concentration of nitrate, and the value of ∂qm/∂cNO−3 ,0
increases with decreasing solution

concentration. The peak associated with ∂qm/∂cNO−3 ,0
occurs at electrode potential

where the deposition of silver is no longer limited by the mass transfer of silver ion as

seen in Figure 7-5.

The radial distributions of ∂qm/∂ci,0 for reduction of ferricyanide and electrolytic

deposition of silver are presented in Figures 7-12 and 7-13, respectively. Similar

to the double-layer capacitance, the dependence of ∂qm/∂ci,0 on radial position is

more significant at larger fraction of limiting current and in solution containing small

concentration of supporting electrolyte, in which conditions the interfacial potential and

the concentration of each species are less uniform.

The charge on the metal surface is shown to have correlation with the potential

and the composition of solution adjacent to the electrode surface. The variation of

the surface charge density with the concentration of each species, like the double-

layer capacitance, is also a property of the electrode-electrolyte interface. The charge
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Figure 7-12. Radial distributions of ∂qm/∂ci,0 for reduction of ferricyanide at different
fractions of limiting current for A) ferrocyanide, B) ferricyanide, C) chloride,
and D) potassium ions.
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Figure 7-13. Radial distributions of ∂qm/∂ci,0 for deposition of silver at different fractions
of limiting current for A), C), E) potassium and silver ions, and B), D), F)
nitrate. The solution contains 0.1 M AgNO3 and A), B) 1 M, C), D) 0.1 M,
and E), F) 0.01 M KNO3.
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associated with the mobile species could also be attributed to the double-layer charging

and cannot be considered as a negligible quantity. The charing current under transient

conditions must account for the contributions of both properties.

7.3.3 Variation of Excess Concentration of Individual Species with Concentration

Another important property of the electrical double layer is the change of excess

concentration in the diffuse region of a given species resulting from the variation of its

concentration. This property is related to the charge density by

∂Γi
∂ci,0

=
1

ziF

∂qd,i

∂ci,0
(7–21)

which can be used to calculate the contribution of mass flux associated with each

species to the charging process. The charge contribution of a given species can be

evaluated by numerical integration using equation (7–11). The derivative ∂qd,i/∂ci,0 can

further be obtained by numerical differentiation. In the present calculation, the value of

∂qd,i/∂ci,0 was obtained by using five-point central difference.

The potential dependence of ∂Γi/∂ci,0 of each species for the system of reduction

of ferricyanide and oxidation of ferrocyanide is shown in Figure 7-14. The values of

all derivatives are zero at the potential of zero charge Φpzc = 0. When the electrode

is positively charged, the derivative for ferrocyanide has the largest dependency on

potential, representing the change of the excess concentration of ferrocyanide in the

diffuse region is strongly affected by its concentration at the outer limit of the diffuse

region. For the system of silver deposition and dissolution shown in Figure 7-15, the

variations of the concentrations of potassium and silver ions have the same effect on

their excess concentrations in the diffuse layer. When the system contains a smaller

amount of supporting electrolyte, the potential at which the derivative is equal to zero

shifts to a value more negative to Φpzc = −0.44 V . The values of derivatives of all

species become larger when the system is less conductive, representing a larger

variation of the interfacial property with ionic concentrations. The potential at which the
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Figure 7-15. Potential dependence of ∂Γi/∂ci,0 for A) potassium and silver ions, and B)
nitrate ion for deposition and dissolution of silver.
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peak of the derivative of nitrate is observed is associated with the potential where the

deposition of silver is limited by the mass transfer of silver ion.

The distributions of ∂Γi/∂ci,0 on electrode surface for systems of reduction of

ferricyanide and electrolytic deposition of silver are presented in Figures 7-16 and 7-17,

respectively. At a larger fraction of limiting current, the radial distributions of ∂Γi/∂ci,0 for

all species are more nonuniform due to the more nonuniform distributions of surface and

concentration overpotentials. The decreasing concentration of supporting electrolyte

results in more nonuniform distributions of concentrations and potential, and leads to a

more nonuniform distribution of the interfacial property.

The interfacial properties discussed in this section are important in describing

the thermal behavior of the charged species at the electrode-electrolyte interface.

The charging process is related to the changes of potential and concentrations at

the interface. The flux of each species, which is associated with the potential and

concentration gradients, therefore contributes to the charging process at electrodes. The

influence of mass transfer in the charging of the interface is discussed in the following

section.

7.4 Coupling of Double-Layer Charging With Mass Transfer

In electrochemical systems, the passage of current through an electrode can

be attributed to two processes, Faradaic reactions and double-layer charging. The

two processes are usually considered separately for simulations of unsteady-state

systems. The flux of reactants and products are given by the rate of the electrode

electrochemical reaction. The Faradaic current is usually derived by neglecting the

double-layer charging current, which is considered to be an independent process on

an ideal polarized electrode. The total current is subsequently obtained by adding the

double-layer charging current to the Faradaic current. This assumption was criticized

by Delahay65–67 for the reason that part of the flux of reacting species contributes to

the charging of the interface as well as to the Faradaic reaction. Faradic current is not
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Figure 7-16. Radial distributions of ∂Γi/∂ci,0 for reduction of ferricyanide at different
fractions of limiting current for A) ferrocyanide, B) ferricyanide, C) chloride,
and D) potassium ions.
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Figure 7-17. Radial distributions of ∂Γi/∂ci,0 for deposition of silver at different fractions
of limiting current for A), C), E) potassium and silver ions, and B), D), F)
nitrate. The solution contains 0.1 M AgNO3 and A), B) 1 M, C), D) 0.1 M,
and E), F) 0.01 M KNO3.
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a separate measurable quantity. Therefore, the Faradaic current and the double-layer

charging current cannot be separated a priori.

The measurable total current should include the variation of the excess concen-

tration of each species Γi in addition to the contributions of the “usual” double-layer

capacitance at the interface. The assessment of Γi requires the knowledge of the

charge distribution in the diffuse double layer. Grahame64 and Delahay62 reviewed the

theory and the structure of double layer and its relation to the electrode kinetics.62 In this

dissertation, we use the Gouy-Chapman-Stern model to evaluate the charge density in

the diffuse part of the double layer. The double-layer theory was applied to modify the

boundary equations for flux and current density.

At the electrode boundary, the surface flux is usually considered to be contributed

only from the charge-transfer reactions. The surface flux of each species is related to

the Faradaic current by

Ni,0 = − si
nF

iF (7–22)

This expression is not quite correct because the contribution from the double-layer

charging is neglected. Following the derivations by Delahay65–67 and Nisancioglu,68,69

the surface flux is corrected with no a priori separation (NAPS) of Faradaic and double-

layer charging currents by

Ni,0 = −∂Γi
∂t
− si
nF

iF (7–23)

By applying a simple chain rule, the change of surface excess concentration of species i

with time can be expressed in terms of the total charge density on metal surface and the

concentration of the corresponding species at the outer limit of the diffuse layer by

∂Γi
∂t

= − ∂Γi
∂ci,0

∂ci,0
∂qm

∂qm

∂t
(7–24)

The total current flows to the electrode surface is also corrected in the case of NAPS by

i =
∂qm

∂t
+ iF (7–25)
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Since the surface charge density is a function of potential and concentrations of each

species, the time derivative of qm in equations (7–24) and (7–25) can be expressed in

terms of the correlating variables following

∂qm

∂t
=

(
∂qm

∂V

)
ci,0

∂V

∂t
+
∑
i

(
∂qm

∂ci,0

)
V,cj,0,j 6=i

∂ci,0
∂t

(7–26)

The behavior of the thermodynamic properties were discussed in the previous section.

With the use of these properties, the charging process is coupled with mass transfer at

electrodes.

The mass flux of each species contributes not only to the Faradaic reactions but

also to the charging the double layer. Most impedance models70–73 neglect the contri-

bution of mass flux to the charging of the interface, and assume a uniform distribution

of double-layer capacitance. In the present study, we take into account the contribution

of mass transfer to the double-layer charging, and also the radial distribution of charge

on electrode surface. The local and global impedance responses associated with the

mass-transfer and geometry effects are investigated under the assumption that there is

no a priori separation of charging and Faradaic currents at electrodes.
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CHAPTER 8
INFLUENCE OF MASS TRANSFER ON IMPEDANCE RESPONSE

A two-dimensional impedance model is presented in this chapter to study the effect

of nonuniform mass transfer in addition to the electrode geometry on the impedance

response. The model also takes into account the contribution of mass transfer to the

double-layer charging current. The calculation of the transient response requires the

steady-state solutions of concentrations and potential obtained in Chapter 6. The model

of electric double layer presented in Chapter 7 is applied to modify the charging process

at the electrode-electrolyte interface.

8.1 Mathematical Development of Impedance Model

Electrochemical impedance measures the output signal of current or potential

in response to a sinusoidal change of potential or current. For electrochemical reac-

tions dependent on mass transfer, the concentrations of reacting species also exhibit

sinusoidal responses corresponding to the input signal. In the frequency domain, the

potential and concentrations of each species can be described in terms of steady and

time-dependent parts by

Φ = Φ + Re{Φ̃ejωt} (8–1)

and

ci = ci + Re{c̃iejωt} (8–2)

respectively, where the bar notation represents the steady-state component, and the

tilde notation represents the oscillating component which is a function of only position.

Following the development described in Chapter 6 for nonuniform mass transfer on a

RDE, and using the above conventions for potential and concentrations, the mass and

charge conservation equations (6–4) and (6–6) become

jωc̃i + v · ∇c̃i = ∇ ·
(
Di∇c̃i + ziuiFci∇Φ̃ + ziuiF c̃i∇Φ

)
(8–3)
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and

∇ ·

[
F
∑
i

zi

(
−Di∇c̃i − ziuiFci∇Φ̃− ziuiF c̃i∇Φ

)]
= 0 (8–4)

where the higher order terms such as c̃i∇Φ̃ are neglected. At the electrode boundary,

the flux of each species expressed in equation (6–16) in response to a small perturba-

tion of current or potential becomes

Ñi = −Di
∂c̃i
∂y

∣∣∣∣
y=0

+ ziuiFci
∂Φ̃

∂y

∣∣∣∣
y=0

+ ziuiF c̃i
∂Φ

∂y

∣∣∣∣
y=0

(8–5)

The correlation between the flux and the current oscillations at electrode boundary

is discussed in two cases where the Faradaic current and the double-layer charging

current are considered with a priori separation (APS) and without a priori separation

(NAPS).

8.1.1 No A Priori Separation of Faradaic and Charging Currents

In the frequency domain, the surface charge density and the current density,

following the same conventions for potential and concentration in equations (8–1) and

(8–2), can be expressed by

q = q + Re{q̃ejωt} (8–6)

and

i = i+ Re{̃iejωt} (8–7)

respectively. When applying a small perturbation to the system, the current at electrode

surface corresponding to equation (7–25) becomes

ĩ = jωq̃m + ĩF (8–8)

where the oscillations of the surface charge density and the Faradaic current density are

approximated by Taylor series expansions about their steady values as

q̃m =

(
∂qm

∂V

)
ci,0

Ṽ +
∑
i

(
∂qm

∂ci,0

)
V ,cj,0,j 6=i

c̃i,0 (8–9)
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and

ĩF =

(
∂iF

∂V

)
ci,0

Ṽ +
∑
i

(
∂iF
∂ci,0

)
V ,cj,0,j 6=i

c̃i,0 (8–10)

respectively. The surface flux corresponding to equation (7–23) can also be interpreted

in the frequency domain as

Ñi,0 = − ∂Γi
∂ci,0

∂ci,0
∂qm

jωq̃m −
si
nF

ĩF (8–11)

Equations (8–8) and (8–11) can be applied as the boundary conditions to evaluate the

impedance response without the assumption of a priori separation of Faradaic and

double-layer charging currents.

8.1.2 A Priori Separation of Faradaic and Charging Currents

The conventional approach in treating the boundary conditions is to consider the

double-layer charging and the Faradaic currents as separable quantities. The total

current density is usually expressed by

i = iC + iF = C0
dV

dt
+ iF (8–12)

From the oscillation of the double-layer charging current

ĩC = jωC0Ṽ (8–13)

and applying equation (7–14), the oscillation of the total current density is expressed by

ĩ = jωC0Ṽ = jω

(
∂qm

∂V

)
ci,0

Ṽ + ĩF (8–14)

The comparison of equation (8–14) with equations (8–8) and (8–9) shows that the

second term in equation (8–9) is neglected. This implies that the contribution of mass

flux in charging the double layer is neglected and the Faradaic current and the double-

layer charging current are considered separately. Since the change of surface charge

density resulting from the concentration variation is neglected, the oscillation of flux
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becomes

Ñi,0 = − si
nF

ĩF (8–15)

Under the assumption that there is a priori separation of Faradaic and double-layer

charging currents, equations (8–14) and (8–15) are used as the boundary conditions to

evaluate the transient responses of potential and concentrations.

8.2 Numerical Simulation

The nonlinear equations were solved by using the finite-element package COMSOL

Multiphysicsr with the Nernst-Planck module in a 2D axial symmetric coordinate

system. The domain size and the mesh criteria are the same as those used in the

steady-state model and were described in Chapter 6. The steady-state solutions

of potential and concentrations of all species were used as input functions in the

impedance model in the form of lookup tables from which appropriate values can be

obtained by interpolation. The use of the same meshed domain in the steady-state

and the impedance models reduces the error from interpolation between nodal points.

The distributions of the double-layer capacitance and other thermodynamic parameters

at electrode boundary were also applied in the impedance model to evaluate the

impedance response under the assumption of no a priori separation of Faradaic current

and double-layer charging current (case NAPS). When a priori separation of Faradaic

and charging current applies (case APS), a surface averaged double-layer capacitance

〈C0〉 =
1

πr2
0

∫ r0

0

C0(r)2πrdr (8–16)

was used to determine the charging current which did not include the contribution of

mass transfer in the diffuse region of charge.

8.3 Calculated Impedance Responses for Reduction of Ferricyanide

The impedance response for reduction of ferricyanide was calculated in solution

with excess supporting electrolyte. Although the distributions of surface charge and

double-layer capacitance are almost uniform when the system is in the presence of
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Figure 8-1. Nyquist representation of the global impedance response for reduction of
ferricyanide on a rotating disk electrode rotating at A) 120 rpm and B)
600 rpm.

a supporting electrolyte, the calculations still applied the modified electrode process

that did not account for the a priori separation of Faradaic and double-layer charging

currents (case NAPS). The presented impedance values are normalized by electrolyte

conductivity and electrode radius. The dimensionless frequency is defined as

K =
ω〈C0〉r0

κ
(8–17)

in both cases.

8.3.1 Global Impedance

The global impedance calculated at different rotation speeds 120 rpm and 600 rpm

are presented in Nyquist format in Figure 8-1A and 8-1B, respectively. The high-

frequency loop associated with the charge-transfer reaction is small compared to the

low-frequency loop associated with mass transfer, representing a reaction of fast kinet-

ics and controlled by mass transfer of reacting species to electrode. Different rotation

speeds should only have an effect at low frequencies. The smaller low-frequency loop

and larger characteristic frequency in Figure 8-1B indicate a smaller mass-transfer resis-

tance at a higher rotation speed. The comparison of the global impedance by assuming
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Figure 8-2. Real and imaginary components of the global impedance response for
reduction of ferricyanide at three-fourths of limiting current on a rotating disk
electrode rotating at 120 rpm.

a priori and no a priori separation of Faradaic and double-layer charging currents is

shown in Figure 8-2 for the real and imaginary components as a function of frequency.

In the presence of an excess supporting electrolyte, the contribution of mass flux to the

charging current does not affect the impedance response significantly.

The global impedance is an average representation for the local impedances. The

local impedances, however, do not always behave the same as the global response.

8.3.2 Local Impedance

The Nyquist representation of the local impedances are shown in Figure 8-3 with

radial position as a parameter. The local impedance has a larger value at electrode

center and a smaller value near the edge of the disk, representing a greater accessibility

near the electrode periphery. Inductive loops are observed at high frequencies, which is

due to the nonuniform current and potential distributions associated with the electrode

geometry.

8.3.3 Local Interfacial Impedance

The Nyquist representation of the local interfacial impedances are shown in

Figure 8-4 with radial position as a parameter. Interfacial impedance represents the
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Figure 8-3. Nyquist representation of the local impedance for reduction of ferricyanide
on a rotating disk electrode rotating at 120 rpm calculated at A), B)
one-fourth, C), D) one-half, and E), F) three-fourths of limiting current. The
enlargements of the high-frequency inductive loops are shown in (B),(D),
and (E).
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Figure 8-4. Nyquist representation of the local interfacial impedance for reduction of
ferricyanide on a rotating disk electrode rotating at 120 rpm calculated at A),
B) one-fourth, C), D) one-half, and E), F) three-fourths of limiting current.
The enlargements of the high-frequency inductive loops are shown in
(B),(D), and (E).
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transient response of electric properties in the interfacial region. The high-frequency

loop is associated with the charge-transfer reaction and the charging of the interface.

Since the radial distributions of double-layer capacitance and other thermodynamic

parameters are almost uniform on electrode surface in the presences of an excess

supporting electrolyte, the dispersion of local interfacial impedance is not significant at

high frequencies.

8.3.4 Local Ohmic Impedance

The Nyquist plots for the local Ohmic impedance are presented in Figure 8-5 as

radial position as a parameter. The resistance of electrolyte exhibiting complex features

is in agreement with the previous studies.2,3,10–12,14,22 The local Ohmic impedance

shows only inductive behavior near the electrode center, and shows both inductive and

capacitive behavior at electrode periphery. The dependence of the complex values of

the local Ohmic impedance with frequency is given in Figure 8-6 Complex values are

observed in the whole frequency range. At the same rotation speed, the high-frequency

complex values become larger when electrode reaction rate is larger. The low-frequency

complex values, however, do not affected by the electrode reaction and remain the

same when the disk rotation speed is fixed. With increasing rotation speed, the complex

values at low frequencies are diminished and become almost zero when the rotation

speed is up to 2,400 rpm. On the other hand, the complex values at high frequencies

do no vary with rotation speed. These results demonstrate that the high-frequency

complex behavior of the local Ohmic impedance is associated with the nonuniform

Ohmic potential drop in solution, which is more significant when the electrode kinetics

are fast. The low-frequency complex behavior is associated with the nonuniform mass

transfer of reacting species to electrode which correlates with the disk rotation speed.

8.4 Calculated Impedance Responses for Deposition of Silver

The global and local impedance responses of the deposition of silver were calcu-

lated with different treatments of the boundary conditions (case APS and case NAPS)
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Figure 8-5. Nyquist representation of the local Ohmic impedance for reduction of
ferricyanide on a rotating disk electrode rotating at 120 rpm and at A)
one-fourth, B) one-half, and C) three-fourths of limiting current.
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Figure 8-6. Imaginary components of the local Ohmic impedance for reduction of
ferricyanide on a rotating disk electrode rotating at A), B), C) 120 rpm, D),
E), F) 600 rpm, and G), H), I) 2,400 rpm.
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and in different concentrations of supporting electrolyte. The presented impedance

values are normalized by electrolyte conductivity and electrode radius. The frequency is

normalized by electrolyte conductivity, electrode radius, and double-layer capacitance as

defined in equation (8–17).

8.4.1 Global Impedance

The calculated global impedances for silver deposition in different concentrations

of supporting electrolyte are shown in Figure 8-7. The influence of electrode process

with and without a priori separation of Faradaic and double-layer charging currents on

the global impedance is observed at high frequencies where the charging process is

important. The depressed semicircles observed at high frequencies in cases APS and

NAPS is due to the geometry induced current and potential distributions, and could also

be due to the distributions of interfacial properties such as double-layer capacitance

and other thermodynamic properties discussed in Chapter 7. In Figure 8-7B for a small

amount of supporting electrolyte present in the system, the high-frequency loop shows

a distortion in the case of NAPS. The discrepancies of impedance values between

cases APS and NAPS can be observed more clearly in the representation of the

real and imaginary components as a function of frequency give in Figure 8-8. The

characteristic frequency of a given electrode process corresponds to the frequency

where the imaginary component of the impedance has a maximum value. In Figure 8-

8D, a larger characteristic frequency corresponding to the charging process is observed

in case NAPS. The discrepancies in the value of characteristic frequency could be due

to the extra contribution of flux in charging the double layer. The values of effective

capacitance for different electrolytic systems are estimated and will be discussed at the

end of this chapter.

The Ohmic resistance can be obtained from the high-frequency limit of the global

impedance. The dimensionless Ohmic resistance obtained in the impedance model

has a value of 0.249 at zero current. This value is different from 0.25, which was given
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Figure 8-7. Nyquist representation of the global impedance response for deposition of
silver at one-fourth of limiting current on a rotating disk electrode rotating at
120 rpm. The solution consists of 0.1 M AgNO3 and A) 1 M and B) 0.01 M
KNO3 as a supporting electrolyte.
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Figure 8-8. Calculated real and imaginary components of the global impedance
response as a function of frequency for deposition of silver at one-fourth of
limiting current on a rotating disk electrode rotating at 120 rpm: A) real part
for 1 M KNO3, B) real part for 0.01 M KNO3, C) imaginary part for 1 M KNO3,
and D) imaginary part for 0.01 M KNO3.
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Figure 8-9. Normalized Ohmic resistance of electrolytic solution consisting of AgNO3

and KNO3 as a function of silver deposition rate.

by Newman5 for the Ohmic resistance on a disk electrode with the counter electrode

placed at infinity. The error in assessing the values of Ohmic resistance by using a finite

domain was considered to be the same when there is current flowing in the system.

Figure 8-9 shows the Ohmic resistances at different fractions of limiting current. The

Ohmic resistances obtained at different fractions of limiting current were corrected by

adding a given value that makes the Ohmic resistance to be 0.25 at zero current. The

values of Ohmic resistance are not affected by the assumption that there is a priori or

no a priori separation of Faradaic and double-layer charging currents, but are related

to the solution composition and electrode reaction rate. When the ionic concentration

is larger, the conductivity of solution is larger, and therefore the Ohmic resistance has

a smaller value. The increasing Ohmic resistance with increasing reaction rate is a

consequence of change of solution composition at the electrode-electrolyte interface.

Figure 8-10 shows the axial distribution of solution conductivity in the diffusion layer

for silver deposition at the electrode center. At a larger fraction of limiting current, silver
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Figure 8-10. Axial distribution of solution conductivity at electrode center for deposition
of silver. The electrolytic solution consists of 0.1 M AgNO3 and A) 1 M and
B) 0.01 M KNO3.

ions are kept consuming and depleting at the electrode surface, resulting a smaller

conductivity and larger resistance at the interface.

The effective conductivity in the interfacial region can be estimated from the Ohmic

impedance that is obtained from the high-frequency limit of the global impedance by

κeff =
π

4

r0

Zr(ω →∞)
(8–18)

Figure 8-11. shows the effective conductivity at the interface normalized by the con-

ductivity in the bulk solution. The conductivity at the interface is equal to the value of

bulk solution at zero current. The presence of an excess supporting electrolyte re-

duces the electric field in the diffusion layer, and the Ohmic resistance and the effective

conductivity show a weaker dependency on reaction rate.

8.4.2 Local Interfacial Impedance

The calculated local interfacial impedances for the case NAPS are presented in

Figures 8-12 and 8-13 for 1 M and 0.01 M KNO3, respectively. At one-fourth of limiting

current, the interfacial impedances have larger values at electrode center and smaller
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Figure 8-11. Normalized effective conductivity at the interface as a function of silver
deposition rate.

values at electrode periphery, showing a larger reaction rate and a greater accessi-

bility at the edge of electrode due to the disk geometry. The increasing overpotential

enhances the reaction rate and reduces the concentration of reactant towards the

electrode periphery. The local interfacial impedance at the electrode periphery can

be increased due to the increasing resistance of the mass transfer of reacting species

to the electrode surface. The distribution of the local interfacial impedance at large

electrode potentials is therefore influenced by the coupled effect of electrode geometry

and mass transfer as seen in Figures 8-12 and 8-13 at one-half and three-fourths of

limiting current, respectively. The anomalously large interfacial impedance observed at

the electrode periphery shown in Figure 8-13C is needed to be confirmed that it is not a

numerical artifact.

The interfacial impedances at high frequencies and at the center of the electrode

are given in Figure 8-14. A depressed semicircle is observed in case NAPS even

in the presence of an excess supporting electrolyte as shown in Figure 8-14A. The

appearance of the depressed semicircle in the local interfacial impedance cannot
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Figure 8-12. Nyquist representation of the local interfacial impedance for deposition of
silver on a rotating disk electrode rotating at 120 rpm calculated at A)
one-fourth, B) one-half, and C) three-fourths of limiting current. The
electrolytic solution consists of 0.1 M AgNO3 and 1 M KNO3.
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Figure 8-13. Nyquist representation of the local interfacial impedance for deposition of
silver on a rotating disk electrode rotating at 120 rpm calculated at A)
one-fourth, B) one-half, and C) three-fourths of limiting current. The
electrolytic solution consists of 0.1 M AgNO3 and 0.01 M KNO3.
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Figure 8-14. Nyquist representation of the interfacial impedance at electrode center for
deposition of silver at one-fourth of limiting current on a rotating disk
electrode rotating at 120 rpm. The solution consists of 0.1 M AgNO3 and A)
1 M and B) 0.01 M KNO3 as a supporting electrolyte.
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be attributed to the geometry-induced current and potential distributions and the

distributions of interfacial property. When the concentration of supporting electrolyte is

small, the characteristic frequency is larger in case NAPS as shown in Figure 8-14B.

The depressed semicircle and the larger value of characteristic frequency observed in

case NAPS could be due to the contribution of flux in the charging of the interface, and

will be discussed later in this chapter.

8.4.3 Local Ohmic Impedance

Nyquist representations of the local Ohmic impedance for the case of NAPS are

presented in Figures 8-15 and 8-16 for 1 M and 0.01 M KNO3, respectively. Inductive

loops are observed at all positions on the electrode and capacitive loop is observed

near the disk periphery. The imaginary component of the local Ohmic impedance is

given Figure 8-17. While the high-frequency complex behavior is associated with the

nonuniform Ohmic potential drop in the electrolyte, the complex behavior observed at

low frequencies is attributed to the nonuniform mass transfer to electrode surface. In the

presence of an excess supporting electrolyte, the local Ohmic impedance in the system

of silver deposition is similar to that observed in the system of reduction of ferricyanide

that the local-frequency complex values do not affected by the electrode reaction

rate. In solution containing small amount of supporting electrolyte, the low-frequency

complex values, however, are strongly dependent on the electrode reaction rate. The

anomalously large Ohmic impedance at the periphery is needed to be confirmed that it

is not a numerical artifact.

8.4.4 Local Impedance

Nyquist representations of the local impedance for the case of NAPS are presented

in Figure 8-18 for 1 M KNO3. The calculated local impedances show inductive behavior

at high frequencies. The high-frequency inductive loops were not observed in the local

interfacial impedances and must be attributed to the local Ohmic impedances. For the

local impedances in the system in absence of supporting electrolyte as given in Figure
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Figure 8-15. Nyquist representation of the local Ohmic impedance for deposition of
silver on a rotating disk electrode rotating at 120 rpm calculated at A)
one-fourth, B) one-half, and C) three-fourths of limiting current. The
electrolytic solution consists of 0.1 M AgNO3 and 1 M KNO3.
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Figure 8-16. Nyquist representation of the local Ohmic impedance for deposition of
silver on a rotating disk electrode rotating at 120 rpm calculated at A)
one-fourth, B) one-half, and C) three-fourths of limiting current. The
electrolytic solution consists of 0.1 M AgNO3 and 0.01 M KNO3.
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Figure 8-17. Imaginary components of the local Ohmic impedance for deposition of
silver on a rotating disk electrode rotating at 120 rpm calculated at A), B)
one-fourth, C), D) one-half, and E), F) three-fourths of limiting current. The
solution consists of 0.1 M AgNO3 and A), C), E) 1 M and B), D), F) 0.01 M
KNO3.
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Figure 8-18. Nyquist representation of the local impedance for deposition of silver on a
rotating disk electrode rotating at 120 rpm calculated at A) one-fourth, B)
one-half, and C) three-fourths of limiting current. The electrolytic solution
consists of 0.1 M AgNO3 and 1 M KNO3.
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8-19, the local impedances are completely different from the global impedance. The

local impedance represents the summation of the local interfacial and local Ohmic

impedances. Since the values of the local interfacial impedances shown in Figure 8-13

are one order of magnitude smaller than the values of the local Ohmic impedances in

Figure 8-16, the local impedances are strongly affected by the local Ohmic impedance,

showing only inductive features near the center of electrode and both inductive and

capacitive loops at electrode periphery. The extremely larger low-frequency loop at the

disk periphery is needed to be confirmed that it is not a numerical artifact.

8.5 Effective Double-Layer Capacitance

Under the assumption that the Faradaic current and the charging current can be

separated a priori, the flux of reactants and products are given by the rate of the elec-

trochemical reaction. The double-layer capacitance C0 is associated with the change

of charge on electrode with the variation of interfacial potential. For electrochemical

reactions dependent on mass transfer, part of the flux of reacting species contributes to

the charging of the interface.

The variation of charge on electrode is also related to the variations of ionic

concentration in the solution adjacent to the electrode surface. The effective double-

layer capacitance that accounts for the contribution of the flux to the charging process is

defined by

Ceff = C0 +
∑
i

(
∂qm

∂ci,0

)
V ,cj,0,j 6=i

c̃i,0

Ṽ
(8–19)

The first term on the right-hand side is the double-layer capacitance used in the case

APS, and the second term is the contribution of flux of each species in the charging of

the double layer. The effective double-layer capacitance is a function of radial potential

and frequency. The values of double-layer capacitance used in the case APS and the

effective capacitance obtained in the case NAPS at various radial positions are listed

in Table 8-1. The radial distribution of the effective double-layer capacitance is almost

uniform in solutions with an excess supporting electrolyte. For the system of reduction
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Figure 8-19. Nyquist representation of the local impedance for deposition of silver on a
rotating disk electrode rotating at 120 rpm calculated at A) one-fourth, B)
one-half, and C) three-fourths of limiting current. The electrolytic solution
consisted of 0.1 M AgNO3 and 0.01 M KNO3.
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Table 8-1. Effective double-layer capacitance for the case NAPS at different positions on
electrode and the surface-averaged double-layer capacitance for the case
APS. The effective capacitance for NAPS were calculated at the
characteristic frequency associated with the Faradaic reaction and the
charging of the interface. The unit for the capacitance is µF/cm2.

Electrolytic NAPS: Ceff APS
system i/ilim r/r0 = 0 r/r0 = 0.5 r/r0 = 0.8 r/r0 = 0.96 〈C0〉

[AgNO3] = 0.1 M 1/4 0.0616 0.0606 0.0575 0.0501 16.9
[KNO3] = 0.01 M 1/2 0.0508 0.0487 0.0428 0.0305 16.9

3/4 0.0406 0.0373 0.0281 0.0168 16.9
[AgNO3] = 0.1 M 1/4 12.9 12.9 12.9 12.9 17.1

[KNO3] = 1 M 1/2 13.3 13.3 13.3 13.3 17.1
3/4 14.1 14.1 14.1 14.1 17.1

[K3Fe(CN)6] = 0.01 M 1/4 15.8 15.8 15.8 15.8 16.7
[K4Fe(CN)6] = 0.01 M 1/2 16.0 16.0 16.0 16.0 16.7

[KCl] = 1 M 3/4 14.1 16.2 16.2 16.2 16.7

of ferricyanide, the values of the effective capacitance in case NAPS are closer to the

values of the double-layer capacitance in case APS. For the system of silver deposition

and in the presence of a small amount of supporting electrolyte, the values of the

effective capacitance are about two or three orders of magnitude smaller than that of

the double-layer capacitance. A smaller effective capacitance results in a smaller time

constant and a larger characteristic frequency as observed in the high-frequency loop of

the global and local interfacial impedances.

Figure 8-20 shows the effective double-layer capacitance as a function of fre-

quency for the deposition of silver. In the presence of a small concentration of sup-

porting electrolyte, the effective double-layer capacitance is strongly dependent on

frequency. The values of Ceff at high frequencies becomes three orders of magnitude

smaller than C0. The frequency-dependent effective capacitance leads to the appear-

ance of CPE behavior in the global and local interfacial impedances even when the

solution contains an excess amount of supporting electrolyte. For the reduction of

ferricyanide given in Figure 8-21, the dependence of the effective capacitance on the

frequency is less significant than that in the silver deposition system. This result could
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Figure 8-20. Effective double-layer capacitance for deposition of silver on a rotating disk
electrode rotating at 120 rpm and at one-fourth of limiting current. The
solution consists of 0.1 M AgNO3 and A) 0.01 M and B) 1 M KNO3.
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Table 8-2. Comparison of results under different simulation conditions.

Electrochemical Electrode i0 r† Ω i/ilim NAPS
reaction geometry (A/cm2) (rpm) =APS
Reduction of RDE 0.3 0.93 120 1/4, 1/2, 3/4 Yes
ferricyanide 0.3 0.93 600 1/4, 1/2, 3/4 Yes

0.3 0.93 2,400 1/4, 1/2, 3/4 Yes
Deposition of RDE 1 0.91 120 1/4, 1/2, 3/4 No
silver 1 0.50 120 1/4, 1/2, 3/4 No

1 0.091 120 1/4, 1/2, 3/4 No
0.01 0.91 120 1/2 Yes
0.01 0.091 120 1/2 No

Recessed 1 0.91 0 1/4 No
electrode 1 0.091 0 3/4 No

†r = [Cl−]/[K+] for reduction of ferricyanide, r = [K+]/[NO−3 ] for deposition of silver

explain the impedance responses for the reduction of ferricyanide that did not show

significant difference between the cases APS and NAPS.

8.6 Discussion

Calculations were performed in different electrochemical systems and different

kinetic and mass transfer conditions to examine the impedance responses under the

assumptions that there is a priori separation and no a priori separation of Faradaic

reaction and charging the interface. The comparison of the simulation results is given

in Table 8-2. In the system of reduction of ferricyanide, the impedance responses

were almost the same in cases NAPS and APS. Therefore, it is appropriate to assume

that the Faradaic reaction and the double-layer charging process can be separated a

priori. In the system of deposition of silver, the impedance results showing no significant

difference in the two cases were observed only when the reaction rate is slow and

when the concentration of supporting electrolyte is large. The charging process at

electrodes seems to be related to the nature of the system, the reaction rate, and the

amount of supporting electrolyte. A discrepancy between the impedance responses in

the cases NAPS and APS was still observed on a recessed electrode, demonstrating

that the CPE behavior observed in the local interfacial impedance was not due to the
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nonuniform current and potential distributions. The appearance of CPE was attributed

to the frequency dependent effective double-layer capacitance that accounts for the

contribution of flux in charging the double layer.

While the electrode reaction rate increases with increasing surface overpotential

towards the electrode periphery, the reaction rate could be limited by the mass transfer

of reacting species when the surface overpotential is sufficiently large. The coupled

effect of mass transfer and electrode geometry is more significant at a larger fraction

of limiting current. In the solution containing a small amount of supporting electrolyte,

a numerical artifact might be present near the electrode periphery due to the approach

toward zero of the ion concentrations and is needed to be confirmed.
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CHAPTER 9
CONCLUSIONS

The influence of current and potential distributions on the local and global

impedance response is discussed in the present study. The current and potential

distributions can be attributed to the electrode geometry and the nonuniform mass trans-

fer on a rotating disk electrode below the mass-transfer-limited current. An impedance

model for electrochemical systems with adsorbed intermediates is developed to study

the role of geometry effect at lower frequencies. Another model is developed to in-

vestigate the mass-transfer effect in addition to the geometry effect on the impedance

response.

9.1 Influence of Adsorbed Intermediates

The calculated impedance response for the system involving an adsorbed inter-

mediate shows the influence of geometry-induced current and potential distributions at

both high and low frequencies. The character of the low-frequency loop is dependent on

the sign of the kinetic parameter A, which is itself a function of the interfacial potential.

When A > 0, the low-frequency loop is inductive, and when A < 0, the low-frequency

loop is capacitive. While high-frequency loops appearing in the local impedance are at-

tributed to the distribution of current associated with electrode geometry, low-frequency

loops associated with intermediates also show geometry-induced dispersion of the

impedance response. The geometry effects are reflected in the local Ohmic impedance,

which has complex behavior at both high and low frequencies. The surface coverage

by intermediates is dependent on the interfacial potential which, in turn, is related to the

radial position of the electrode. It has the most nonuniform distribution on the electrode

when 〈A〉 = 0 because the dependence on the interfacial potential is stronger in this

case.

The results of the present work showed that the dispersion of time constant

attributed to the disk electrode would also lead to a CPE behavior at low frequencies.
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For different potentiostatic conditions, the extent of influence by electrode geometry

can be observed by examining the value of |∆Zj/∆Zr| for a particular impedance

loop. When the applied potential to the electrode increases, the CPE behavior is more

significant as the value of α deviates more from unity. The deviation of the low-frequency

loop from the standard semicircle represents a dispersion of time constant exhibiting on

the electrode surface which is a consequence of the geometry effect.

The distortion of the impedance response associated with the electrode geometry

can have a significant impact on the interpretation of the resulting spectra. Depending

on the value of 〈J〉, error of 10% can be found for the high-frequency loop, and error as

large as 30% may be seen in identification of the low-frequency loop associated with the

reaction intermediate.

The reaction mechanism for corrosion of iron is considered in the present study to

comprise two successive charge-transfer steps involving one adsorbed intermediate.

The local impedance measured by use of the LEIS technique shows frequency dis-

persion induced by the disk geometry. The low-frequency effect was more significant

at the more anodic potential. Using small bielectrode for performing local impedance

measurements, it was possible to observe the radial dependance of the iron electrode

reactivity. The comparison between model and experiment was constrained to be quali-

tative only due to changes of the electrode surface during the course of the experiment.

Nevertheless, the qualitative agreement confirms the predicted influences of electrode

geometry on the low-frequency impedance response for reaction systems involving

adsorbed intermediates.

9.2 Influence of Nonuniform Mass Transfer

The current density increases with increasing surface overpotential towards the

periphery of the disk electrode, resulting a smaller local impedance that indicates a

greater accessibility near the electrode periphery. When the concentration of reacting

species on the electrode is sufficiently small, the reaction rate starts to be limited by
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the mass transfer of reactant. The increasing overpotential no longer has an effect

on the reaction rate, and the local impedance becomes larger at the periphery of the

disk electrode. The mass transfer effect is more significant in the system of small

concentration of supporting electrolyte. In the presence of a small amount of supporting

electrolyte, an extremely large value of the local impedance at electrode periphery is

observed. A numerical artifact might be present due to the approach toward zero of the

ion concentrations near the electrode periphery and is needed to be confirmed.

The effects of electrode geometry and mass transfer results in the appearance of

complex features in the local Ohmic impedance response. The high-frequency complex

Ohmic behavior of the local Ohmic impedance is associated with the nonuniform Ohmic

potential drop in solution, which is more significant when the electrode kinetics are fast.

The low-frequency complex behavior is associated with the nonuniform mass transfer of

reacting species to electrode, which correlates with the disk rotation speed.

Electrode process associated with Faradaic reaction and charging the interface

can be observed in the local and global impedance responses at high frequencies.

There are two contributions to current, i.e., a Faradaic reaction and the charging of

the interface. Under the assumption that the Faradaic reaction and the charging of the

interface can be separated a priori, the flux of reactants and products are given by the

rate of the electrochemical reaction. This assumption is not quite correct because part

of the flux of reacting species contributes to the charging of the interface as well as to

the Faradaic reaction. The application of the assumption that there is a prioriseparation

of Faradaic and charging currents is justified for the reaction system of reduction of

ferricyanide. In the system of deposition of silver, the assumption of NAPS is not valid

unless the reaction rate is slow and the concentration of supporting electrolyte is

large. The appearance of CPE observed in the local interfacial impedance cannot be

attributed to the geometry-induced current and potential distributions, but was attributed
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to the frequency dependent effective double-layer capacitance that accounted for the

contribution of flux in charging the double layer.
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CHAPTER 10
SUGGESTIONS FOR FUTURE WORK

The proposed impedance model incorporates the nonuniform mass-transfer

and Ohmic potential drop on a rotating disk electrode. The assumptions that the

concentration is uniform in the bulk solution and varies only in the diffusion layer are

relaxed. The radial distribution of surface charge density that depends on the potential

and concentration at the outer limit of diffuse layer was also discussed in the present

study. The assumptions of uniform double-layer capacitance on electrode surface and

negligible contribution of mass flux to the charing of the interface are also relaxed. The

electrode process was modified without a priori separation of double-layer charging and

Faradaic charging currents.

The double-layer model in the present study followed the Gouy-Chapman theory

that shows an exponential decay of charge in the diffuse region. Stern’s postulation

of a combination of a compact ion layer in contact with metal and an outer region with

loosely scattered ions was applied to estimate the distribution of charge density on

the metal surface. The capacity of the compact layer was assumed to be a constant.

Grahame64 reported that the capacity of the compact layer is dependent on the charge

on the electrode. The double-layer model can be modified by relaxing the assumption

of a constant capacity Cm−ohp. The variation of Cm−ohp with the surface charge density

and the consideration of specific adsorption of species onto the metal surface can

be the next step to improve the double-layer model. Also, instead of considering a

continuous motion of species in the diffuse region of charge, a double-layer model with

molecular-scale simulations74 could be used to explore the charge distribution at the

interface.

Furthermore, the thickness of the diffuse double layer is associated with the ionic

concentration. The smaller ionic concentration gives a larger value of double-layer

thickness which could lead to an error in assessing the charge distribution in the
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interfacial region. The electrical double-layer model should be improved to takes into

account the ionic concentration.

Under the assumption that there is no a priori separation of Faradaic and double-

layer charging currents, the impedance responses showed a depressed semicircle at

high frequencies even in the presence of an excess supporting electrolyte. Experimental

verification of the impedance results is required.
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[7] K. Nisancioğlu, J. S. Newman, The transient response of a disk electrode, Journal
of the Electrochemical Society 120 (1973) 1339–1346.
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