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Photoelectrochemical cells are distinguished by the use of a semi-
conductor-electrolyte interface to create the necessary junction for
use as a photovoltaic device.'™ This chapter presents a description
of this device from an electrochemical engineering viewpoint. The
traditional chemical engineering fundamentals of transport
phenomena, reaction kinetics, thermodynamics, and system design
provide a useful foundation for the study of semiconducting devices.
The motivation for the study of photoelectrochemical cells is dis-
cussed, and a physical description of the cell features is presented.
A tutorial on the mechanism of cell operation is presented which
includes descriptions of the phenomena of band-bending and
straightening, the effect of interfacial phenomena, and current flow.
Mathematical relationships are developed which describe this sys-
tem, and the influence of cell design is discussed.

Many review papers, including recent chapters in this series,
cover the physics and chemistry of photoelectrochemical cells (see,
eg., Refs. 9-19). The reader is referred to these for a historical
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perspective of the development of the field of photoelectrochemistry
as applied to photovoltaic devices. An overview of the analytic and
numerical models that have been developed for photoelectro-
chemical cells is presented in Section 111.2. This chapter is further
distinguished by an emphasis on guantitative design and optimi-
zation of large-scale photoelectrochemical cells and by a mathe-
matical description that accounts for the influence of the nonideal
behavior associated with large electron and hole concentrations in
the semiconductor. This review also provides a contrast between a
physical description of electrons in terms of energies and statistical
distributions and a chemical description in terms of concentrations
and activity coefficients.

I. SEMICONDUCTOR ELECTRODES

Semiconductors are characterized by the diflerence in energy
between valence and conduction-band electrons. Electrons can be
transferred from the valence band to the conduction band by
absorption of a photon with energy greater than or equal to the
transition or band-gap energy. When the electron moves into the
higher energy level, it leaves behind a vacancy in the valence band,
or hole. Both the negatively charged electrons and the positively
charged holes are mobile and can serve as charge carriers (see, e.g.,
Refs. 20-24). In the presence of a potential gradient (or electric
field), electrons and holes tend to migrate in opposite directions
and can result in a net flow of electrical current. In the absence of
a potential gradient, electron-hole pairs produced by illumination
recombine with no net flow of electrical current. Photovoltaic
devices therefore require an equilibrium potential gradient in the
illuminated region of the semiconductor.

A potential gr. dient can be created by forming an interface or
junction with a semiconducting material. Metal-semiconductor,
p-n semiconductor, and semiconductor-electrolyte interfaces have
been used in the construction of photovoltaic cells.***" The interface
in a p-n junction photovoltaic cell can be constructed by doping
the surface of an n or p-type semiconductor with atoms that invert
the semiconductor type. These atoms are then thermally diffused
into the host semiconductor to an optimal depth. Diffusion rates
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Figure 1. The photoelectrochemical cell.
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associated with adsorption of charged species or with surfuce sites,
The charge is distributed such that the interface taken as a whole
is still electrically neutral. Sunlight is absorbed within the semicon-
ductor and causes generation of electron-hole pairs which are
separated by the potential gradient. This separation leads to con-
centration and potential driving forces for electrochemical reactions
at the semiconductor-electrolyte interface. The electrochemical
reactions allow passage of electrical current through the cell.

The semiconductor and the electrolyte phases are conveniently
characterized through macroscopic relations. A microscopic model
1s required for the interface between the bulk phases. This model
can be arbitrarily complex but is restricted by the requirement that
thermodynamic relationships among the bulk phases hold. A con-
venient model for the interfacial region is represented in Fig. 2.
The interface is represented by four planes, inner and outer Helm-
holtz planes on the electrolyte side of the interface and inner and
outer surface states on the semiconductor side. The outer Helmholtz
plane (OHP) is the plane of closest approach for (hydrated) ions
associated with the bulk solution. The inner Heimholtz plane (IHP)
passes through the center of ions specifically adsorbed on the
semiconductor surface. The outer surface state (OSS) represents
the plane of closest approach for electrons (and holes) associated
with the bulk of the semiconductor. The inner surface state (ISS)
is a plane of surface sites for adsorbed electrons. If surface sites
are neglected, the ISS and the OSS are coincident.

This model of the semiconductor-electrolyte interface is an
application of the classical Stern-Gouy-Chapman diffuse-double-
layer theory’*** to the semiconductor and the electrolyte sides of
the interface. Charge adsorbed onto the IHP and the ISS planes is
balanced by charge in the diffuse region of the electrolyte and the
space-charge region of the semiconductor. The net charge of the
interface, including surface planes and diffuse and space-charge
regions, is equal to zero. Within a given model, reactions may be
written to relate concentrations and potentials at interfacial planes.
Interfacial sites or energy levels for electrons or holes can be
included at the ISS. Interfacial reactions may thus include adsorp-
tion of ionic species from the OHP to the IHP, adsorption of
electrons from the OSS to sites of specified energy at the ISS,
surface recombination through ISS sites, and direct surface re-
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2. The Mechanism of Cell Operation

Formation of an interface perturbs the potential distribution in the
semiconductor, and this perturbation creates the junction necessary
for the photovoltaic effect in solar cells. Examination of the poten-
tial distribution in the liquid-junction cell therefore provides insight
into the forces driving the cell. The following discussion is based
on the numerical solution of the equations governing a n-GaAs
photoanode with a selenium redox couple (see Refs. 35-37). The
governing equations are presented in Section I1. Interfacial reactions
were included but were assumed to be sufficiently fast that the
operation of the cell was limited by the transport and generation
of electrons and holes in the semiconductor. The potential distribu-
tion is presented in Fig. 3. In the dark, at open circuit (curve a),
the system is equilibrated. The potential is nearly constant
throughout the solution and the interfacial planes (OHP, IHP, ISS,
and OSS). The potential varies in the semiconductor in response
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Figure 3. Potential distribution for an n-GaAs rotating disk electrode with no
interfacial kinetic limitations. Curve a, open circuit in the dark; curve b, open circuit
under 882 W/m? illumination; and curve c, near short circuit (i = —23.1 mA/cm?)
under illumination. The electrolytic Debye length is 0.2 nm, and the semiconductor

Debye length is 70 nm.
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systems. Memming,'™" for example, has provided a chart of the
relative energies for redox systems as compared to the valence and
conduction band edge energies for several semiconductors.
Concentration distributions of holes and electrons in the semi-
conductor are presented in Fig. 4 for a system with no interfacial
kinetic limitations. Under equilibrium conditions the concentration
of holes (curve a) is essentially zero in the bulk of the semiconductor
and increases near the ncgatively charged interface. Conduction
electrons are depleted near the interface and reach a value close
to unity at the current collector, where the concentrations are scaled
by the dopant concentration (N, ~ N, }, and N, and N, represent
the concentrations of ionized electron donors and acceptors, respec-
tively. The equilibrated semiconductor of Fig. 4 can therefore be
described as having an inversion region extending from the semi-
conductor-electrolyte interface to three Debye lengths from the
interface [see Eq. (20) for a mathematical definition of the Debye
length], a depletion region extending from three to eight Debye

n " 4 "

Dimensionless Concentration

Distance from Interface, Debye Lengths

Figure 4. Concentration distribution for an n-GaAs rotating disk electrode with no
interfacial kinetic limitations. Dashed lines, holes; solid lines, electrons; curve a,
open circuit in the dark; curve b, open circuit under 882 W/m? illumination; and
curve c, near short circuit (i = —23.1 mA/cm®) under illumination. Concentrations
are made dimensionless by the net dopant concentration Ny ~ N,.
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1. Semiconductor

The electrochemical potential of a given species can arbitrarily be
separated Into terms representing a reference state, a chemical
contribution, and an electrical contribution:

wi=uy + RT In(cf) + z,Fd n

where & is a potential which characterizes the electrical state of
the phase and can be arbitrarily defined. The potential used here
1s the electrostatic potential which is obtained through integration
of Poisson’s equation.” Equation (1) defines the activity coefficient,
.-

The flux density of an individual species within the semicon-
ductor is driven by a gradient of electrochemical potential:

Nl = _(‘,U,V}L,‘ (2)

This can be written for electrons and holes in terms of concentration
and potential gradients (see, e.g., Ref. 10 or 33). The flux density
of holes N, 1s therefore given by

N u;,RT
h =

S
and a similar result is obtained for the flux density of electrons.
The concentrations of electrons and holes are represented by n and

p, respectively, and the mobilities u; are related to the diffusivities
D, by the Nernst-Einstein equation, i.e.,

D, = RTy, (4)

V{pfi) — u,pFV® (3)

This equation is appropriate for both dilute and concentrated
solutions.>' Nonidealities associated with more concentrated sol-
utions are incorporated within the activity coefhcient.

Equation (3) can be simplified through the assumption of
constant activity coefficients. Under the assumption of constant
activity coefficients, Eq. (3) is in harmony with a Boltzmann distri-
bution of electrons and holes. Such an approach is valid for p/ N,
and n/ N, less than 0.1. At higher concentrations, Fermi-Dirac
statistics must be used to account for the distribution of electrons
and holes as functions of energy. These effects can be treated by
introduction of concentration-dependent activity coefficients for

ety a v e
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[ = exp(n,)
’ F'/l(ne) (Sa)
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_ exp(ny)
fh - Fx/z(Tlh) (Sb)

respectively, where

AT (5¢)

M = —"——kT (5d)

E is the Fermi energy, E. and E, are the energies of the conduction
fand valence band edges, respectively, and F,,,(n) is the Fermi
mtegrgl of order one-half for the argumen/t 1. The activitl
coefficients approach values of unity at dilute carrier concentratiox}ll
because th‘e value of F,,(n) approaches exp(n) at dilute carrier
concentrat:o_ns. The concentration dependency of Egs. (5a)-(5d)
can be obtained explicitly through analytic expressions relat
exp{n) to Fyo(m). 7% "
Equation (5) is restricted by the assumption that the energies

arrier COnCe"tlatlo“ Ihe

f = exp(7.)

Fiya(n,) XPAE/KT) (62)
and
ﬁ. — CXP("M) A ,
Foyalny) SXP(AEL/KT) (6b)

:;icfct)sum for the mtere?ctions among electrons and holes which cause
N in the Fonductxon and valence band-edge energies, AE’ and
wit}:, ]r;zipeecgvely. An z%dditional shift in band energies is assoctiated
N g 'opcentratlc.ms of dopant species. These effects are

uded within material balances which couple transport and
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kinetic expressions. This separation of the influence of dopant and
carrier concentrations is necessary in regions where the assumption
of electroneutrality is not valid. Several reviews of the influence of
carrter and dopant concentrations are available (see, e.g., Refs.
51-57).

The thermodynamic consistency of the expressions used for
electron and hole activity cocflicients can be evaluated by applica-
tion of the second cross derivative of the Gibbs function,™ i.e.,

(L&) #(l&) M)
ap /) 1pn an/rrp

Equation (7) is properly expressed in terms of mole numbers. Under
the assumption that the concentrations are sufficiently dilute to
allow lattice expansion to be ignored, the thermodynamic relation-
ship can be expressed in terms of concentrations. Application to

Eq. (6) yields™
' E’
(ééi) - (E_) (8)
ap J1.pn an Jrp,

Equation (8) constrains the choice of expressions used to account
for the influence of carrier interactions on shifts of the conduction
and valence band-edge energies.

Experimental results have been used to obtain averaged
activity coefficients.*” Another approach toward characterization of
degenerate semiconductors has been to include the nonidealities
associated with degeneracy within a modified Nernst-Einstein
relationship.”’** The modified Nernst-Einstein relationship is

given by®*
F, .
D, = RTu,—‘]&(M- 9)

—F 2 i
o, 1/.("))

This approach is related to the activity coeflicient used in the above
development by*

Fia(m) :(Hi‘_Lff_?éE) (10)
3 ‘ dine; dling

— F\,2(n)

on,

The validity of the Nernst-Einstein relation rests on the fact that
the driving force for both migration and diffusion is the gradient

i s e
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quogeneous reaction takes place in the semiconductor; thus
a material balance for a given species, say holes, yields ,

V'Nh:Rh (]1)

wher?'R,, is the net rate of production of holes under steady-state
conditions. The rate of production of holes is, by stoichiometr

equal to the rate of production of electrons and is governed by,
thFee concurrent processes: generation by absorption of light gener)-/
ation by absorption of heat, and recombination of electro,ns and

holes (i.e., transfer of an el
.e., ectron from the conducti
valence band): on band to the

R, = G, + Gm ~ Riee (12)

Mathematical models of the homogeneous recombination process
have been developed which incorporate single-step electron transfer
from one energy level to another. They difer in the assumption of
the presence or absence of impurities which allow electrons to have
energies between the conduction and valence-band energies.57-%
tronsBtanhd~to-band kinetic models (p.resented in Fig. 5) allow elec-
nons o have oqu valence or conduction-band energies. Absorption
Crette appropriate amount.of thermal or electromagnetic energy
ates an electron-hole pair; recombination of an electron and a

Ie r ledSCS Cnerg
y
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R, = nmq, e ™ — krcc(np - nzz) (13)

wh . . .
€re m 1s the fraction of incident photons with energy greater
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tion of band-to-band recombina-
Rrec = krec NP tion kinetics in the semiconductor.

Gin = kep(Nc-n}(N -p)

than the band gap energy, m is the absorption coefficient, ¢, is the
incident solar flux, and n; is the intrinsic concentration,

_ _ 1/2
= [k.hw kn)(Nv p)] (14)

rec

The intrinsic concentration is written in terms of N. and N, the
number of available conduction and valence-band sites, respec-
tively, and ky;, and k.., thermal generation and recombination rate
constants. Under equilibrium conditions, the rate of thermal gener-
ation is equal to the rate of recombination, and np = n}.

Most semiconducting materials contain within their lattice
structure impurities or imperfections which may be described as
fixed sites with valence-band electron energies within the semicon-
ductor band gap. The trap-kinetics model allows recombination to
occur through these sites (see Fig. 6). Absorbed radiation drives
an electron from the valence band to the conduction band, and all
recombination and thermal generation reactions are assumed to
occur though trap sites. This model results in

Nxky(np — n?)

Ck(N-p +k(No—n) ks
k4 k4

my

R, = nmgq e” (15)

ptn

where k,, k., kq, and k, are the rate constants for reactions 1-4,
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respectively, shown in Fig. 6. The intrinsic concentration is given by

- [klkg(Nl. = n)(N. - p)]"?
kk,

The expressions for the intrinsic concentration [Eqs. (13) and (16)]

are consistent with the expression derived through statistical-
mechanical models, e.g.,

(16)

np = ni= (N, = n)(N, - p) e E/*T

Thc? mtrmsig concentration can be considered to be a constant for
a.tg)}ven semiconductor only if the ratios n/ N, and p/ N, are negli

] . . - . .
gibly small compared to unity. The intrinsic concentration is related

to the nondegenerate limit n, ivi i
5 sy o im and the activity coefficients of Egs.

1 1/2
= M, (E) exp(AE,/kT) (17)

W .
here AE, represents the narrowing of the band gap associated

~ZL.~;”. -
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with large dopant concentrations. The assumption of a constant
intrinsic concentration is consistent with the assumption of unity
activity coeflicients for electrons and holes. The value of the intrinsic
concentration derived from statistical-mechanical arguments serves
as a relationship among the kinetic parameters in Egs. (14) and (16).

The divergence of the current is zero at steady state; therefore
the fluxes of holes and electrons are related by

T N,-V-N, =0 (18)

A material balance on electrons, analogous to Eq. (11), could be
used to replace Eq. {(18). Numerical computational accuracy is
enhanced by coupling conservation of the minority carrier with Eq.
(18).

Poisson’s equation,

2 F
Vb= [p=n+ (N, - N, (19)
relates the potential to the charge distribution. The Debye length,
/\sc = [FscRT/FZ( Ntl - Na)]l/2 (20)

characterizes the distance over which the potential varies in the
semiconductor. It typically has a value of 16 to 200 nm.

The degree of ionization of donors or acceptors is dependent
upon the concentrations of charged species within the semiconduc-
tor and upon the temperature. Complete ionization is frequently
assumed, and this assumption is reasonable at room temperatures.
Gerischer”® presents development of these equations under the
condition of incomplete dopant ionization.

2. Electrolyte

The equations which govern the electrolyte are similar to those
which govern the semiconductor with the exceptions that
homogeneous reactions can frequently be neglected and that con-
vective transport of ionic species may be important. For dilute
electrolytic solutions (less than 3 M) the flux density of an ionic
species can be expressed in terms of migrational, diffusional, and

convective components, i.e.,
N, = —zu,¢c, FV® ~ DV ¢ + ¢v (21)
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Within the semiconductor, this can be regarded to be an integrated
form of Eq. (18).

3. Semiconductor-Electrolyte Interface

The interfacial reactions described in Section 1.1 are driven by
departure from equilibrium. For a general interfacial reaction given

by“3
YsMP -0 27

i

the condition of equilibrium is given by

Y s =0 (28)
Here, s, is the stoichiometric coeflicient of species i, M, is a symbol
for the chemical formula of species i, and u, is the electrochemical
potential of species i. Electrons at a given energy level (or holes)
are included explicitly as a reactant.
The rate of reaction [ at the interface is given by

1~ Fad
n= kj',l exp[.(._ﬁ;z—)’;___!] ]—1 C{’x,1

-BnFAdD
~ Ky CXP( BIZT '> “ e

where 3, is a symmetry factor (usually assumed to be equal to 1/2),
k;, and k,, are forward and backward reaction rate constants,
respectively, n is the number of electrons transferred, and A®, is
the potential driving force for the given reaction, I The potential
driving force enters into reactions involving charge transfer from
locations of one potential to locations of another.

The reaction orders for a given species i in the forward and
reverse directions are p;; and g,, respectively. They are determined
from the stoichiometric coefficients, s;,:

(29)

For s, = 0: piy=0 and g,,=90
Fors,, > 0: pi=s, and ¢, =0

0 and g, = s,

It

Fors,, <O Dii
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The reaction rates are written in terms of the equilibrium

constants as
(1 - B)FAD
b1 Ky €Xp R ]’] ¢

T
(30)
~B:F
e A28 et}

The equilibrium constant used here is the ratio of the forward and
backward rate constants:

Ky
K, = )
P (31)
The equilil?rium constants can be related to equilibrium interfacial
concentrations and potentials, i.e.,

K = F -
(TP TR A [T e (32)

Through .Eq. (30), the equilibrium constants can be related to
electror.l-sue and Fermi energies. Within parametric studies, it is
c.onvement to allow one independent rate constant to be charac,teris-
tic otj each group of interfacial reactions. For example, adsorption
reactions (IHP-OHP) might have individual rate constants for each
reaction / related to the characteristic rate constant by

ky, = ki K72 (33a)

and
k= k) K2 (33b)

where kj-)'is the preexponential part of the rate constant with a
characteristic value for a given reaction type j, and B was’given a
value of one haif. The value for the equilibrium constant K incor-
porates the energy levels of interfacial sites and associated energies
;)Sflt;dsorption. These equations are consistent with Eqs. (30) and
arbitl}:iel general approach fjescribgd above can be applied to an
eaens Sy co_mplex interfacial reaction scbeme. Concentrations of
whiot gspecies are related to suyf_ace reactions by material balances

» under steady-state conditions, are expressed by continuity
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of flux at the OSS and the OHP; 1e.,

N, = L — SeNoss (34a)
0SS [
Ny, =3 = Spifoss (34b)
(SR !
and
(34c)

.

=3 — syfone
our !

1 o « o 3 - : at
Material balances are also written for cach adsorbed species 1

the 1SS and the 1HP, ie.,
Y suriiss = 0 (35a)
]

and
Y Sulane = 0 (35b)

!

These equations apply only if surface states are involved within

i i interface.
the microscopic model of the inter .
Gauss's law can be applied to the region between the OSS and

1SS:

%) £ - T 36a)
DPoss — D5 = Z‘;[E‘; (Piss Dyp) + F |§s zl x] (

and between the 1SS and the IHP:

62 sol _ - I‘,] (36b)
P55 — Pryp = ; [ 5, (Pnr Doup) T F nzfp Zi

. . d
where T'; are the surface concentrations of charged species locate

ive interfacial planes. . ‘
3 th?rt:zsfg)e;tr;:ch describedpabove allows description ot}”:mteriﬁlgl
reactions in terms of individual single-step processes. reql: ofa,
reactions are described by a single rate expression. Thedr':\herough
charge-transfer reaction, for example, can be expresse
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the Marcus-Gerischer theory by

T krcd('“‘d J K( E)p( E)[ l At( [:‘)]DI'C(I( E) d[;
t (37)
= KoxCox J «(E)p(EMY(E)YD,(E) dE

where k,, and k., are rate constants, «{( E) is an energy-dependent
transmission or rate constant, p( E)[1 — f(E)}] is the distribution of
unoccupied electron states in the electrode, p( E)f(E) is the distri-
bution of occupied states in the electrode, and D,, and D,  are
the distributions of occupied and unoccupied states, respectively,
for electrons associated with the ionic species.'™"”"° This may be
regarded to be a form of Eq. (29) integrated over all electron energy
levels. Within this approach, the occupancy of electron states f(E)
is given by the Fermi-Dirac distribution, and the energy states of
electrons associated with ionic species are distributed according to

= ( EFeI A)zjl
D, E) = o hel 2
red( ) Cxp[ akTA (383)
and
(E - EFel A)z]
D (E) = _(E-Epat A) -
nx( ) exp[ AkTA ( )

where A is called the rearrangement or reorientation energy. This
term is used to relate the energy of electrons in the semiconductor
to the energy of electrons associated with the ionic species. At
equilibrium, the Fermi energy, or electrochemical potential, of
electrons in the semiconductor is equal to the Fermi energy of
electrons associated with the ionic species. This requirement
specifies the concentrations of oxidized and reduced species at the
semiconductor surface.

A kinetic argument can be used instead to establish the equili-
brium distribution of ions at the semiconductor surface. The rate
of adsorption of a species i is given according to Eq. (29) as

—zl(l _BI)FA(DI .
1=k exp| = |,

FA® (39)
~ ky, exp(i"B'R.__T__’) c.-(I‘mp - % Fk)
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Under equilibrium conditions the reaction rate is zero, and the
fractional occupation of the inner Helmholtz plane is given by
I, e MoK (40)
Fow TH+Xae Ak, IRT
K

where

AE, - FAD, + RT]n(&) (41)
bl

The fractional occupation by a single species i corresponds to that
given by the Langmuir adsorption isotherm (see, e.g., Delahay’")
for which AE, is the “‘standard” free energy of adsorption. The
“standard” free energy of adsorption is therefore a function of Ad,,
the equilibrium potential difference between the inner and outer
Helmholtz planes.

The equilibrium constants given in Eq. (32) couple the equili-
brium concentrations of electrons, obtained as functions of Fermi
energy, and the equilibrium concentrations of adsorbed ions,
obtained as functions of concentration and free energies of
adsorption.

4. Boundary Conditions

The boundary conditions are specified by the microscopic model
of the various interfaces included within the photoelectrochemical
cell. A metal-semiconductor interface, for example, can be
described in a manner similar to that presented in the preceding
section. Consider a semiconducting electrode bounded at one end
by the electrolyte and at the other end by a metallic current coliector.
The boundary conditions at the semiconductor-electrolyte interface
are incorporated into the model of the interface. Appropriate boun-
dary conditions at the semiconductor-current collector interface
are that the potential is zero, the potential derivative is equal to a
constant, determined by the charge assumed to be located at the
semiconductor-current collector interface, and all the current is
carried by electrons (the flux of holes is zero). These conditions
are consistent with a selective ohmic contact.>* The boundary condi-
tions in the electrolytic solution may be set a fixed distance from

e AP R

> ole . i i
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or 1s obtained from experimental measurements for a given elec-

trolyte.
The potential drop across the counterelectrode-electrolyte
interface is given by

Viy, = V‘()'lv + N (44)
where V¢, is the equilibrium potential drop across the interface
and n¢ is the total counterelectrode reaction overpotential. The

total overpotential is related to the current density through the
Butler-Volmer reaction model™"”'

. i{<1 i)exp[U-B)nFn
1= 1 - T —kT_ CE

l(',lim

(ool )

Ia,lim

(45)

where i, is the exchange current density associated with the bulk
concentrations of reactants, i, is the diffusion-limited current
density associated with species k, and n is the number of electrons

transferred in the counterelectrode reaction.

1il. PHOTOELECTROCHEMICAL CELL DESIGN

The liquid-junction photovoltaic cell has the advantages that the
junction between electrolytic solution and semiconductor is formed
easily and that polycrystalline semiconductors can be used. The
principal disadvantage is that the semiconductor electrode tends
to corrode under illumination. The electrochemical nature of the
cell allows both production of electricity and generation of chemical
products which can be separated, stored, and recombined to recover
the stored energy. Liquid-junction cells also have the advantages
that are attributed to other photovoltaic devices. Photovoltaic power
plants can provide local generation of power on a small scale. The
efficiency and cost of solar cells is independent of scale, and overall
efficiency is improved by locating the power plant next to the load.”
The design of a liquid-junction photovoltaic cell requires selec-
tion of an appropriate semiconductor-electrolyte combination and
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energy [ The fraction of the power in the solar spectrum that can
be converted 1o electrical power is a function of the band gap of
the semiconductor. Photons with energy less than the band gap
cannot produce electron-hole pairs. Photons with energy greater
than the band gap yicld only the band gap energy.'”™ """

The ultimate efficiency of Lq. (46) represents an upper Iimit
to conversion of solar energy'"'"'''"; factors such as reflection and
absorption losses of sunlight, kinetic and mass transfer limitations,
and recombination will reduce the efliciency. These effects are
included in Section HI1.3. A band gap between 1.0 and 1.5¢eV is
generally considered to be appropriate for efficient conversion of

solar energy.

(ii) Corrosion

The application of liquid-junction technology to photovoltaic
power conversion is limited by problems associated with the semi-
conductor-electrolyte interface. Primary among these problems is
corrosion. Efficient conversion of solar energy requires a band gap
between 1.0 and 1.5 eV, and most semiconductors near this band
gap corrode readily under illumination. Semiconductors with large
band gaps (4-5 ¢V} tend to be more stable but cannot convert most
of the solar spectrum,

Among the approaches taken to solve this problem, the most
successful concern the matching of an electolyte to the semiconduc-
tor. The rate of corrosion is reduced if the semiconductor is in
equilibrium with the corrosion products. The rate of corrosion can
also be reduced by using a redox couple which oxidizes easily. The
oxidation of the redox couple Sei,,/Sel for example, has been
shown to compete successfully with photocorrosion reactions for
holes in n-type GaAs electrodes. ™' *

p-type semiconductors used as cathodes are more stable than
the more common and generally more efficient n-type semiconduct-
ing anodes. The inefliciency of p-type photocathodes has been
attributed to the presence of surface states near the valence band
energy. A stable p-type photocathode has been developed, however,
with a solar-energy-conversion efficiency of 11.5%.""" Protective
films have been proposed to be a solution to electrode corrosion.
The electrode, in this case, would be a small band-gap semicondu¢-
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variation is therefore independent of hole and electron concentra-
tion in this region. Far from the interfuce a neutral region is defined
in which the potential is constant; here clectron and hole fluxes
are driven only by diffusion. Current-potential relationships are
derived in the analytic approach by invoking assumptions appropri-
ate to each region.

Integration of Poisson’s equation in the depletion layer, for
example, results in o depletion layer thickness W in terms of the
voltage drop V across the layer:

W [____v_*] (47a)
F(N, - N, ’

This can also be written in terms of the charge g held within the
space-charge region
4 (47b)

W= e
F(Ny — N}

or

e 4 (47¢)
2e F(N, — N,)

The depletion layer thickness is, as shown in Fig. 3, a function of
illumination intensity. The assumption that the semiconductor can
be separated into depletion and neutral regions restricts the voltage
drop V to values high enough to deplete the majority carriers
(electrons in an n-type semiconductor) in a region adjacent to the
interface but small enough to avoid formation of an inversion layer
(in which the concentration of minority carriers is significant). This
assumption is not appropriate under many operating conditions
for which the liquid-junction cell may be practical. (Figure 4, for
example, shows an inversion layer adjacent to the solution
interface.)

Analytic models of photoelectrochemical devices closely
resemble models of solid-state solar cells (see, e.g., Refs. 133-145).
Several analytic current-voltage relationships have been derived
which use the general approach described above and differ in their
treatment of surface reactions and recombination within the deple-
tion and neutral layers. The model of Gartner,'** developed for a

p-n junction device, is commonly used in the analysis of photoelec-

trochemical devices.'*’"'*” Recombination and thermal generation
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(ii) Numerical Approach

Use of a digital computer in the numerical solution of the
equations governing the liquid-junction cell eliminates the need for
restrictive assumptions. This approach has been used in the model-
ing of solid-state devices.””’ ' Laser and Bard'”" ™" developed a
computer program which was used ta calculate open-circuit photo-
potentials, the transient behavior of the system following charged
injection, and the time dependence of photocurrents in liquid-
junction cells. Time-dependent material balances of holes and elec-
trons and Poisson’s equation described the semiconductor. The
interface was included in terms of charge and flux boundary condi-
ttons. The model was limited by lack of convergence for electrode
thicknesses greater than that of the space-charge region and did
not treat explicitly the electrolyte and counterelectrode. Orazem
and Newman" presented a numerical solution of the governing
equations that included analysis of neutral, space-charge, and inver-
sion regions in the semiconductor coupled with explicit treatment
of the electrolyte and the counterelectrode. Interfacial reactions
were treated explicitly; however, limitations to electrolytic mass
transfer were not included in the analysis. Potential-dependent
concentration variables were defined to reduce the numerical

difficulties associated with concentrations that can vary up to 20
orders of magnitude in a short distance.”**"" Errors associated with
matching of solutions for various regions of the semiconductor
were thereby avoided. Numerical methods for solving coupled
ordinary differential equations are discussed by Newman and

202293 4nd a general method for treating boundary condi-

associates,
204

tions is presented by White.

A number of computer programs related to the liquid-junction
photovoltaic cell have been developed. Leary er al.™* for example,
calculated carrier concentrations in polycrystalline films using a
numerical solution of Poisson’s equation coupled with overall
charge neutrality within spherical grains. Their model was used for
analysis of semiconductor gas sensors. Davis and colleagues™>®
presented a computer program which uses simultaneous calculation
of surface and solution equilibrium states to obtain the equilibrium
condition of electrical double layers.
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A two-dimensiong) fepresentation of thjg cell is presented in
Fig, 7b. The primary curreny distribution and the resistance of a
cell containing a slotted electrode were calculated using numerica|
methods coupled  with  the Schwarz—(‘hristoﬂ’cl transforma-
tion. ™ 77 The cell resistance is 4 function of three geometric ratios,
chosen to he /G, h/G, and L/h, where [ ¢ the hulf—length of the
protruding electrode assembly, 1 is the thickness of the protruding
electrode assembly, G is the half-gap between the lectrode assem.
blies, and 4 i the separation between the electrode and the upper
insulating wajl. The separation between the counterelectrode and
the lower edge of the semiconductor-e]ectrode assembly is also
given by h. These parameters are shown in Fig. 7¢.

Four geometric parameters characterize this cell design. The
distance between the Counterelectrode and the semiconductor wag
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Figure 8. Primary resistance of a slotted-electrode cell as a function of L/h (Ref.
211). Reprinted by permission of the publisher, the Electrochemical Society, Inc.

arbitrarily chosen 80% efficiency of ilumination, reduce this value
to 12.2%. This value is consistent with the value measured in a
bench-top experimental system for which the influence of counter-
electrode limitations and electrolyte resistance can be minitmized.
This value can also be compared to the 12% efhciency obtained in
the experimental work of Heller and Miller.”**"">* Accounting for
the effect of cell design reduces the efficiency from 15.3% to 9.8%,
and inclusion of illumination losses further reduces the cell
efficiency to 7.7% for the slotted-electrode cell.

The maximum power efficiency is presented as a function of
illumination intensity in Fig. 10 for the slotted-electrode cell. The
cell was designed with the design parameters calculated to be
optimal under peak AM-2 illumination. The power efficiency
decreases with increasing illumination due to the influence of elec-
trolyte resistance and kinetic and mass-transfer limitations at the
counterelectrode. These phenomena become increasingly important
as current densities increase, and mass-transfer limitations at the
counterelectrode can result in an upper limit for cell currents.
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Table 1
Power Efficiency under Front 1Hlumination
No illumination Hiumination Expenimental
losses losses” results”

Optimal band gap 45 36 (80% )
GaAs band gap R 30 (80% )
Semiconductor-

electrolyte 153 12.2(80% ) 12.0

junction
Siotted-

electrode K 7.7(55.4%

cell design

¢ In some cases, the number in parentheses represents the fraction of AM-2 illumina-
tion (above the band gap) which actually enters the semiconductor, after accounting
for reflection, shadowing, and absorption in intervening phases. In other cases,
where detailed calculations were not made, it represents the ratio to column |
because the nonlinear efiect of illumination could not be assessed.

b References 28, 91, 92.

counterelectrode limitations, or electrolytic resistance. The cell with
a slotted semiconductor has a larger power efficiency than the
wire-grid counterelectrode cell and can be designed for separation
of chemical products. The analysis of the system designed for
separation of chemical products would need to include the electrical
resistance of the membrane.
The allowable capital investment for a photovoitaic cell is
given by
I =8.76P,nAcy. (48)

where P,, is the annual incident illumination intensity averaged
over 24h in W/m® (on this basis, the average insolation of the
continental United States is 200-250 W/m” °), 5 is the cell efficiency,
Ac is the difference in selling price and operating cost in dollars
per kW h, and y, is the break-even point in years. Lenses or mirrors
could be used to increase the amount of sunlight striking the
semiconductor surface. Based upon a 7.7% power efficiency
(averaged over 24 h), 250 W/m’ incident illumination (averaged
over 24 h), $0.05/kW h profit, and a break-even period of 5yr, an
investment of $42/m? is justified for the complete cell. Based upon
a 15.3% power efficiency (this number is averaged over 24 h and
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design was

corresponds to $39/m’.

IV. CONCLUSIONS

lectrochemical
ical model of photoe

t of a mathematica X ayer {or space
Dev.elopme?xires treatment of the diffuse dou?le‘lig of electro-
devices reg(}on) in the semiconductor. The princip

charge re
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tions of charged species. The macroscopic transport relations which
govern the electrolyte and the semiconductor are coupled by 4

by use of numerical methods.

The optimization of photoelectrochemical devices for solar
energy conversion depends on the choice of semiconductor, elec-
trolyte, and cej] design. The performance of the cell is strongly
dependent upon the design, surface area, and placement of the
Counterelectrode and current collectors. This type of solar ce] may

be economica under concentrated illumination or in regions where
electrical power has high valye.
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NOTATION

1. Roman Characters

¢ molar concentration of species | (mol/cm’)

D, diffusivity of Species i (cm?/s)

E; tnergy of species or site i (eV)

AE,  ionic adsorption energy (J/mol)

fi molar activity coefficient of species i

F Faraday’s Constant (96,487 C/equiv)

Gw  rate of thermal electron-hole pair generation {mol/s cm’)
G, rate of photo electron-hole pair generation (mol/s cm’)
i current density (mA/cm?

i exchange current density (mA/cmZ)

ky, forward reaction rate constant for reaction /

ky, backward reaction rate constant for reaction /
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rate constants for homogcncm.xs reaction k
equilibrium constant fo.r reaction [
solar absorption coefficient (1/cm) o
symbol for chemical formula Qf species i o
n'umber of electrons involved mlelectrode reac
electron concentration (mol(cm') .
intrinsic electron concentrat;;m (xr;lol/cm )

al site concentration (mol/cm- . .
:gi:: :)uik electron-ucceptor concentr'atlon (r?/olr/nir:\ )
total bulk electron-donorqconcentranon (mol/c
flux of species i (mol/cm's)1
hole concentration (mol/cm™)
heterogeneous reaction order
heterogeneous reaction order1
incident solar flux (mol/s cm™) .
heterogeneous reaction rate (moi/s cm™)
universal gas constant (8.3143.J/rr')0| K) y
net rate of production of species i (rpol/s crrll/ o)
net rate of electron-hole recoml')ma.t.:on (mlo tsOde ) o
stoichiometric coefficient of species i in an electr
absolute temperature (K)7
mobility of species i {cm” m.ol/J s)
potential drop across depletion layer (V)
depletion fayer thickngss (f:m)
charge number of species i

2. Greek Characters

mmetry factor . .
Zirface concentration of energy or species k (md(:)l/cl:r)\ ()cm)
distance between interfacial planes (gap denoted by
permittivity (C/V cm)

hoton efficiency .
folal overpotential at interface k (_V)
fractional occupation of surface sites
conductivity (mho/cm)

Debye length (cm) o
electrochemical potential of species i (J/mol)
electrical potential (V)

!’homelcc«rochcmical Devices for Solar Energy Conversion

3. Superscripts

0 equilibrium
6 secondary reference state a infinite dilution
* second

ary reference state in semiconductor

4. Subscripts

bulk  associated with the bulk

associated with conduction band ip semiconductor
CE associated with the counterelectrode
cell  associated with the cell

e relating to electrons
h relating to holes
IHP

associated with inner Helmholtz plane
ISS  associated with inner surface states
I associated with reaction /

0 equilibrium value or initial valye
OHP associated with outer Helmholtz plane
OSS  associated with outer surface states

sc

associated with semiconductor

sol associated with solution

associated with valence band in semiconductor
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