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Chapter 1. Introduction

The liquid-junction photovoltaic cell is an electrochemical system wi.th
one or two semiconducting electrodes. This system has been studied since
the early 1970's as a means of converting solar energy to chemical or
electrical energy. Most of these studies have been oriented toward

developing an understanding of the semiconductor electrode.

The design of a liquid-junction photovoltaic cell requires selection of an
appropriate semiconductor-electrolyte combination as well as an efficient
cell configuration. The selection of a semiconductor is based upon the band
gap, which provides an upper limit to the conversion efficiency of the device,
and the choice of clectrolyte is governed by the need to limit corrosion. The
objective of this work was to develop a mathematical model of the iiquid-
junction cell which could predict the effect of design parameters on celi
performance. The one-dimensional model of the liquid-junction cell was
coupled with primary resislance calculalions tuv predict the effect of cell

design on performance.

The one-dimensional mathematical model treats explicitly the
semiconductor, the electrolyte, and the semiconductor-electrolyte interface
in terms of potentials and concentrations of charged species. The rnodel
incorporates macroscopic transport equations in the bulk of the
semiconductor and electrolyte coupled with a microscopic model of the
semiconductor-electrolyte interface. Fomogeneous and heterogeneous
recombination of electron-hole pairs is included wilhin the model
Recombination takes place at the semiconducter-electrolyte interface
through interfacial sites, which can enhance the recombination rate.

Surface sites at the semiconductor-metal interface were not included within



the model. The coupled nonlinear ordinary differential equations of the

model were pused in finite-difference form and solved numerically.

The development of the mathematical model is presented in Chapter 2.
The model is used to gain insight into the potential distribution of the
system under equilibrium conditions and under illumination. The model is
also used to show the effect of cell parameters such as kinetic limitations at
the semjconductor-electrolyte interface, semiconductor thickness and
dopant concentration, electrolyte resistance, and mass-transfer and kinetic

limitations to current flow at the counterelectrode.

The design and optimization of photoelectrochemical cells is presented
in Chapter 3. The performance of three cell configurations was calculated
for operation under AM-2 solar illumination (882 W/m?). The one-
dimensicnal modei of the liquid-junction cell was coupled with calculations
of the primary resistance to current flow associated with two-dimensional

systems. An economic analysis is presented based upon these results.

The primary resistance calculations for two of the three cell designs
presented in Chapter 3 were based on previous work. The primary
resistance and current distribution for a cell containing a slotted electrode
is presented in Chapter 4. This work involves application of the Schwarz-
Christofel transformation coupled with numerical methods. An analytic

approximation to the primary resistance is also presented.

Concepts of potential in electrochemical syslems are discussed in
Chapter 5. Various definitions of electrical potential are presented, and the

use and measurement of these potentials are reviewed.

The equilibrated semiconductor is described in Chapter 6. This work

involves development of statistical mechanical models of semiconductors,



with comparison of the Fermi energy to the electrochemical potential of
electrons, The concentration dependence of activity coeflicients for
electrons and holes is developed based on the Fermi-Dirac distribution for
electrons. Equilibrium relationships are presented for the semiconductor-
electrolyte interface. This work allows calculation of concentration and

potential variables under equilibrium conditions,

A review of experimental methods for characterization of
photoelectrochemical cells is presented in Chapter 7. This work includes
standard semiconductor characterization methods such as Hall, optical, and

photodecay measurements.

A comparison of Maxwell's equations and dilute-solution transport
equations is presented in Appendix A. The standard relationships for
complex permittivity and index of refraction are aiso presented. The

documentation for the computer programs is presented in Appendix B.



Chapter 2. Mathematical Modeling of

Liquid-Junction Photovoltaic Cells

The liquid-junction photovoltaic cell is an electrochemical system with
one or two semiconducting electrodes. This system has undergone intense
study since the early 1970's as a means of converting solar energy to
chemical or electrical energy.'"® A number of articles review the physics of
the liquid-junction cell, the role of the semiconducting electrode, and the

literature (see, e.g., references 9-19).

A mathematical model is presented here which treats explicitly all
components of the liquid-junction photovoltaic cell. The results of the
model, obtained through numerical computation, are used to gain imsight

into the cell behavior and into the factors influencing cell design.

1. INTRODUCTION

Semiconductors are characterized by the difference in energy between
valence and conduction band electrons. Electrons can be transferred from
the valence band to the conduction band by absorption of a photon with
energy greater than or equal to the transition or band-gap energy. When
the electron moves into the higher energy level, it leaves behind a vacancy
in the valence band, or hole. Both the negatively charged eilectrons and the
positively charged holes are mobile and can serve as charge carriers (see,

20 or Sze?l). In the presence of a potential gradient (or electric

e.g.. Grove
field), electrons and holes tend Lo migrate in opposite directions and thus
can carry electrical current. In the absence of a potential gradient,

electron-hole pairs produced by illumination recombkine with no net flow of

electrical current. Photovoltaic devices therefore require an equilibrium



potential gradient in the region of the semiconductor to be illuminated.

The potential gradient in a photovoltaic cell is created by forming an
interface or junction with a semiconducting material. Metal-semiconductor,
p-n semiconductor, and semiconductor-electrolyte interfaces are used in

construction of photovoltaic cells.??-3¢

1.1. The Liquid-Junction Photovoltaic Cell

The interface in a p-n junction photovoltaic cell is constructed by
doping the surface of an n or p-type semiconductor with atoms that invert
the semiconductior type. These atoms are then thermally diffused intoe the
host semiconductor to an optimal depth.*®?%* Diffusion rates in grain
boundaries greatly exceed those in the bulk crystal; thus the need for a
distinct boundary limils this technique to single-crystal host
sermiconductors. The junction between an electrolyte and a semiconductor,
in contrast to the p-n junction, is formed spontaneously when the
semiconductor is immersed in the electroiyte. The doping and diffusion
processes are not needed, and polycrystalline semiconductors can be used.®
The study of the liquid-junction photovoltaic cell is motivated by the ease of
formation of a semiconductor-electrolyte interface and the possible use of

relatively inexpensive thin-film polycrystalline semiconductors.

The performance of photoelectrochemical cells constructed with thin-
film or polycrystalline semiconductors is strongly dependent upon the
method of film formation and upon the surface preparation. Conversion
effciencies (incident solar illumination to electrical power) of 3 to 6.5
percent have been reported for cells using thin-film n-CdSe electrodes,®*%
and a conversion efficiency of 5.1 percent has been achieved with a

pressure-sintered polycrystalline CdSe photoelectrode.?®* A comparable



efficiency of 8.1 percent has been reported for a single-crystal CdSe
electrode.?® Conversion efficiencies of 0.038 to 0.3 percent have heen
reported for polycrystalline CdS films3%38 as compared to 1.3 percent for
single-crystal CdS.3° Conversion efficiencies of up to 7.3 percent have been
reported for polycrystalline n-GaAs films;®?4! 12 percent has been reported
for the single crystal n-GaAs.*243 The lower efficiency of the polycrystalline
thin-film semiconductors, as compared to the single-crystal counterparts, is

expected to be compensated by Lheir lower cost.

The major disadvantage of the liquid-junction photovoltaic celi as
compared to solid-state solar cells is the corrosion of the semiconductor
electrode. Efficient conversion of solar energy requires a band gap between
1.0 and 2.0 eV,' and most semiconductors near this band gap corrode
readily under illumination. Semiconductors with large band-gaps tend to be
more stable but cannot convert most of the solar spectrum. Protective
films, use of d-band semiconductors {(MoS,, MoSe,. and WSe,}, and use of
polychalcogenide redox couples (polysulfide, polyselenide, or polytelluride
ions) have been proposed to reduce corrosion of small band-gap

semiconductors. This work has been reviewed elsewhere 3813.14.17-18.42.45

The principal elements of the liquid-junction photovoltaic cell, as shown
in Figure 1, are the counterelectrode, the electrolyte, the semiconductor-
electrolyte interface, and the semiconductor. Preferential adsorption of
charged species (ionic species from the electrolyte and electrons from the
semiconductor) at the semiconductor-electrolyte interface is accompanied
by an equilibrium potential gradient in the semiconducter. Sunlight is
absorbed within the semiconductor and causes generation of electron-hole

pairs which are separated by the potential gradient. This separation leads
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Figure 1. The liquid-junction photovoltaic cell.



to concentration and potential driving forces for electrochernical reactions
at the semiconductor-electrolyte interface. The electrochemical reactions

allow passage of electrical current through the cell

1.2. Models of the Liquid-Junction Photovoltaic Cell

Development of a mathematical model constitutes an important step
toward understanding the behavior and predicting the performance of the
liguid-junction photovoltaic cell. Coupled phenomena govern the system,
and the equations describing their interaction cannot, in general, be solved
analytically. Two approaches have been taken in developing a mathematical
rmodel of the liquid-junction photovoltaic cell: approximate analytic solution

of the governing equations and numerical solution.

1.2.1. Analytic approach. The semiconductor electrode is typically divided
into three regions. Surface-charge and electron and hole-flux boundary
conditions modei the semiconductor-electrolyte interface. The region
adjacent to the interface is assumed to be a depletion layer, in which
electron and hole conecentrations are negligible. The potential variation is
therefore independent of hole and electron concentration in this region.
Far from the interface a neutral region is defined in which the potential is

constant; here electron and hole fluxes are driven only by diffusicn.

The fundamental governing equations for the semiconductor, presented
in section 2.2.1, are Poisson's equation and material balances for holes and
electrons. Current-potential relationships are derived in the analytic

approach by invoking assumptions appropriate to each region.

Integration of Poisson's equation in the depletion tayer, for example,

results in a depletion layer thickness ¥ in terms of the voltage drop V



across the layer;

[ 2ev

vl @
The depletion layer thickness is generally assumed to be independent of
illumination. This assumption corresponds to an assumption that the
potential distribution is independent of illumination and is therefore valid
only for small photocurrents (less than 1 mA/em?). In addition, the
assumption that the semiconductor can be separated into depietion and
neutral regions restricts the voltage drop ¥V to values high enough to
deplete the majority carriers (electrons in an n-type semiconductor) in a
region agdjacent to the interface but small enough to avoid formation of an
inversion layer {(in which the concentration of minority carriers is
significant). The assumptions used in the analytic models are invalid under
many operating conditions in which the liquid-junction cell may be

practiceal.

Several analytic current-voltage relationships have been derived which
use the general approach described above and differ in their treatment of
surface reactions and recombination within the depletion and neutral

layers. Gartner®

neglected recombination and thermal generation of
carriers in the depletion region and neglected the effecl of concentration
limitations at the semiconductor-electrolyte interface. The Gartner model
is frequently used Lo analyze experimental results.?7-%% Wilson®C5! ysed the
same approach but included surface recombinations. Albery et al. %2
extended the model of Gartner by including recombination of holes and
electrons in the depletion layer. Reichman®3®* presented a mode! which

included recombination in the depletion region and kinetic limitation at the

interface. Reiss®® presented models for various cases, including within the
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model the potential drop across the electrolyte double layer, surface
recombination, and surface kinetic limitations. The semiconductor was
divided into depletion and neutral regions, and the effect of illumination on
cell potential was included as an additive photovoltage. Ahlgren®®
incorporated a Butler-Volmer reaction rate expression inte the boundary
conditions at the semiconductor-electrolyte interface. McCann and
Haneman®” included enhanced recombination associated with grain
boundaries within the bulk of the semiconductor. The pholtovoltage was
included in the calculation of the depletion region width. McCann et al.%®
used ah analytic model to calculate the current-voltage characteristics of

front and back-wall-illuminated liquid-junction cells.

Surface states and crystal imperfections have been found te play an
important role in charge-transfer and redox reactions at the

39-65  Mathematical and conceptual

semiconductor-electrolyte interface.
relationships have been developed which describe electrochemical reactions
at the semiconductor-electrolyte interface in terms of surface states ﬁnd
potentials {see, e.g., references 66-78). Electrochemical reaction via surface

states has been inciluded within an analytic model,” but this model is still

limited by the restrictions described above.

Equivalent circuit models of the liquid-junction cell have been
presented.’®2 These models are useful in the analysis of impedance
response measurements but sufler from a lack of clear physical

interpretation.

1.2.2. Numerical approach. Use of a digital computer in the numerical
solution of the equations governing the liquid-junction cell eliminates the

need for restrictive assumptions. The numerical approach was taken in this
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work and has been used in the modeling of solid-state devices.?1"8 Laser and
Bard®" % developed a computer program which was used to calculate open-
circuit photopotentials, the transient behavior of the system f{ollowing
charge injection, and the time dependence of photocurrents in liquid-
junction cells. Time dependent material balances of holes and electrons and
Poisson's equation described the semiconductor. The interface was
included in terms of charge and Alux boundary conditions. The model was
limited by lack of convergence for electrode thicknesses greater than that
of the space-charge region and did not treat explicitly the electrolyte and

counterelectrode.

A number of computer programs related to the liquid-junction
photovoltaic cell have been developed. Leary et al.,%' for example,
calculated carrier concentrations in polycrystailine films using a numerical
solution of Poisson’s equation coupled with overall charge neutrality within
spherical grains. Their model was used for analysis of semiconductor gas
sensors. A computer program has been presented by Davis and

92-84 which uses simultaneous calculation of surface and solution

colleagues
equilibrium states to obtain the equilibrium condition of electrical double

layers.

2. MATHEMATICAL MODEL

The one-dimensional steady-state model presented in this section
treats explicitly the semiconductor, the electroiyte, and the
semiconductor-electrolyte interface in terms of potentials and
concentrations of charged species. The effect of kinetic and mass-transfer
limitations at the counterelectrode is included. The rmodel can be used to

gain an understanding of the behavior of the liquid-junction photevolitaic
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cell and to predict and optimize cell performance.

2.1. Physical Desecription

A one-dimensional representation of the liquid-junction photovoltaic
cell is presented in Figure 2. This model includes macroscopic
representations of the counterelectrode, the electroiytic solution, and the
semiconductor coupled with a microscopic representation of the interface
between the semiconductor and the solution. The semiconductor-
electrolyte interface couples the macroscopic equations which govern the

adjacent bulk phases.

The interface is represented by four planes, inner and outer Helmholiz
planes on the electrolyte side of the interface and inner and outer surféce
states on the semiconductor side. The outer Helmholtz plane {OHP) is the
plane of closest approach for {hydrated) ions associated with the bulk
solution. The inner Helmholtz plane (IHP) passes through the center of ions
specifically adsorbed on the semiconductor surface. The outer surface
state {0OSS) represents the plane of closest approach for electrons (and
holes) associated with the bulk of the semiconductor. The inner surface

state (ISS) is a plane of surface sites for adsorbed electrons.

This model of the semiconductor-electrolyte interface is an extension
of the classical diffuse double-layer theory.%>% Charge adsorbed onto the
IEP and the ISS planes is balanced by charge in the diffuse region of the
electrolyte and the space-charge region of the serniconductor. The net
charge of the interface, including surface planes and diffuse and space-

charge regions, is equal to zero.

Within the model, single-step reactions relate concentrations and

potentials at interfacial planes. A continuous spectrum of energy levels at
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Figure 2. Mathematical model of the liquid-junction photovoltaic cell.
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the ISS is represented by three discrete energy levels (designated v, ¢, and
c). Conduction electrons are adsorbed via reaction 1 (see INTERFACE in
Figure 2) from the 0SS to high-energy sites at the ISS, via reaction 10 to
intermediate-energy sites at the ISS, and via reaction 11 to low-energy sites
at the ISS. Via reaction 2, low-energy electrons at the ISS can occupy
vacancies in the valence band, or holes, at the 035. Intermediate-energy
electrons can transfer from the ISS to the 0SS through reaction 12 and
high-energy electrons can transfer through reaction 13. Reactions 3 and 4

allow the shifting of electrons from one energy level to another.

lonic species from the solution are adsorbed onto the IEP by reactions
B and 9. Two adsorbed species are considered here. It is assumed that
other ionic species in the solution do not adsorb and do not participate in
the electrochemical reactions. Relaxation of this assumption involves the
inclusion of additional ion-adsorption and charge-transfer reactions.
Reactions 5, 6, and 7 are the charge-transfer reactions that take place
among adsorbed ions at the IHP and adsorbed high, intermediate, or low-
energy electrons at the ISS. Charge-transfer reactions allow passage of

electrical current from the semiconducter to the solulion.

2.2. Theoretical Develocpment

The egquations governing the liquid-junction photovoltaic cell in the
dark or under steady-state illumination are develeoped here in terms of the
model presented above. The governing relaticnships can be developed
separately for the semiconductor and the electrolyte. The microscopic
medel of the semiconductor-eiectrolyte interface couples the equations

governing the macroscopic systems.
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2.2.1. Semiconductor. The electrochemical potential of a given species can
arbitrarily be separated into terms representing a reference state, a
chemical contribution, and an electrical contribution.

Wi = ud + RTIn(c f;) + 2, Fé, (2)
where ¢ is a potential which characterizes the electrical state of the phase
and can be arbitrarily defined. The potential used here is the electrostatic
potential which is obtained through integration of Poisson's equation.?®
Equation {2) can be viewed as the defining equation for the activity

coeflicient, f;.

The flux of an individual species within the semiconductor is driven by 2
gradient of electrochemical potential, which corresponds to gradients of
potential and concentration (see, e.g., chapter 11 in reference (99} and
Gerischer®). Under the assumption that the individual ionic activity

coefficients are constant with a value of one,’ the fAlux of holes is given by

= dd d
Npr=—uFp $2 -0, E%’ (3)
and the flux of electrons by
_ dé dn
N'_—ue-Fn. _&-.!;-—De‘ -(—i—:(:(— (4)

The concentrations of electrons and holes are represented by n and p,
respectively, and the mobilities u; are related to the diffusivities J; by the
Nernst-Einstein equation

D, = Ry . (5)

Homogeneous reaction takes place in the semiconductor; thus a

" The assumption of constant activity coefficients, valid for dilute solutions, is azpropriate
for most semiconductors. The carrier concenirations in semiconduciors i usua.y .ess tnan
0.0001 M, which s .ow as compared ‘o diiute aqueocus solutions. The assumption of consiant
activity coeficien:s is in harmony with a Bolizmann distribution of elecirons and ho.es. Use of
Fermi-Dirac distributions for these charged species resuits in activity coeficients thet are
functions of conceniration (see Chapter 8).
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material balance for a given species, say holes,” yields

an, .

—_h . 8
il (8)
where K. is the net rate of production of holes under steady-state

conditions,

The rate of production of holes is, by stoichivmetry, equal to the rate of
production of electrons and is governed by three concurrent processes:
generation by absorption of light, generation by absorpticn of heat, and
recombination of electrons and holes {(i.e., transfer of an electron from the
conduction band to the valence band).

Ry = Gy + Gy = Rrgc - (7)
Mathematical models of the homogeneous recombination prucess have been
developed which incorporate single-step electron transfer from one energy -
level to another. They differ in the assumption of the presence or absence
of impurities within the semiconductor which allow electrons to have -

energies between the conduction and valence-band energies.!¢0.10!

Band-to-band kinetic models (presented in Figure 3) allow electrons to
have only valence or conduction-band energies. Absorption of the
appropriate amount of thermal or electromagnetic energy creates an
electron-hole pair; recombination of an electron and a hole releases energy
in the form of heat or light. The band-to-band model yields

R.= nmgee ™™ — ke (np -~ n?) . (8)

where n is the fraction of incident photons with energy greater than the

** The development presented here, while applicable to p-type
semiconductors, is oriented toward analysis of an n-type semiconductor in
which holes are the minority carrier. Material balances of holes and
electrons are not independent, and cunservation of the minority carrier was
chosen to improve the numerical computational accuracy.
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Figure 3. Schematic representation of band-to-band recombination
kinetics in the semiconductor.
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band gap energy, m is the absorption coefficient, g, is the incident solar

flux, and ny is the intrinsic concentration,

rkM(Nc"n)(Nv"p) #
n; = :

knc

(9)
The intrinsic concentration is written in terms of N, and N,, the number of
available conduction and valence-band sites respectively, and k;, and ke,
thermal generation and recombination rate constants. Under equilibrium
conditions, the rate of thermal generation is equal to the rate of

recombination, and np = nd.

Most semiconducting materials contain impurities er iinperfections
within their lattice structure which may be described as fixed sites with
valence-band electron energies within the semiconductor band gap. The
trap-kinetics model allows recombination to occur through these sites (see
Figure 4). Absorbed radiation drives an electron from the valence band to
the conduction band, and ail recombination and thermal generation
reactions are assumed to occur through trap sites. This model results in

Neka(np - n?)

- k 1(}vu Y )+k3(4Vc _n) kE
+
k"l k‘i-

+

Rh* = nm‘?ae_my (10)

where ki, kz k3 and k, are the rate constants for the corresponding

reactions shown in Figure 4. The intrinsic concentration is given by

(11)

_ [k ke a( N, =p ) (N, =)
™= k ok 4 '

The electron and hole concentrations are generally small as compared to
the respective conduction and valence-band sile concentrations. The
intrinsic concentration is therefore constant, and the reaction rate can be
characterized with three lumped rate constants (Nyka (k,V, + k3N, )/ kg

and ko/ ky). Homogeneous electron-hole recombination was assumed in the
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Figure 4. Schematic representation of single-trap recombination
kinetics in the semiconductor.



mathematical model to occur through trap sites (equations {10) and {11)).

The expressions for the intrinsic concentration (equations (9) and {11))
are consistent with the expression derived through statistical-mechanical
models (see equation (32) of Chapter 8). The intrinsic concentration can be
considered to be a constant for a given semiconductor only if the ratios
n/ N; and p/ N, are negligibly small as compared to unity. This condition is
consistent with the assumption of unity activity coefficients for electrons
and holes. The value of the intrinsic concentration derived from statistical-
mechanical arguments serves as a relationship among the kinetie

parameters in equations (9) and (11).

The divergence of the current is zero at steady state; therefore the

fluxes of holes and electrons are related by

dN _  dN
R AP (12)
dy dy

A material balance on electrons, analogous to equation {5), could be used to

replace equation (12).
Poisson's equation,
4% _ _ F

dy? Esc
relates the potential to the charge distribution. The concentrations of

[p—n+ (Ng-Na)], (13)

icnized electron donors and acceptors are represented by Ay and VN,
respectively. The Debye length,

A = 25 RT/ Fo(Ng — Ng) 1%,
characterizes the distance over which the potential varies in the

semiconductor. [t typically has a value of 1x107% to 2x107° cm.

The degree of ionization of donors or acceptors is dependent upon the

concentrations of charged species within the semiconductor and upen the
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temperature. Complete ionization has been assumed in this work. This
assumption is reasonable at room temperatures and is consistent with the

assumption of unity activity coefficients.

22.2. Electrolyte. For a one-dimensional case, neglecting convective
effects, the flux of an ionic species is governed by potential and

concentration gradients.

dd de,
Ny = —zu o F E?'"Di E’,'y"}" (12)

Under the assumption that homogeneous reactions do not take place,

conservation of mass yields a uniform flux at steady-state, i.e.,

—_—=0. (15)
The potential and concentrations of charged species are related by

Poisson's equation,

4% _ F
dy? e ;z,c., ' (16)

Electroneutrality of the electrolyte is not assumed here because the diffuse
region near the interface plays an important role in the microscopic model

of the interface. The Debye length in the sclution is given by
Asuf. = [EsalRT/ FQE ziaci,-.lu
T
and typically has a value of 1x10°%to 1x107 cm.

The relationships presented above are sufficient to describe the
electrolytic solution. An additional relationship yields the current density

as a function of the ionic fluxes,

i=F 2 2N (17)
1
Within the semiconductor, this can be regarded as an integrated form of

equation {12).
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2.2.3. Semiconductor-electrolyte interface. A general interfacial reaction

can be expressed as

T S Mt > ne, (18)
i
where s; is the stoichiometric coetlicient of species i, #; is a symbol for the
chemical formula of specieé i, and n is the number of electrons transferred.
(See chapter 8 in reference (99).) For single-step reactions, n is equal to

one,

The rate of a single-step reaction { at the interface is given by

(1=
= ky pexp| & ﬁ;)FA@:]H
' (19)
_k“expl B T e

where 8, is a symmelry factor (usually assumed to be equal to 1/2), kp, and
ky, are forward and backward reaction rate constants, respectively, and A¢,
is the potential driving force for the given reaction, {. The potential driving
force enters into reactions involving charge transfer from locations of one

potential to locations of another.

The reaction orders for a given species i in the forward and reverse
directions are p;; and g;, respectively. They are determined from the
stoichiometric coefficients, 5, ;:

ff 55, =0 pi; =0, andgy, =0

If s¢0>00 pyy =s;y, and ggy = 0.
If s, <0 p;, =0, andg;, = -s;,.

The reaction rates are written in terms of the equilibrium constants as
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[(1-g)Fa8
T =k, fﬁexpl(—mﬁ—-l-]

H C‘Pu

i
(20)

- exp _ﬁlFAQI}H 9 )
The equilibrium constant used here is the ratio of the forward and backward

rate constants:

K= L (21)
ky
Six of the thirteen equilibrium constants are independent and can be

calculated as functions of equilibrium interfacial concentrations and

potentials.

F
K = exp[- 2= A% ] [Te ™ (22)
i
A discussion of the calculation of equilibrium concenlrations and potentials
and the subsequent calculation of equilibrium constants is presented
elsewhere {see Chapter 6). The remaining constants can be calculated from

equation (22) or from the following identities:

KS(Nd "Nc)z

Ky = W (23a)
Ko = Ks/ Ky . (23b)
Ky = Kg/ Ky (23¢)
Kio = K\ K, . (23d)

K = Ko/ Ka (23e)
Kia = Ko/ K3, (23f)

and

Kiz = Ki2K, (23g)



24

Within the parametric studies which follow, cne independent rate
constant is assumed to be characteristic of each of four groups of
interfacial reactions. The four groups, shown in Figure 2, are reactions 1, 2,
10, 11, 12, and 13 (0SS-ISS), reactions 3 and 4 (ISS), reactions 5, 6, and 7
(ISS-1EP); and reactions 8 and 9 (IHP-OEP). The individual rate constants
for each reaction ! are related to the characteristic rate constant by

ko, = kPKTH (24)

and

kpy, = keoKi = kOKA, (25)
where k; is the pre-exponential part of the rate constant, with a
characteristic value for a given reaction type, and 8 was given a value of one

half. These equations are consistent with equations {20) and (21).

Material balances govern the interface under steady-state conditions.

These are expressed by continuity of flux at the 0SS and the OEP,

Ns'!m = ; Sy Ttass (26)
|
thiu" = ; -sh+_lr¢.m . (27)
and
|
N =T s @9

and material balances for each adsorbed species 1 at the ISS and the IEP,

Y SiiTriss = 0. (29)
l

and
Zt: SiuTiing = 0. (30)

Gauss's law can be applied to the region between the 0SS and ISS:
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(Dogs = Biss)} = l (@ Qihp) + F(E')’i - Qiss)| (31)
E5c iss
and between the ISS and the [HF:
'52 [ Esot -
(Bias— Bunp) = Py l (Sinp — Banp) — F( L zivi)| . (32)
2 ihp

The evaluation of Gauss's law in the region beilween the 0SS and the ISS
includes a term for a fixed positive charge at the ISS, g4, which was set

equal to zero in this study.

2.2.4. Boundary conditions. The semiconducting electrode is bounded at
one end by the electrolyte and at the other end by a metallic current
collector. The boundary conditions at the semiconducter-electrolyte
interface are incorporated into the model of the interface. The boundary
conditiong at the semiconductor-current collector interface are that the
potential is zero, the potential derivative is equal to a constant, determired
by the charge assumed to be located at the semiconductor-current
collector interface (this constan.t was set equal to zero in this study), and all
the current is carried by electrons (the flux of holes is zero). The boundary
conditions in the electrolytic solution are set a fixed distance (10 Debye
lengths) from the interface. This distance may be considered to be a
diffusion layer. The boundary conditions are that the potential gradient is

continuous and that all concentrations have their bulk value.

2.2.5. Counterelectrode. In the region sufficiently far from the interface
that electroneutrality holds, the potential distributicon is linear and is a
function of current density. The potential drop in the region between the

counterelectrode and the outer limit of the diffusion layer is given by
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L3
Vm = —. 33
R= (33)
where x is the solution conductivity and L is the distance between the
counterelectrode and the outer edge of the diffusion layer. The
conductivity of dilute solutions is related to ionic mobilities and

" concentrations by

K= F'E Z z.;a'u.,-_ Cy . (34)
i

The potential drop across the counterelectrode-electrolyte interface is

given by
Veg = Veg + nee (35)
where V2g is the equilibrium potential drop across the interface and 7.z is
the total counterelectrode reaction overpotential. The total overpotential is
related to the current density through the Butler-Volmer reaction

mode[.ss.wz

f i | Ta-pnr
1 =1 1. = - ex ?
T [ Torm | P~ fp —TTcE
(36)
f i [ gnr
- [1. + o expl— BT e [

where i, is the exchange rnurrent density associated with the bulk
concentrations of reactants, i, ;m is the diffusion-limited current density
associated with species &, and n is the number of electrons transferred in

the counterelectrode reaction.

2.2.8. Numerical method. The coupled, nonlinear equations presented for
the ligquid-junction cell were solved numerically for the cell under
equiilibrium and sleady-state conditions.!®® The equations were properly

linearized, posed in finite-difference form, and solved using Newman's BAND



27

method,'™ coupled with Newton-Raphson iteration. Calculation of a
current-potential curve involved iterative solution of the system of coupled

equations for input values of solar illumination and current density.

3. RESULTS

Computed results for the mathematical model of the liquid-junction
photovoltaic cell are presented in the following section. The parameter
values chosen for the model are consistent with an n-type GaAs anode in
contact with an 0.8 M K,Se, 0.1 M K,Se,, 1.0 M KOH solution. The redox
couple was assumed to be Sef~/ Se?", and the semiconductor was illuminated
at the semiconductor-electrolyte interface. Input parameter values are as
presented in Tables 1 through 3 unless stated otherwise. Dependent

parameters calculated from the input data are presented in Table 4.

The n-type GaAs system was chosen for analysis to allow comparison to
the experimental work of lieller and Miiler.84?4? Their cell achieved a 12
percent power efficiency based upon incident radiation, an open circuit
potential of 0.7 volts, and a closed circuit current of 24 mA/cm?® A
description of their experimental electrodes, cell, and measuring techniques
is presented in reference (35). The counterelectrode area was 50 times that
of the semiconductor. The Sef™/ Se?” redox couple was chosen to limit the
corrosion of GaAs under 1000 W,/m? illumination to a few micrometers per

year {approximately 0.04 mA/cm?).'08-1¢?

The discussion of the effect of kinetie, bulk semiconductor, and
interfacial parameters does no! include the effect of IR drop in the
electrolyte or kinetic and mass-transfer limitations at the counterelectrode
{see section 2.2.5). The contribution of these phenomena is discussed in

section 3.4.1.
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Table 1. Input Parameters for the Semiconductor

Semiconductor: n-GaAs

Valence band site concentralion N,
Conduction band site concentration N,
Band gap £y
Dopant concentration Ny—N,
Electron diffusivity D, -
Hole diffusivity D+
Permittivity Es¢
Solar absorption coefficient m
Solar spectrum efficiency 7
Total incident radiation (AM-2) 9o

Eomogeneous recombination rate
constants: Nk

(k lN‘U +k3NC )/ k4

kol kg

1.16x10° mol,/cm?
7.80x10°7 mol/cm?
1.4 eV

9.96x10°® equiv/cm?®
222.0 em?/s

8.48 cm?/s
1.08x10*% C/V-s
4.40x10°% cm!

0.3735

7.139x10"7 mol/cm?-s

1.89x10% st
100.

2.56x107°% em?/mol
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Table 2. Input Parameters for the Semiconductor-Electrolyte Interface

IS site k v

ISS site energy & 1.3

ISS site density v, 0.3334 0.3333 0.3333

Total ISS site concentration
Total IHP site concentration

IEP adsorption energy

Equilibrium 0SS potential
Equilibrium charge on interface
Distance between OSS and 1SS
Distance between ISS and [EP
Distance between IEP and OEP
Permittivity between ISS and 1EP

Rate constants:
(0SS-1SS)

(1SS)
(ISS-1EP)

(IEP-OHP)

t

1.4

c

1.5

Il
me
AF,
AR,

£2

ketr
k:jt

k cht

eV

4.019x10"'* mol/cm?
1.200x10°'3 mol/cm?
0.0 I/mol

0.0 J/mol

5.93 mV

-0.1298 uC/cm?
1.0x10® em
2.0x10°% cm
2.0x10% em

6.93x10°'2 C/V-cm

1.0x10% c¢m3/mol-s
1.0x10%° cm®/mol-s
1.0x10%% cm?/mol-s

1.0x10%3 s°!




30

Table 3. Input Parameters for the Electrolyte

Electrolyte: 0.8 M K,Se, 0.1 MK Se,, 1.0M KOl

Species index -k 1 2 3 4
Spectes K* oH Sed~ Se*
Charge number - +1 -1 -2 -2

Bulk concentration ¢,. 0.0028 0.0010 0.0001 0.0008 mol/cm?

Diffusivity (x10%) D, 1.957 5.280  1.000 1.000 em?®/s
Permittivity Esol 8.930x10!'2 C/V-cm
Conductivity K 0.3 (Q-cm)!

Temperature T 300. K
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Table 4. Values Calculated from Input Parameters

Sericonductor:
Fermi level Ey 1.347 eV
Intrinsic concentration n; 5.228x10°!8 mol/crn?
Minority carrier diffusion length Ly 5.846x10* cm
Debye length Asc 1.889x10% cm
Electrolyte:
Debye Length Aol 1.967x10® cm

3.1. Interfacial Kinetic Limitations

The values of the interfacial rate constants can affect the open-circuit
cell potential, the value of the limiting current, and the shape of the
current-potential curve. Most (>899 percent) of the recombination under
open-circuit illumination occurs at the interface. Eomogeneous
recombination is included in the model but does not play & major role for

the range of parameters studied.

3.1.1. lon-adsorption reactions. Current-potential curves are presented in
Figure 3 with the interfacial rate constant {or adsorption and desorption of
ions onto the inner Eelmholtz plane as a parameter (reactions 8 and 2 in
Figure 2). In each case the cell potential is a maximum at open circuit
{700.5 mV) and decreases as the anodic current increases. A limiting

current is observed due to limitations of mass transfer and generation of

holes in the semiconductor.
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Figure 5. Computer current-potential curves for an n-type GaAs
Anode with ion-adsorption rate constant as a parameter.
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The ion-adsorption rate constant influences the limiting current and
the shape of the current-potential curve. A dramatic decrease in the
maximurn power obtained fromn this system is observed for the cases with
small ion-adsorption rate constants. Kinetic lirnitations to ion adsorpticon
are seen to have a major effect on cell performance. Insight inte the effect
of these kinetic limitations can be obtained by comparing the potential
distribution at several points along the current-potential curve for a system
with no kinetic limitations {large rate constants) to the related potential

distributions for a system with kinetic limitations te ion adsorption,

The potential distribution for Lhe case with no kinetic limitations is
presented in Figure 8. In the dark, at open-circuit, (curve a) the system is
equilibrated. The potential is nearly constant throughout the solution and
the interfacial planes (OFEP, I[HP, ISS, and 0SS). The potential varies in the

semiconductor in response to charge distributed in the semiconductor. This
variation of electrical potential in the equilibrated semiconductor is termed
"band-bending.” The difference in potential between the front
(semiconductor-electroiyte interface) and the back (current collector-
semiconductor interface) of the semiconductor is the “flat-band potential.”
(This is the potential that would need to be applied in order to achieve

uniform potential in the semiconductor.)

Under illumination at open ecircuit {curve b) the concentrations of
electrons and holes increase, and the variation of potential in the
semiconductor decreases. The decrease in potential variation in response
to illumination is referred to as the 'straightening of the bands.” The
charges of holes and electrons, generated by the illumination, tend Lo go in

opposite directions under the influence of the electric field. Their
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Figure 6. Potential distribution for the liquid-junction cell with

no kinetic limitations (kads = 1.0x1026 5_1). Curve a, open circuit
in the dark; curve b, open circuit under illumination; and curve c,

near short circuit (i = -23.1 mA/cm®) under illumination.

) _ -8
Asc = 1.689x10 cm, and Asol = 1.967x10 cm.
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accumulation, at open circuit, at various locations creates an electric field
which tends to cancel that existing in the dark and leads to this
straightening of the bands. The difference between the potential in the dark
and under illumination represents a driving force for flow of electrical
current. The potential distribution near the short-circuit condition (curve

(11

c) approaches the equilibrium distribution.”” All the variation in potential
(from open cirruit in the dark to open circuit under illumination to limiting
current under illumination) takes place in the semiconductor. The potential

drop across interfacial planes is comparatively small and invariant.

The potential distribution for the system under kinetic limitations to
ion adsorption is presented in Figure 7. The open-circuit potential
distribution in the dark and under illumination (curves a and b,
respectively) are equivalent to those shown in Figure 6. The potential
distribution near short circuit (curve ¢), however, does not approach the
equilibrium distribution. A significant part of the potential drop occurs
across the interface, providing a potential driving force which allows

adsorption reactions to proceed.

Concentration distributions of holes and electrons in the
semiconductor are presented in Figures 8 and 9 for a system with no
interfacial kinetic limitations and for a system with kinetic limitations to ion
adsorption, respectively. The equilibrium and illuminated open-circuit
concentration distributions for the two cases are identical. Under
equilibrium conditions the concentration of holes (curve a) is essentially

zero in the bulk of the semiconductor and increases near the negalively

*** Short-cir¢uir is defined as the condiion of a zero cell potenual. The descriziion
presented here negiecis electrolyte resistance and counterelecirede mass-transfer and kinetic
edecis :n determning the condition of shor: circuit., These effecis wil. be ireated later;
inciusion of elecirolyte and countereiectrode eflects cause the shori-circuil Totential
distributions discussed here Lo occur at & negative ceil potential.
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Figure 7. Potential distribution for the liquid-junction cell with
6 -1
s

kinetic limitations to ion adsorption (kads = 4.%x10 }. Curve a,

open circuit in the dark; curve b, open circuit under illumination;
and curve ¢, near short circuit (i = -23.1 mA/cm?) under illumination.

A = 1.689x10°% cm, and A . = 1.967x10°° cm.
sC SO

1
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Figure 8. Concentration distribution for the liquid-junction cell
with no kinetic limitations (kads = 1.0x1026 sdl). Curve a, open

circuit in the dark; curve b, open circuit under illumination; and

curve ¢, near short circuit (i = -23.1 mA/cm?) under illumination.
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Figure 9. Concentration distribution for the liquid-junction cell
5 -1
S ).

Curve a, open circuit in the dark; curve b, open circuit under

with kinetic limitations to ion adsorption (kads==h.x10

illumination; and curve ¢, near short circuit (i = -23.1 mA/cm?)

under illumination.
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charged interface. Conduction electrons are depleted near the interface
and reach a value of 0.328 dimensionless units at the current collector,
where the concentrations are scaled by the dopant concentration (Ny — N, ).
The electron concentration in a neutral region of the semiconductor would
have a value essentially equal to 1.0. The equilibrated semiconductor of
Figure 8 can therefore be described as having an inversion region extending
from the semiconductor-electrolyte interface to 0.5 Debye lengths from the

interface and a depletion region extending to the current collector.

The positive background charge density has a value of 1.0; the
sermniconductor has a net positive charge which is balanced by charge
associated with the diffuse region of the electrolyte and the interface.
Systemn electroneutrality is maintained. The potential gradient, the driving
force for migration of charged species, is balanced by the concentration
gradient, which drives diffusion. The net flux of each species in the

sermiconductor is equal to zero at equilibrium.

[llumination under open-circuit conditions produces electron-hole
pairs, which are separated by the potential gradient (see Figures 8 and 7).
The concentration of holes increases near the interface, and the
concentration of electrons increases near the current collector (curve b).
As the system without kinetic limitations approaches short circuit {(curve ¢
in Figure 8), the concentrations of holes and electrons approach the
equilibrium distributions. The system under kinetic limitations to ion
adsorption, in contrast, experiences an increase in hole concentration at

large current densities {curve c in Figure 9).

A small ion-adsorption rate constanl is therefore compensated by

increased potential and concentration driving forces at the interface. In
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this way, kinetic limitations influence the cell performance.

3.1.2. Charge-transfer reactions. Current-potential curves are presented
in Figure 10 with the rate constant for charge transfer from the inner
surface states of the semiconductor to the inner Helmholtz plane as a
parameter (reactions 5, 8, and 7 in Figure 2). The cell potential has a
maximum value under open-circuit illumination and decreases as the ancdic
current increases. Kinetic limitations to charge transfer adversely

influence the power performance of the cell.

The potential distribution for a system with kinetic limitations to
charge transfer is presented in Figure 11 and can be compared to the
potential distribution for the system with no kinetic limitations (Figure 8).
The open-circuit potential distribution in the dark {curve a) and under
illumination {curve b) are equivalent to those presented in Figure 6. The
potential distribution at large current densities {-23.1 mA/cm?) shows a
large potential drop across the interface. This potential drop, as for the
case with kinetic limitations to ion adsorption, provides a potential driving

force which allows the kinetically-limited reaction to proceed.

Eole-concentration distributions are presented in Figure 12 for the
case with kinetic limitations to charge transfer. These distributions rmay be
cormnpared to those in Figure 8 for the system with no kinetic limitations. A
large concentration driving force {331.8 dimensionless units at the outer
surface states) is developed near limiting current. A small charge-transfer
rate constant is compensated by increased potential and concentration

driving forces.
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Figure 10. Computer current-potential curves for an n-type GaAs
Anode with charge-transfer rate constant as a parameter.
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Figure 11, Potential distribution for the liquid-junction cell with
kinetic limitations to charge transfer (kcht = l.xlOl7 em?/mol-s).
Curve a, open circuit in the dark; curve b, open circuit under

illumination; and curve ¢, near short circuit (i = -23.1 mA/cm?®)

. -6 -8
under illumination. Asc 1.689x10 ~, and ksol 1.967x10 cm.
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Figure 12, Concentration distribution for the liquid-junction cell
with kinetic limitations to charge transfer (kcht = l.xlO17 cm?/mol-s).
Curve a, open circuit in the dark; curve b, open circuit under
illumination; and curve ¢, near short circuit (i = - 23.1 mA/cm?)

under illumination.
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3.1.3. Electron-adsorption reactions. The influence of electron-adsorption
rate constants (reactions 1, 2, 10, 11, 12, and 13 in Figure 2) upon the
current-potential curve is presented in Figure 13. A small electron-
adsorption rate constant reduces the net rate of recombination of holes and
electrons at the surface and thus increases both the cell potential and the

value of the limiting current.

3.1.4. Surface-shift reactions. The rate constants for reactions which allow
electrons to move from one energy level at the interface to another
(reactions 3 and 4 in Figure 2) do not have any independent effect upon the
cell potentiai or the value of the limiting current. These rate constants

affect only the path by which recombination may take place.

3.2. Bulk Semiconductor Properties

Bulk semiconductor properties can greatly infiuence the perfurmance
of the liquid-junction photovoltaic cell. Some properties which can be
controlled in semiconductor manufacture and cell design are the dopant
concentration, the thickness of the semiconductor, Lhe seolar absorption

coefficient, and the amount of light absorbed in the semiconductor.

3.2.1. Dopant concentration. Current-potential curves are presented in
Figure 14 for concentrations of positive background charge ranging from
2.500x1077 to 0.0396x1077 equivalents/cm® and for a semiconductor
thickness of 10 Debye lengths. The cell performance is strongly dependent
upon doping level. The "straightening of the bands” under illumination is
greatest with a small dopant concentration: thus in this case a large open-
circuit cell potential is observed. The low concentration of charge-carrying

species in the neutral region is associated with a large resistance to current
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Figure 13. Computer current-potential curves for an n—-type GaAs

anode with electron-adsorption rate constant as a parameter.
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Figure l4. Computed current-potential curves for an n-type GaAs anode
with dopant concentration as a parameter.
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flow in the semiconductor and with enhanced homogeneous recombination
of electron-hole pairs; thus a smail limiting current is observed. Conversely,
a large dopant concentration is characterized by a small open-circuit

potential and a large limiting current.

The semiconductor Debye length is inversely proportional to the square
root of the dopant concentration. If the semiconductor thickness were held
constant at a value of 1.69x107° cm, as opposed to 10 Debye lengths, similar
results would be observed for high dopant concentrations. At low dopant
concentrations, the semiconductor thickness would be smaller than the
space-charge region thickness, and the cell potential would be reduced {see
section 3.2.2). A change in the Debye length influences the utilization of the
incident radiation {see section 3.2.3.), but the change in cell performance

due to this effect is small.

Maximization of power density yields an optimal dopant concentration
for the n-GaAs system of about 9.0x107% equivalents/cm® The Jdonor
concentration in the work presented by Heller and Miller*¥43 was 6x10!°

carriers/cm® {or 9.96x 10 equivatents,/cm?).

3.2.2. Semiconductor thickness. The effect of semiconductor thickness on
the cell performance is presented in Figure 15 for a characteristic depth of
light adsorption of 228.2 A (corresponding to 1.35 Debye lengths). The cell
potential increases as the thickness increases from 5 to 13 Debye lengths.
The current-potential curve is essentially unchanged for an increase in
thickness from 13 to 30 Debye lengths. A very thick semiconductor is
expected to decrease the system performance because of resistive losses in
the semiconductor. A thin semiconductor limits the cell performance

because of saturation of charge in the semiconductor. All mobile electrons



48

800 : ,
13, 20, 30
10
600'_' n—
> 400} -
g
E]
1=
o
°©
Q
= 200~ —
Q
© 7
S 5 Debye lengths ] N
=200 L '
) -10 -20 -30
Current Density, mA/cm?2
XBL 835-9619

Figure 15. Computed current-potential curves for an n-type GaAs anode

with semiconductor thickness as a parameter.
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are driven from the semiconductor in response to the negatively charged
interface, and a large potential gradient across the semiconductor cannot

be sustained.

3.2.3. Solar absorption coefficient. The characteristic length for absorption
of light can be compared te the Debye length by the dimensionless
absorption coefficient mAy,. The open circuit cell potential is presented in
Figure 18 as a function of the dimensionless absorption coefficient. A
maximum in cell potential is observed in the region where the characteristic
length for absorption of light is of the same order as the Debye length. The
cell potential is relatively insensitive to the dimensionless absorpticn
coefficient within the range of 0.2 to 3.0. The optimal value for the
dimensionless absorption coeflicient was around 0.425, where the
characteristic length for light absorption is 2.4 Debye lengths. The
absorption coefficient for single crystal GaAs, averaged over photons with
energy greater than the band gap energy, is 4.4x107% cm. This value
corresponds to a dimensionless absorption coefficient of 26 and to a

characteristic absorption depth of 0.0038 Debye lengths.

3.2.4. Solar lux. The amount of light absorbed within the semiconductor
has a strong effect on cell performance. As seen from Figure 17, light
scattering or reflective losses can reduce the limiting current from -23.2
mA/cm? under full AM-2 irradiation {modeled here with a single mean
absorption coefficient) to -14.0 mA/cm? under B0 percent of AM-2
irradiation. The 40 percent decrease in limiting current is accompanied by
a | percent decrease in open-circuit cell potential. The amount of light
absorbed within the semiconductor is directly retated to the generation of

the limiting species, holes, and therefore primarily affects the limitling
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Figure 16. Open-circuit cell potential as a function of dimensionless
solar absorption coefficient.
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Figure 17. Computed current-potential curves for an u-type GaAs anode
with fractional absorption of incident AM-2 radiation as a parameter.
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current.

3.3. Interfacial Parameters

Model parameters that are characteristic of the interface cannot, in
general, be independently measured. The results of the model can be used,
however, to gain insight into the importance and influence of these
parameters. The total equilibrium charge adsorbed onto the surface was
held constant in the studies presented below by adjusting the total ISS site
concentration in response to changes in equilibrium energies of adsorbed

species

3.3.1. Surface electron-energy levels. Charge-transfer and surface
recombination reactions at the interface are assumed to take place through
surface electron sites; these sites have associated with them energy levels
which may differ from the conduction and valence-band energy levels. A
possibly continuous distribution of electron energy levels is represented in

the model by three discrete energy levels.

Recombination paths under open-circuit illumination are presented in
Figures 18, 19, and 20 for three individual distributions of surface electron-
energy levels. The width of the arrows representing the direction of
electron transfer is proportional to the flux carried along that path. The
conduction band energy at the 0SS is 2.6 eV when expressed on the same

basis as the 1SS energy levels. The valence band energy at the 0833 is 1.2 eV.

The energy levels of [SS sites influence the open-circuit cell potential
under illumination and the path taken by electrons in surface
recombination. The majority of recombination occurs through the site with

the most favored energy level. A continuous distribution of energy levels is



53

IHP ISS 0SS

n
O
!

Electron Energy, eV

24%(

W
I

973%

|.0L- 0.3%

XBL831-3033

Figure 18. Interfacial recombination reaction distribution under
open-circuit illumination for inner surface state electron energy
levels of 1.0, 1.3, and 1.6 eV (cell potential = 704.0 mv).
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Figure 19. Interfacial recombination reaction distribution under
open-circuit illumination for inner surface state electron energy
levels of 1.4, 1.5, and 1.6 eV (cell potential = 693.0 mV).
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Figure 20. Interfacial recombination reaction distribution under
open-circuit illumination for inner surface state electron energy
levels of 1.0, 1.1, and 1.2 eV (cell potential = 705.1 mV).
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therefore well modeled by a set of three discrete energy levels that include

the favored energy level.

3.3.2. Ion-adsorption energy. The adsorption energy for an ionic species i
is related to kinetic parameters for the respective ion-adsorption reaction

by (see Chapter 8)

[k
AR, =~z F A®, + RT ln[E& . (37)
bt

where | represents the adsorption reaction and A$, is the equilibrium

potential drop from the inner Helmholtz plane to the outer Felmholtz plane.

The effect of ion adsorption energy on the current-polential curve is
presented in Figure 21. A negative energy of adsorption increases the
concentration of the ion at the surface and decreases the cell potential. A
positive energy of adsorption decreases the concentration of the ion at the
surface and increases the cell potential. The concentration of adsorbed
ions at the IHP does not affect the limiting current because holes are the

current-limiting species.

3.4. Cell Design

Under electrolyte-side illumination and without interfacial kinetic
limitations, electrolyte resistance, and counterelectrode eflects, the
maximum power efficiency of the cell was calculated to be 15.0 percent. This
is the value that one might observe if the power density is calculated using a
potenlial drop measured between the semiconductor electrode and a
reference electrode reversible to the redox reaction and located just
outside the diffusicn region. The resistance of the electrolyte, mass-
transfer and kinetic limitations at the counterelectrode, and the choice of

front or back-illumination will affect this value.
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Figure 21. Computed current-potential curves for an n-type GaAs
anode with interfacial ion-adsorption energy as a parameter.
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3.4.1, Electrolyte and counterelectrode. Resistance in the electrolyte and
kinetic and mass-transfer effects at the counterelectrode decrease the
maximurn power-density of the liquid-junction photovoltaic cell. The
current-potential curve for a system with no interfacial kinetic limitations
{see Figure 5) is presented in Figure 22 with electrolyte resistance included.
The conductivity of the electrolyte was assumed to be 0.3 Q~'cm. The cell
potential at a given current is reduced by an amount which is proportional
to the current density and to the distance L between the counterelectrode
and the semiconductor. A 10 c¢m separation between the counterelectrode
and the semiconductor reduces the maximum power efficiency of the cell to

4.0 percent.

The same base current-potential curve is presented in Figures 23 and
24 with the eflect of kinetic and mass transfer liruitations at the
counterelectrode included. The reaction
2Se?*” > Sef” + 2e” (38)
was assumed to follow the sequence
Se?” » Segy, +e”, (39a)

RSeqqs ~ Sef”. (39b)

Under the assumption that the second step is equilibrated, the current

density at the counterelectrode can be expressed by

[ i

1. - =
T4tim

exp (1-%) e

(40)

- {‘L. N e*cp[ ‘%’J’]Cﬁ

13 im

where i, is the exchange current density associated with the bulk

concenirations of reactants,
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Figure 22, Computed current-potential curves for an n-type GaAs anode
with the separation between the counterelectrode and the semiconductor
as a parameter. Solution resistance has been included.
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Figure 23. Computed current-potential curves for an n-type GaAs anode
with diffusion-limited current density at the counterelectrode as a
parameter. Curve a, counterelectrode effects not included; curve b,

i, .=20 mA/em? and {1 =80 mA/cm?; curve c, i =10 mA/cm?® and
»3 lim,3

lim lim, 4
i4n ,=40 mA/cm?; curve d, 1 =5 mA/cm? and i =20 mA/cm?.

1lim,3 lim,4
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Figure 24, Computed current-potential curves for an n-type GaAs anode

with counterelectrode exchange-current density as a parameter. Kinetic
and mass-transfer effects at the counterelectrode have been included.
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(1-8)
k
- megyet Bty |
i3 m S the diffusion-limited current den31ty associated with species Sel~,

i41m 15 the difflusion-limited current density associated with species Se,

and n is equal to one.

The effect of diffusion limitation to currents at the counterelectrode is
presented in Figure 23 with diffusion-limited current density at the
counterelectrode as a parameter. Diffusion-limited current densities of 20
mA/cm?® for Sef” and 80 mA/cm? for Se?” correspond to a Nernst stagnant
diffusion iayer thickness of about 0.010 cm. An exchange-current density of
100 mA,/em® was assumed. The influence of the exchange current density
on th2 current-potential curve is presented in Figure 24. Diffusion-limited
currents of 20 mA/cm? and 80 mA,/cm? were assumed for the Sef” and the
Se? species, respectively. Kinetic limitations, either at the counterelectrode

or the semiconductor, cause an inflection point in the current-potential

curve,

The calculated maximum power efficiency is 11.8 percent for a cell with
a 1.0 cm gap between the semiconductor and the counterelectrode, an
exchange current density of 100 mA//e¢m?, and diffusion limited currents of
20 mA/cm? and 80 mA/cm? at the counterelectrode for the Sef” and the
Se?~ species, respectively. Reduction of illumination due to absorption Iin

the electrolyte and reflection were not included.

3.4.2. Front and back illumination. The sericonductor can be itlluminated
at the semiconductor-electrolyte interface (front illumination) or at the
semiconductor-current collector interface (back illumination). The
influence of the direction of illumination is strongly dependent upon the

relative rates of recombination in the bulk and at the interfaces involved.
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Under the conditions of a negligible surface recombination at the
semiconductor-current collector interface and of a small rate of
homogeneous recombination as compared to the rate of recombination at
the semiconductor-electrolyte interface, back-illumination increases the
power output. This eflect is illustrated in Figure 25, where current-potential
curves for the case with no interfacial kinetic limitations are presented for
the semiconductor under front and back-illumination. The limiting current
under back-illumination is -25.6 mA/cm?® and the maximum power efficiency
is 17.0 percent. The limiting current under front-illumination is -23.2
mA/cm? and the maximum power efficiency is 15.0 percent. Generation of
electron-hole pairs in regions where recombination is facilitated reduces

the power cutput.

4. DISCUSSION

Experimental results reported in the literature show the general shape
of the current-potential curves presented in this chapter. Zmall scale
systems are generally designed with large counterelectrode areas (to
minimize any limitation to current flow at the counterelectrode) and a smail
depth of electrolyte over the semiconductor surface (to minimize losses of
illumination by absorption in the electrolyte). Current-potential curves
thereby obtained include effects of electrolyte resistance and illumination

losses.

Inflection points are observed for many experimental systems, e.g., TiC,
in 1.0 M NaOE,'"®® TiQ, in 0.1 M Na,30, at pH less than 10 {(adjusted with NaOF

. co 5 i i '
and H,S0,).'*® PbFe 0., Ig,Ta,0,. CdFe,0,, and Pb,Ti W, O, in 0.2 M

12 15 05 85

NaOE,""® n and p-type GaP in liquid ammonia.!!! p-GaP in 0.5 M E,S0,.''*? WO,

in 1 M sodium acetate, 13 KTaQ, in 8.6 M NaOE,''* CdS in 0.1 M NaQE, 1% CdS
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Figure 25. Computed current-potential curves for an n-type GaAs anode
with the direction of illumination (front or back illumination) as a
parameter.
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in 1.0 M Nal, 1.0 M Na,S,0,, and 0.1 M L,,''8 and untreated polycrystalline
GaAs with a selenium redox couple.? These inflection points are indicative of
kinetic limitations to charge-transfer or to ion-adsorption reactions at the
semiconductor-electrolyte interface (as shown by the parameter variation
in Figures 5 and 10 in section 3.1). Other systems, e.g., ruthenium-treated
polycrystalline GaAs?*® and single-crystal GaAs* in contact with a selenium
redox couple, CdS and Bi S, in contact with a sulphide-polysulfide redox
couple®, CdS in 1M KCl, 0.8M CH,COOH, and 0.2 M CH,COOFa,'!” and p-InP in

contact with a vanadium redox couple,? do not exhibit inflection points. The

interfacial reactions are equilibrated for these systems.

The results of the mathematical model presented in this chapter are
compared to experimental results in Figure 26. The solid line represents the
experimental current-potential curve for a ruthenium-treated n-GaAs
photoanode in contact with a selenium redox couple.***® The dashed lines
are calculated results in which interfacial reactions were assumed to be
equilibrated., Both calculated curves include a seven percent loss of
illumination; the lower curve includes an electrolyte resistance of 3 Q) cm?.
The model parameters are presented in Tables 1, 2, and 3. Bulk transport
properties were obtained from the literature; values were assumed for
properties characteristic of the semiconductor-electrolyte interface. The
model agrees with the experimental results near open circuil but exhibits a
sharper limiting-current plateau than the experimental results indicate. An
increase in the homogeneous recombination rate constants decreases the
sharpness of the potential drop near limiting current but also decreases the
cell potential. This change in parameter must be accompanied by an
increase in the equilibrium 0SS potential (see chapter 6). The computer

program did not converge at large values of $,,.
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in contact with a selenium redox couple.
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Some of the model parameters are associated with characteristies of
the current-potential curve. In the absence of counterelectrode effects, the
magnitude of the limiting current is determined by the intensity of
illumination, and the shape of the curve is determined by kinetic
parameters. Kinetic limitations to charge-transfer and to ion-adsorption
reactions result in an inflection point. Kinetic limitations at the
counterelectrode can also cause an inflection point. The magnitude of the
open-circuit potential is a function of the equilibrium potential difference
between the semiconductor and the solution. Within the model, this
parameter is represented by the equilibrium 0SS potential. The surface site
energy distribution also influences the open-circuit cell potential. These
parameters could be varied by selection of different serniconductor-
electrolyte combinations. The open-circuit cell potential is also affected by
semiconductor properties such as band-gap energy and absorption

coeffcient.

Analytic models of the liquid-junction cell are described in section 1.2.1
These models can match experimental current-potential curves but show
maxima in electron and hole concentrations near the boundary between
space-charge and neutral regions. These maxima were not seen in the
results of the mathematical model and are probably due to imposition of

boundary or matching conditions between those regions.

5. CONCLUSIONS

Kinetic limitations to interfacial charge-transfer and ion-adsorption
reactions drastically reduce the power output of the liquid-junction cell. A
small interfacial rate constant is compensated by increased polential and

concentration driving forces, thus influencing the cell performance,
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The cell performance is strongly influenced by bulk-semiconductor and
cell-design properties such as the dopant concentration, the semiconductor
thickness, and the amount of light adsorbed in the semiconductor. An
optimal dopant concentration and semiconductor thickness can be
calculated for a given semiconductor system. The resistance of the
electrolyte and kinetic and mass transfer Ilimitations at the
counterelectrode influence cell performance and may play an important

role in the optimal design of a liquid-junction photovoltaic cell.
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Chapter 3. Design and Optimization of

the Liquid-Junction Photovoltaic Cell

Most studies of the liquid-junction photovoltaic cell have been oriented
toward developing an understanding of the semiconducting electrode which
characterizes the cell (see, e.g., Chapter 2 and references 1-19). This work
describes the design and optimization of liquid-junction photovoltaic
devices. The advantages and problems inherent in the liquid-junction cell
are reviewed, and a mathematical model of the liquid-juncticn cell is used to
predict the optimal performance of various cell configurations. An

econormnic analysis is presented based upon these results,

1. INTRODUCTION

The liquid-junction photovoltaic cell has appeal because, in contrast to
solid-state junctions, the junction between electrolyte and semiconductor is
formed easily and allows use of polycrystalline serniconductors. The
electrochemical nature of the cell allows both production of electricity and
generation of chemical products which can be separated, stored, and
recombined to recover the stored energy. These features could make the
liquid-junction ceil an economical alternative to solid-state photovoltaic

devices for solar energy conversion.

Liquid-junction cells also have the advantages that are atiributed to
other pholovoltaic devices. Photovoltaic power plants can provide local
generation of power on a small scale. The efficiency and cost of solar cells is
independent of scale, and overall efficiency is improved by locating the
power plant next to the load. Nuclear and fossil-fuel burning plants, in

contrast, are economical only if built on a large scale (on the order of 1000
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megawatts).!!8

The design of a liquid-junction photovoltaic cell requires selection of an
appropriate semiconductor-electrolyte combination and design of an
efficient cell configuration. The selection of a semiconductor is based upon
the band gap, which provides an uppér limit to the conversion efEciency of
the device, and the choice of electrolyte is governed by the need to limit
corrosion. The optimal design of the liquid-junction photovoltaic cell is

aided by use of mathematical models.

1.1. Band Gap

Photovoltaic cells rely on the unique properties of semiconductors to
convert incident radiation to electrical current. The semiconductor
property of interest is the moderate gap between the valence and the
conduction-band energy levels. Incident photons of light with energy
greater than or equal to the band-gap energy transfer their energy to
valence-band electrons, producing conduction-band electrons and

vacancies in the valence band.

An upper limit to the efficiency of photovoltaic devices can be
established, based upon the band gap and the solar spectrum. without

consideration of cell configuration. This "ultimate effeiency” is given by!!

By } N(E) dE
E,

Nue = 5= (1)
[ E N(EYdE
c

where £, is the semiconductor band-gap energy, £ is the photon energy,
and N(£) is the number density of incident photons with energy £. The
fraction of the power in the solar spectrum that can be converted to

electrical power is a function of the band gap of the semiconductor.



71

Photons with energy less than the band gap cannot produce electron-hole
pairs. Photons withh energy greater than the band gap yield the band gap

energy.HQ-lZl

The "ultirnale efficiency” of Equation (1) is presented in Figure 1 as a
function of band gap.!1:122.122 The value presented represents an upper limit
to conversion of solar energy; factors such as reflection and absorption
losses of sunlight, kinetic and mass transfer limitations, and recombination
will reduce the efficiency. These eflects are included in section 2.2. A band
gap between 1.0 and 1.5 eV is generally considered to be appropriate for

efficient conversion of solar energy.

1.2. Corrosion

The application of liquid-junction technology Lo photovoltaic power
conversion is limited by problems associated wilh the serniconductor-
electrolyte interface. Primary among these problems is cor:_'osion. bffcient
conversion of solar energy requires a band gap between 1.0 and 1.5 eV, and
most semiconductors near this band gap corrode readily under illumination.
Semiconductors with large band-gaps (4 to 5 eV) tend to be more stable but

cannol convert most of the solar spectrum.

Among the approaches taken to solve this problem, the most successful
concern the malching of an electrolyte to the semiconductor. The rate of
corrosion 1s reduced if the semiconductor is in equilibrium with the
corrosion products. The rate of corrosion can also be reduced by using a
redox couple which oxidizes easily. The oxidation of the redox couple
Sel;,/Se2”, for example, has been shown to compete successfully with

photocorrosion reactions for holes in n-type GaAs electrodes.8.103
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P-type semiconductors used as cathodes are more stable than the more
common and generally more efficient n-type semiconducting anodes. The
inefficiency of p-type photocathodes has been attributed to the presence of
surface states near the valence band energy. A stable p-type photocathode
has been developed, however, with a solar conversion efficiency of 11.5
percent.'® Protective ilms have been proposed to be a solution to electrode
corrosion. The electrode, in this case, would be a small band-gap
semiconductor covered by a film composed of either a more stable large
band-gap semiconductor, a conductive polymer, or a metal. A large
Schottky barrier is frequently present at such semiconductor-metal and
semiconductor-semiconductor interfaces which blocks the flux of holes from
the semiconductor to the electrolyte. In cases where the photocurrent is
not blocked, corrosion can take place between the semiconductor and the
proteclive film.!74% Menezes et al '?® discuss the diffculties in avoiding
absorptive losses in the metal film while maintaining suffcient integrity to
serve the semiconductor corrosien protection function. Frese et al, 128
have, however, reported a measurable improvement in the stability of GaAs
wilh less than a monolayer gold metal coverage. Thin conductive poly-
pyrroie films appear to be successful in inhibiting corrosion in some
electrolytes.'?”'% In addition, insulating polymer films deposited on grain
boundaries can improve the performance of polycrystalline semiconductors

by reducing surface recombination rates.!32

1.3. Mathematical Model

Development of a mathematical model constitutes an important step
toward design and optimization of the liquid-junction photovoltaic cell. A

one-dimensional mathematical model has been developed (see Chapter 2)
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which treats explicitly the semiconducter, the electrolyte, and the
semiconductor-electroiyte interface in terms of potentials and
concentrations of charged species. The model incorporates macroscopic
transport equations in the bulk of the semiconductor and electrolyte.
Homogeneous and heterogeneocus recombination of electron-hole pairs is
included within the model. Recombination takes place at the
semiconductor-electrolyte interface through interfacial sites, which can
enhance the recombination rate. Surface sites at the semiconductor-metal

interface were not included within the model.

The coupled nonlinear ordinary differential equations of the model were
posed in finite-difference form and solved numerically. The mathematical
model can be used to gain insight into the operation of cells with
semiconducting electrodes, and to optimize their design. The model was
used here to calculate the effect of cell design on the performance of an n-
type GaAs semiconducting anode in contact with an 0.8 M K,Se, 0.1 M K,Se,,
1.0 M KOH electrolytic solution. The choice of this semiconducting electrode
system was based upon the work of Heller and associates.?42:43.105 (e[| design

parameters are presented in Table 1, and the parameters used in modeling

Table 1. Counterelectrode Parameters

Diffusion-Limited Current Density 13.4m 20.0 mA/cm?

1atim 80.0 mA,/cm?

Exchange Current Density iy 100.0 mA/ /cm?
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the liquid-junction cell are presented in Chapter 2.

2. CELL CONFIGURATION

The optimal design of liquid-junction photovoltaic cells shares
constraints with solid-state photovoltaic cells.?*!?* Current collectors cest
shadows and can reduce the amount of sunlight absorbed in tae
semiconductor. A constraint unique to the liquid-junction cell is tae
placement of the counterelectrode relative te the semiconductcr-
electrolyte interface. Mass-transfer and kinetic limitations at tae
counterelectrode and resistance of the electrolyte can play important roles
in the optimal design of the liquid-junction photovoltaic cell. These

considerations are treated qualitatively by Parkinson,3%

Under electrolyle-side illumination and without iillumination lusses,
interfacial kinetic limitations, electrolyte resistance, and countereclectroie
limitations, the maximum power efficiency of the cell was calculated to e
15.3 percent. The corresponding value under back (or current-collector)
side illumination was calculated to te 17.2 percent. These are the values
that one might calculate using a potential drop measured between the
semiconductor electrode and a reference electrode reversible to the redox
reaction and iocated just outside the diffusion region. The resistance of tae
electrolyte, illumination losses, and mass-transfer and kinetic limitations at
the counterelectrode affect these values and are influenced by cell design.
The difference between front and back illumination is due to the assumption

that facilitated recombination does not take place at the semiconductor-

current collector interface.

The performance of three cell configurations was calculated for

operation under AM-2 solar illumination (882 W/m?). The semiconductor was
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assumed to be in the form of a thin film (see Mitchell for a review of thin-film
photovoltaic technologies'®®). Interfacial kinetic limitations were not
included. The physical parameters were the same as presented in Chapter
2. The one-dimensional model of the ligquid-junction cell was coupled with
the resistance te current flow associated with the two-dimensional systems.
Some methods for calculation of this resistance were reviewed by Fleck

et al, 197

2.1. System 1: Wire Counterelectrode

The liquid-junction photovoltaic cell with a wire-grid counterelectrode
is presented in Figure 2a. The cell consists of a semiconductive film
supported on a metallic current collector, a wire-grid counterelectrode, and
a transparent glass cover plate. The space between the cover plate and the
semiconductor is filled with the electrolyte. The glass plate is an essential
part of the cell because it keeps the system clean and allows optimal
orientation of the cell for optimal collection of sunlight. This cell is
designed for conversion of solar energy into electrical energy; no provision
is made for separation of chemical products. A tweo-dimensional

representation of the cell is presented in Figure 2b.

Sunlight absorbed in the semiconductor must pass through the cover
plate, past the counterelectrode, and through the electrolyte. Reflecticon at
each of the interfaces (air-glass, glass-electroiyte, and electrolyte-
semiconductor), absorption in the glass and electrolyte, and screening by
the counterelectrode decrease the amount of light which can be used for
generation of electron-hole pairs. Absorption losses in the electrolyte can
be lirruted by maintaining a small gap between the counterelecirode and the

semiconductor. A wide spacing of counterelectrode elements reduces the
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Figure 2. Design of the liquid-junction photovoltaic cell.
System 1l: wire counterelectrode.



78

screening of the semiconductor but also increases the influence of kinetic

and mass-transfer effects at the counterelectrode.

The one-dimensional model of the liquid-junction photovoltaic cell was
used with averaged uniform current density and solar flux. The shadow of
the counterelectrode was implicitly assumed to be diffuse. Resistive losses
in the electrolyte were calculated from a two-dimensional solution of
Laplace's equation.'®¥ 142 The potential drop in the electrolyte was given by
equation (14) in reference (35). The current density at the
counterelectrode was assumed to be uniform and was related to the

serniconductor current density by

. . L

ig = ige (—==), 2

ta SC (T;D) ( )
and the counterelectrode shadow was assumed to reduce the magnitude of
incident light by a factor of (1-D/ L). The effective solar flux was therefore

given by

~(MZ)yin4e

D
Jsc = QO(I - Z)(I _pair-gtnss)e

”‘n(l ~ Psoin —sc) '

where p;_, is the reflectance associated with the interface j -k and m is the

(3)

—imz)
(l_pglass—soln)e m

extinction coefFcient for a given phase of depth z.

The design parameter for this cell design is the ratio of Lhe
counterelectrode element spacing to the counterelectrode element
diameter, L/ D. When L/ D has a value of one, the semiconductor is
completely shaded from illumination; when L/D is very large,

counterelectrode limitations dominate.

The power densily of the cell with a counterelectrode radius of 0.05 cm
1s presented in Pigure 3 as a function of current density with L/ 0D as a

parameter. The maximum power density is presented in Figure 4 as a
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Figure 3. Power density as a function of current density for system 1
with a counterelectrode element diameter of 0.10 cm.
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function of L/D. The separation between the cover plate and the
counterelectrode was 0.5 cm, and the separation between the
semiconductor and the counterelectrode was 0.5 cm. The electrolyte depth
was therefore 1.1 cm. The optimal value of L/ D is 14, and the maximum
power density obtained is 63.5 W/m® The current density under the optimal
condition is 11.8 mA/cm? delivered at a cell potential of 538.7 mV. The

maximum power efficiency of the wire counterelectrode cell was 7.2 percent.

Kinetic limitations at the counterelectrode further reduce this
efficiency. An exchange current density of 1 mA/cm? leads to a 5.5 percent

power efficiency at an optimal L/ D of 10.

2.2. System 2: Slotted Semiconductor

Tie ligquid-junction cell configuration with a slotted-semiconductor
electrode is presented in Figure 5. A glass cover plate protects the cell
Sunlight passes through the cover plate and the electrolyte and illuminates
the =emiconductor suriace. Electrical current passes between the
semiconductor and the counterelectrode through slots cut in the
semiconductor. This configuration has the advantage that no shadows are
cast upon the semiconductor; furthermore reaction products could be
separated if a membrane were placed between the semiconductor and the

counterelectrode.

The primary current distribution and the resistance of a cell containing
a siotted electrode were calculated using numerical metheods coupled with
the Schwarz-Christoffel transformation (see chapter 4). The cell resistance
1s a function of three geometric ratios, chosen to be ¢/ G, A/ G, and L/h
(see Figure 2a of chapter 4), where L is the half-length of the protruding

electrode assembly, t is the thickness of the protruding electrode assembly,
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{7 is the half-gap between the electrode assemblies, and A is the separation
between Lhe electrode and the upper insulating wall. A is also the
separation between the counterelectrode and the lower edge of the

semiconductor-electrode assembly.

The performance of this cell is a function of four geometric parameters.
The distance between the counterelectrode and the semiconductor
assembly was chosen to be 0.5 cm, and the semiconductor assembly
thickness was assumed to be 0.1 cm. The primary resistance for this system
is presented in Figure 6 as a function of L/ D with h/ G as a parameter. The
maximum power density is presented in Figure 7 as a function of L/ A with
h/ G as a parameter. [/h was varied by varying the half-length; A/ G by
varying the half-gap. The maximum power density for this system is
obtained with a small gap. For A/ G=0.5 (G=1cm), the maximum power
density was 47.8 W/m?, and the maximum power efficiency was 5.4 percent.
The current density under maximum power conditions was 15 mA /cm?
delivered at 477.6 mV. For h/G=10 (G=0.05cm), the maximum power
density was 67.7 W/m?, and the maximum power efficiency was 7.7 percent.
At maximum power the current density was 15.2 mA/cm? delivered at 534.6

mV.

2.3. System 3: Back-Iluminated Semiconductor

A cell design is presented in Figure 8 in which the semiconductor is
iltuminated from the current-collector side. The semiconducting film is
deposited on a pane of transparent conducting glass. A current-collecting
grid is used to offset the low conductivity of the glass. The semiconductor is
separated from the countereleclrode by a gap filled with eiectrolyte. This

design could be used with a membrane within the gap, which would allow
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separation of reaction products at each of the electrodes.

The potential drop between the semiconductor and the current-
collecting grid can be obtained through application of Lthe general solution
to the resistance of a rectangular conductor with arbitrarily placed
eleclrodes presented by Moulton.!*3!% The region between the
semiconducicr and the grid is presented in Figure %a in a complex
coorlinate system where z =z + iy. The rectangular conductor is given by
OABC, the semiconductor by P@, and the grid element by BS. The Schwarz-
Ch.istoffel transformation't*14® s used to map the coordinate system z,
Larcugh intermediate half-plane systems (Figures 9b, 9c, and 9d), onto one
in which Laplace’s equation can be solved easily. This system is shown in
Figure 9e, where y = ¢ + 1£. The sides of the rectangle, 04 and A5, have

length { and !’ respectively.

The z-coordinate system is related to the w-plane by

w

z=f .
T (w—a)V (b -w) (e —w ) A(d - )1/ 2

4 bilinear transformation into the t-plane is made such that when w

dw (4)

]
3]

t =0; when w=h, t =1; when w =c¢, t = 1/k% and when w =d, t = =,

This transformation is written

_(a=b){w=-a)
LS o) (dw) (5a)
and
1 _(d-b){c-a)
k2 (b-a)({d-c) (5b)
Eaquation {4) becomes
2 y 1
* T lle—a)@-6)]"? { [z (1-2)(1<k2z)]vE & (8)

The constants a, &, ¢, and 4 are arbitrary quantities which can be chosen
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such that

and

Eere, A(m) 1s the complete elliptic integral of the first kind given by

n/2

Kim)= [ —=2E—r
(m) { 1 = k®sin®g

anc¢ m is the parameter., related to the modulus k by m =k2 The
complementary parameter m, is related to the parameter by m; =1 —m,
and

K(m) = K(m,)

relates A"{m) 2and A{m). Equation (8) can be expressed as!*’

mz = sn”Y(~VE ! m), (7)
or

t = sn?(mz . m). (8)
"1e positions of the electrodes in the z-space are given by 2 =z, at P,
z =zp,at @.2 =zgat £, and 2 =z, at 5, and in the t-plane by t = a at P,
t=fat 5.t =yat R, and t =4 at 5. From equation (8), a = sn*{mz, m),
8 = *n¥*(mz, m), v =sn?(mzy; m), and 6 = sn®(mz, . m). The t-plane is

transformed to the y-space through an intermediate t'-plane, described by
p o B=B)(t-a) (5m)

(B—a) (6-t)

and

- (B-a) (6-7)
NS e ) (sv)

The constants a, A, 7, and § are chosen such that
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p= A% = -é-\f(_y-_)T_—Sa =l
L'(u) _ &R

L{n) ~ PR’
and
=Ll L)
QR PR

Under this transformation, the ¢'-plane is related to Lhe y-space by

t'=sn?(xu) . (10)
The quantity £'{u)/ L{u) is a geometric resistance. The resistance of the

original system is given by

Ll
L{w))
where p is the resistivity of the rectangular conductor.

Solution cf the eauations in terms of elliptic functions was performed

numerically.!*® The modulus m was obtained from

m = 16 exp[=(rm %:—L-))— + %"— + % m?)] (12a)

for K'{m)/ K{(m. ) greater or equal to 1 and by

K'(m)"’- > +Ezm,l)] {12b)

for K'(m)/ K(m) less than 1. The error in this approximation is greatest for

m, = 16 exp[=(m

K{m)/ K{m) squal to 1. and is 0.6 percent, with a corresponding error in

the resistance of 0.092 percent. The value of the integrals K{m) and L{u)

were obtained by the series expansion!*®

K(m) = 1.38629436112 + 0.0966634425%(m ;) + 0.03590092383(m.)?
+0.03742563713(m )3 + 0.01451196212(m )*
—in(m )[0.5 + 0.12498593597(m ) + 0.06880248576(m )*
+ 0.03328355346(m,)? + 0.00441787012(m.,)*)

(13)

For the svstem of Figure 9a, the positions of the equipotential surfaces

are given by 2z, =0, 2z =1, z3=z +il’, and 2z, =i’ Thus, from equation
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(9b),

x
p=A= mosn¥(im) . (14)
The elliptic function, sn(f—lm). was calculated using a series expansion for

m close to one,'*® and the Landen transformation!4® was used to improve

accuracy for m < 0.9999.

The transparent conducting support for the semiconducting film was
agsumed to be SnQ,, which is commonly used as a tranéparent electrode.
SnO2 is a large band-gap semiconductor and is essentially transparent to
light with energy below 3.7 eV. The properties of SnO2 have been reviewed
by Jarzebski and Marton.!*®!3! The conductivity of the transparent material
was assumed to be 50 mho/cm, and the total absorption and reflection
losses at the air'-SnO2 interface for a 1/8 inch thick plate were assumed to
be 8 percent. The reflectance at the Sn0,-GaAs interface was assumed to be
5 percent. The separation between the counterelectrode and the

semiconductor was 0.5 cm.

The maximum power densily is presented in Figure 10 as a function of
the ratio of the current-collector-element spacing to the element width
L/ D. When L/ D is equal to one, the semiconductor is completely blocked,
and the power density is zero. When L/ D is large, the resistance of the Sn0,
becomes important, The optimal value of L/ D is around 10C.; the maximum
power density is 118.5 W/m? and the power effciency is 13.4 percent. The
current density under optimal operating conditions is 21.0 mA/cm?

delivered at a cell potential of 364.3 mV.

The excellent performance of this cell design as compared lo systems 1
and 2 can be misleading. Facilitated recombination at the semiconductor-

metal interface was not included in the model. The back-illuminated system



92

120

2

100

£
~
z
=80 B
w
P
o — L
- e 2 GC
. - - e T ) ra 0 n -
a O_E) cm
E BRI CE
£ 40 D:=002em g
Q .
=
20 ,
o ] j
102 103 104
L/D

Figure 10, Maximum power density as a function of L/D for system 3
with a current-collector element thickness of 0.01 cm.
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does have inherent advantages over front-illuminated cells. Optical losses,
for example, can be smaller, and separation of electrochemical products is
feasible. The relative rates of electron-hole recombination at the
semiconductor-metal and the eiectrolyte-semiconductor interfaces,

however, will influence the relative merit of front and back illumination.

3. INTENSITY OF ILLUMINATION

The intensity of solar illumination varies with location, cloud cover, day
of year, and time of day. In addition, mirrors and lenses can be used to
concentrate the sunlight and reduce the amount of semiconducting
material incorporated into the cell. The prediction of the performance of a
given design of the liquid-junction photoveoltaic cell must therefore consider

the effect of the intensity of illumination.

The maximum power efficiency is presented as a funclion of
illumination intensity in Figures 11, 12, and 13 for systems 1, 2, and 3,
respectively. The cells were designed with the design parameters calculated
to be optimal under AM-2 illumination. The power efficiency decreases with
increasing illurnination due to the influence of electrolyte resistance and
kinetic and mass-transfer limitations at the counterelectrode. These
phenomena become increasingly important as current densities increase,
and mass-transfer lirnitations at the counterelectrode result in an upper

limit for cell currents.

The maximum power efficiency for systems 2 and 3 without
counterelectrode limnitations is also presented in Figures 12 and 13. These
results are appropriate for cells with porous counterelectrodes. A porous
counterelectrode may not be feasible for system 1 because of the need in

this system to pass sunlight through the counterelectrode. The efficiency
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still decreases with illumination intensity due to electrolyte resistance.

The maximum cell current obtained under large magnitudes of
iHlumination depends upon the ratio of the counterelectrode area to the
semiconductor area. This ratio must be large for liquid-junction
photouvoltaic cells designed for large intensilies of illumination.
Replacement of the flat-plate counterelecirode with a porous electrode!s?
can increase the counterelectrode area of systems 2 and 3. Inclusion of a
cooling system in the cell design becomes important under these cond-itions.
The electrolyte itself can serve as a heat exchange medium in

photeoelectrochemical systems.

4. DISCUSSION AND ECONOMIC ANALYSIS

The cells discussed in the previous sections can be divided into Lwo
groups, front and back illuminated, within which they can be compared
fairly. The comparison of front and back illuminated cells depends upon the
relative rates of recombination at the semiconductor-metal and
electrolyte-semiconductor interfaces, and these rates will differ from one

systemn to another.

The calculated power efficiencies are presented in Table 2 for the
front-illuminated systems. Semiceonduclor effects, such as recombination,
reduce the power efficiency from a value of 37 percent, based solely upon
band gap, to 15.3 percent. Reflection losses, with an arbitrarily chosen 80
percent efficiency of illumination, reduce this value to 12.2 percent. This
value can be compared to the 12 percent efficiency obtained in the
experimental work of Eeller and Miller.2*%*? The effect of cell design is to
reduce the performance to 7.2 perceunt for system 1 and 7.7 percent for

system 2.
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Table 2. Power Efficiency under Front-llummination

No lilumination [llumination Experimental
Losses Losses Results
Optimal Band Gap 45 36 (80%)
GaAs Band Gap : 37 32 (80%)
Semiconductor-
Electrolyte 15.3 12.2 (80%) 12.0
Junction
Cell Design (1) 10.1 7.2 (55.4%)
Cell Design (2) 9.8 7.7 (71.8%)

The calculated power efficienicies are presented in Table 3 for the
back-illurninated system. Semiconductor effects reduce 'Lhe power efficiency
from a value of 37 percent, based solely updn band gap, to 17.2 percent.
Enhanced recombination at the semiconductor-current collector interface
was not included in these calculations. The eflect of cell design was to

reduce the power efficiency to 13.4 percent.

The calculated performance could be improved by making distances
between semiconductor and counterelectrode smaller, reducing the effect of
electrolyte resistance. The values chosen for this analysis were based
primarily on mechanical considerations. A spacing of 0.5 cm was used
between all cell elements. A smaller spacing could result in shorting of

counterelectrode and semiconductor and//or trapping of gas bubbles. The
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Table 3. Power Efficiency under Back-Illumination

No lllumination [llumination
Losses Losses

Optimal Band Gap ' 45 36 (80%)
GaAs Band Gap 37 32 (80%)
Current Collector and
Semiconductor-Electrolyte 17.2 13.8 {B0%)
Junction
Cell Design (3) 15.4 13.4 (86.5%)

influence of the counterelectrode could be reduced by increasing the flow
rate or degree of mixing near the counterelectrode, thereby increasing the
limiting current. Kinetic limitations at the semiconductor-electrolyte
interface were not considered here and may greatly reduce the

performance of some semiconductor systemns.

Current-potential curves are presented in Figure 14 for the front-
illuminated cells. The optimally designed cells of systems 1 and 2 are
compared to the cell without interfacial kinetic limitations,
counterelectrode limitations, and electrotytic resistance. The cell with a
slotted semiconductor has a larger power effciency than the wire-grid
counterelectrode cell and can be designed for separation of chemical
products. The analysis of the system designed for separation of chemical

products would include the electrical resistance of the membrane.
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Current-potential curves are presented in Figure 15 for the back-
illuminated cell. The optimally designed cell of systems 3 is compared to the
cell without interfacial kinetic lirnitations, counterelectrode limitations, and
electrolytic resistance. The back-illuminated design is appealing because
chemical products can be separated and because of reduced losses of

illumination.

The following discussion of cell economics is appropriate for ail
photovoltaic devices. The allowable capital investment for the cell is given
by

[=876 P, nlAcy,, (15)
where P, is the annual incident illumination intensity averaged over 24
hours in W/m?, n is the cell efficiency, Ac is the difference in selling price
and operating cost in dollars/kW-hr, and y, is the break-even point in years.
This equation is presented as a nomogram in Figure 18. The power output of
the liquid-junction cell is presented in Figure 18a as a function of the
incident solar illumination with the average efficiency of the device as a
parameter. The incident solar illumination is averaged over a <4 hour
period. On this basis, the average insolation of the continental United
Statés is 200 to 250 W/m?3.!'! Lenses or mirrors could be used to increase the
amount of sunlight striking the semiconductor surface. The annual return
on investment 1s presented in Figure 16b as a function of the power output
with power cost as a parameter. The total initial investment is presented in
Figure 18c as a function of the averaged annual investment with cell break-

evern period as a parameter.

Based upon a 7.7 percent power efficiency {(averaged over 24 hours), 250

W./m? incident illumination (averaged over 24 hours), 0.05 dollars/kW-hr
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Economic analysis of the liquid-junction photovoltaic
cell; {(a) power output as a function of the Iincident solar illumina-
tion with power efficiency as a parameter; (b) averaged annual return
on investment as a function of the power output with power cost as a
parameter; {(c) total initial investment as a function of averaged
annual return on investment with cell lifetime as a parameter.
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profit, and a break-even period of 5 years, an investment of 42 dollars/m® is
justified for the complete cell. Based upon a 13.4 percent power efficiency
(averaged over 24 hours), an investment of 73 dollars/m? is justified for the

complete cell

An increase of solar illumination by a factor of five while reducing the
effciency to 8 percent {system 2 with a porous counterelectrode) yields an
acceptable initial investment of 164 dollars/m?® An efficiency of 10.4
percent {system 3 with a porous counterelectrode) yields an acceptable
initial investment of 285 dollars/m?. If the mirrors and lenses needed to
concentrate sunlight are cheaper than the semiconducting film, the cell
may be most economical under high illumination. Maintenance of a high
effciency under high illumination is possible only with the back-illuminated
cell of Figure 8 and the front-illuminated cell of Figure 5, both coupled with

porous counterelectrodes,

The values presented here can be compared to the estimate presented
by Weaver et ai.'®? of 0.34 dollars per peak watt. This estiunate is based on
materials cost and assumes a cell efficiency of 13 percent. Under AM-2

illurmination, Lhis value corresponds to 39 dollars,/m?.

5. CONCLUSIONS

The optimization of the liquid-junction photovoitaic cell depends upon
the choice of semiconductor, electrolyte, and cell design. The system
studied in this work, n-GaAs with a Se;?/ Se™? redox couple, is close to
optimal with respect to utilization of solar irradiation and therefore
provides a best-case estimate of liquid-junction cell efficiency. This system,
however, exhibits a small rate of corrosion under illumination (a few

micrometers per year),!05-107
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The performance of the liquid-junction photovoltaic cell is strongly
dependent upon the design, surface area, and placement of the
counterelectrode and current collectors. This system may be economiical
under concentrated illumination or where the power produced has high

value.
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Chapter 4. Primary Current Distribution and Resistance

of a Slotted Flectrode Cell

Primary current and potential distributions apply when the surface
overpotential can be neglected and the solution adjacent to the electrode
can be taken to be an eqguipotential surfac-e. Calculation of a primary
current distribution and resistance represents a firsi step toward analyzing
and optimizing an electrochemical system. The cell resistance calculated
can be coupled with calculations including mass-transfer and kinetic effects
to optimize approximately a given cell configuration. The objective of this
work is to calculate the primary current distribution and resistance of a cell

containing a slotted electrode.

1. INTRODUCTION

Calculation of the primary current and potential distributions involves
solution of Laplace's equation, ¥?¢ =0, which is not trivial, even for
relatively simple geometries. The method of images,'3%!%? separation of
variables,'3* and superposition!®®!%® have been used to solve Laplace's
equation for a number of systems. A review of analytic sclutions has been

presented by Fleck.!%”

The Schwarz-Christoflel transformation!* % is a powerful iLool for the
solution of Laplace's equation in systems with planar boundaries. This
method was used by Moulton'*? to derive the current distribution for two
electrodes placed arbitrarily on the boundary of a rectangle. Eine et al.'®7
used this method to describe the primary current distribution for two plane
electrodes of infinite length and finite width confined between lwo infinite
insulating planes, perpendicular to but not touching the electrodes.

Wagner!®® presented the primary and secondary current distribution for a
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two-dimensional slot in a planar electrode. Newman!®® has presented the
primary current distribution for two plane electrodes opposite each other in

the walls of a flow channel. These solutions made use of the Schwarz-

Christoffel transformation.

Application of the Schwarz-Christoffel transformation is generally
limited by the ability Lo generate solutions to the resulting integrals.
Analytic solutions allow calculation of the primary current and potential
distribution throughout the cell but are possible for a limited number of
system geometries. Numerical evaluation of these integrals allows
calculation of boih the primary current distribution along the electrodes

and the cell resistance.

2. CELL GEOMETRY

A cell geometry is presented in Figure 1 which may be well suited for
photoelectrochemical applications. This cell contains a slotied
semiconductor with the semiconductor-electrolyte interface open to
illumination. A glass cover plate protects the cell. Sunlight passes through
the cover plate and the electroiyte to illuminate the semiconductor surface.
Electrical current passes between the electrolyte and the counterelectrode
through the slots of the semiconductor. This configuration has the
advantages that no shadows are cast upon the semiconductor, reaction
products can be separated, absorption of light by the electrolyte can be
minimized, and an enhanced-surface-area counterelectrode (perhaps a

porous electrode) can be used.

The slotted electrode cell can be sectiocned and, under the assumption
that the cell width ¥ is large as compared to the spacing between slots, has

the electrochemical characteristics of the two-dimensional cell presented in
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Figure 2a. The electrodes are represented by 4F and £F, and all other
boundaries of the cell are considered to be insulators. The coordinate
system of Figure 2a is transformed through an intermediate half-plane ¢
(see Figure 2b) to a coordinate system (Figure 2c) in which lLaplace’s

equation can be solved easily,

3. THEORETICAL DEVELOPMENT

The primary current distribution along the electrodes and the cell
resistance can be calculated through application of the Schwarz-Christoffel
transformation. Complex coordinate systems are used, thus

z=2+7z.
The cell was assumed to be symmetric aboul 2z, = 0. The approach

presented below, however, could be easily extended to relax this assumption.

The z -coordinate system is related to the t-coordinate system of Figure

2b by

t
- (a2-t2)t
* =] TR “

where a, b, ¢, and d are the values of ¢ corresponding to z values of 4, 5,
C. and D, respectively. Through the assumption of symmetry aboul z, = 0,
the values —a, —b, —c, and —-d correspond to z values of A, G, £, and £,
respectively. The electrodes A8 and E¥ correspond to ab and —c¢--d in the
t-plane. Along the electrode AP {(ab) this transformation nan be expressed
by

dz,
i =9 1 (&), (2a)

where
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Figure 2. Schematic diagram of the sectioned cell with coordinate
systems:
a) z = z, + 1 Z:s

b) t = tr + 1it,, and

i

c) x=xr+ixi.
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(a?-t)
(b3 —tF YK (et 2 K a2t

These equations will be used to calculate the derivative of the potential at

f(t) =

(2b)

the electrodes; 2, is the direction normal to the electrode in the z-plane,

and ¢; is the direction normal to the electrode in the {-plane.

The variable y (see Figure 2c) is related to the t-plane by the Schwarz-

Christoflel transformation;

t
1
= dt . 3
X=J T W= < —a @
Along the electrode ab equation (3} can be expressed as
d x:
— = (t ) . 4a
dt, = 9T (4a)
where
- 1

t,-a )ﬁ(b _tr)ﬁ(c +L, )”(d +tr)h '
Equations (2) and (4) are aiso valid at the electrode EF (-c-d). The

variable y; is normal to the electrode in x-space, and {; is, as above, normal

to the electrode in £-space.

The potential in the y-system is

b= —V (5)
where V is the cell potential difference and y; gmq- 15 the separation between
electrodes in y-space. The current density is related to the potential

derivative at the electrodes. In the yx system this derivative is given by

' 1
Xi i’°" Ix: i“ Xi.maz

—— =

I .
a¢ i - 6@ |
o —_— V. {8)

The potential derivative at the electrode ab in the {-system is
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|
i ax
B8 | _ob | Ou -
at; Oy; o 0
and the potential derivative in the z system is given by
od at;
¢ o= i L (8)
oz, @ 0ty | dz,

Substitution of equations (2a), (4a), (8), and (7) into equation (8) and similar
manipulations for the ~c -d electrode yield the potential derivative along
the electrodes ab and —c-d in the original z-coordinate systern as

functions of £,

g9 = g(tr)_ 14 (9a)
0z, :“ S {tr) Xi maz )
and
g | _glt) v (55)
az?’ E—-"-d f(t X% maz '
respectively.

The current distribution along the electrode AF is therefore given by

i(zy) - g (t,)
Laug g () ' (10)
f &) ff(r)

A similar expression results for the electrode E£F. The primary cell

resistance is

ek =g X(tw;: | (11)
ff

The primary current distribution and the cell resistance for this system are

functions of only three geometric ratics and were obtained numerically.
Values of A, 2, C, and D in the z-plane corresponding to a, b, ¢, and 4 in
the {-plane were obtained through numerical integration of equation (1).

The value of ¥ mer Was obtained through numerical integration of equation
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(3) between the limits of a and —d. The values of t, corresponding to given
values of z were calculated through numerical integration of equation (1)

and were used to calculate the values of f(t,.) and g (¢,).

4. RESULTS

The calculated primary current distribution is presented below and
compared to current distributions obtained from asymptotic solutions of
Laplace’s equation. The result most useful for cell design, however, is the

cell resistance, presented in section 4.2.

4.1. Primary Current Distribution

The primary current distributions on the AP and EF electrodes are
presented in Figures 3 and 4. This distribution is characterized by three
geometric ratios, chosen heretobe t/ G=4, A/ G=1.,and L/ h=2.5, where L
is the length of the AF electrode, ¢t is the thickness of the protruding
electrode assembly, G is the gap between the front edge of the Af electrode
ar.d the insulating wall, and A is the separation between the lines A8 and CD
{(and, by symmetry, £F and GH) (see Figure 2). The current distributions of
the two electrodes have been superimposed. The current density is infinite

at A and is finite at A, £, and F.

Asymptotic forms of the current distribution can be derived and
compared to the calculated current distribution. The current distribution
close to the edge of an electrode adjeining an insulator with an angle a is

1..(2.,'_) 1._ i;— -1

=z -z, )2 , 12
o onst Za (@-2;) (12)

where @ is the point of intersection of the electrode and insulater. At A,
where a is 37/ 2, the current density is proportional to {(4-z,)7%/3, and at 7,

E. and F the current density is independent of (@ -z;). The current density
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Figure 3., Current distribution along the AB and EF electrodes for L/h = 2.5,
t/G = 0.25, and h/G = 1,
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Figure 4. Current distribution along the AB and EF electrodes for
L/h = 2.5, t/G = 0.25, and h/G = 1.
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is seen in Figurés 3 and 4 to approach a constant value at both edges of the
EF electrode and at the far edge of the AH electrode. The current
distribution along the AP electrode is presented in a log-log format in
Figure 5. The behavior close to the edge is emphasized, and the expected

-2/3 power dependence on {4 ~z;) is observed.

Far from the gap, the asymptotic form for Lhe current distribution is

1',(20 = const v cosh[v {z; =2, maz)] (13)
iavg
where
v=
2h

The calculated current distributions for the 45 and the F£F electrodes are
presented along with equation (13) in Figures 8 and 7, respectively. The
constant was obtained by matching the asymptotic solution at z; ;. Lo the
calculated current distribution. The calculated current distributions match

the asymptotic solutions in the region far from the gap.

4 2. Primary Cell Resistance

The primary cell resistance can be expressed as a dimensioniess group
Wif. The dimensioniess primary cell resistance for this system is a function
of three geometric ratios, as described in the previous éection. In the {imit
that the thickness ¢ approaches zero, the resistance approaches a value
that is independent of t/ . The cell resistance can therefore be expressed
as the sum of the resistance for ¢t/ ¢ equal to 0, ¥xf,, and a dimensionless
correction term, A.

WkR = WkR, + O (14)
The resistance WkkR, is presented in Figure 8 as a function of L/ A with A/ G

as a parameler. For all values of h/ (. the dimensionless resistance in
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Figure 5. Current distribution along the AB electrode compared to the
asymptotic solution for L/h = 2.5, t/G = 0.25, and h/G = 1.
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Figure 8 approaches a constant value as /. /h becomes greater than 2. The
additional electrode length is relatively inaccessible and does not contribute
much to current flow (see Figures 3 and 4). For all values of A/ & and with

sufficiently small values of L/h, the resistance approaches infinity with

[ _
- ;t_—ln(L/h.) as L/ h approaches zero.

The resistance correction term, A, can be considered to be the
additional resistance due to a finite (non-zero) electrode thickness ¢. A is
presented in Figure 9 as a function of ¢/ G with L/h as a parameter. This
term is independent of A/ G and is only a very weak function of L/ h. The
correction term is given by the upper line in Figure 9 for L/ h>1 and by the
tower line in Figure 9 for L/ h<0.01. The slope for £/ G>0.5 has the value 1,

as anticipated from the asymptotic solutions for ¢t / G approaching infinity.

The cell resistance for a given configuration can be obtained from
Figures 8 and 9 with equation (14). The cell resistance is smallest when the
gap {G) is large, the height (R) is small, and the electrode length (L) is
large. An approximate analytic expression for the cell resistance can be
obtained by interpolation of asymptotic solutions to Equation {11). The
correction term for a finile electrode thickness can be expressed by

A=t/ G+ A . (15)

The resistance of the cell with a zero etectrode thickness is given by

r16(1+ -z-)
In|————— = (32 —e™| + Ag, (18)

c
(I—Z)

i

chf?g=ﬂ_

where
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[ (L 4 0.25
A 4
® stann{Z|—E (L : (17)
€ 2 L h
(1+2 =)
G
and
sinh?( =)
(]—E—)=2 2 ' (18a)
d cosh(z)
where
L - T m G
4cos( = ye 3 L+C - =
o= 2 =
cosh(0.3 5 h.) cosh?(1.2 5 T+ G)

The error in equation (16) is presented in Tigure 10 as a function of L/ A.
The error is less than five percent and approaches a constant value as L./ h
approaches infinity and as L/ h approaches zero. The error in equation (15)

is presented in Figure 11.

The effect of the cell resistance in the photoelectrochemical cell
proposed in Section 2 must be balanced with the need for a large
semiconductor area open to illurnination. Optimal design of this cell
requires a large number of narrow slots (see Chapter 3). The resistance of
such a cell with A/ G =10, L/h = 0.0, and ¢t/ & = 20, can be expressed in
terms of equations (14), {(13), and (18} as

WeR = WehRy, + Ay +t/G + A

(19)
WkR = 2.9891 + 0.0148 + 20. + 0.2

The error in neglecting the correction terms, Ag and A,, is 0.93 percent.

5. CONCLUSIONS

Numerical integration was coupled with the ZSchwarz-Christoflel
transformation teo calculate primary current distributions and cell

resistances. Primary current distributions and resistances were presented
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for a cell consisting of a slotted electrocde over a solid electrode. An

approximate analytic expression for the cell resistance was presented.
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Chapter 5. Potentials in Electrochemical Systems

Potentials characterize the electrical state of a given location relative
to a reference electrical state. Potentials have meaning only in terms of a
difference, and Lhis potential difference is proportional to the work of
moving a charged test particle from the reference location to the point of
interest. The test particle, the physical character of the the locations to
and from which the particle is moved, and the nature of the work involved
can be chosen in a number of ways. The potential can therefore be defined

with a considerable degree of arbitrariness.

1. DEFINITIONS OF POTENTIAL

The true or electrostatic potential represents an idealization of charged
particle interactions.®® This potential is mathematicaily well defined to be
proportional to the work of moving a puint charge against Coulombic forces
{(which do not include specific cherical forces). The work involved is not
reversible in a thermodynamic sense. The test particle used in calculations
of electrostatic potential differences is imaginary, and therefore the

electrostatic potenrtial difference cannot be measured.

The cavity potential, ¥, * (see Maxweli'®') is proportional to the work
required to move a charged test particle from the reference state into a
cavity within the phase of interest, The cavily is used to eliminate the
effects of external electric fields. [n the absence of external electric fields,
the cavity potential is referred to as the potential "just outside” the
medium. The cavity {also called Volta or outer) potential represents the

electrical state due to long-range interactions. It is independent of the type

* The notation used here 1o distinguish the various definitions of clectirical poieniials s
consisient with .UPAC recommendations.!®? The symbol P will se used when the choice of
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of test particle used and is not thermodynamically reversible. The
magnitude of the necessary separation between the test particle and the
phase depends upon the conductivity of the phase and is of the order of 1078

to 10% cm.

The cavity potential is closely related to the electrostatic potential with
respect to the types of forces involved and, with the appropriate boundary
conditions, can be calculated from double integration of Poisson’s equation.
The cavity potential is well defined and is measurable within macroséopic

regions in which a cavity can be formed.

The Galvamni or inner potential, g, incorporates the effects of both long
and short range forces. The Galvani potential difference is proporticnal to
the work of moving a given test particle from the reference state to the
point of interest "inside” the phase. [t differs from the electrostatic
potential in that the test particle is a real species. The Galvani potential is
well defined though generally conceded th be unmeasurable because of the
experimental diffcully of extracting {or inserting) a real particle from {or

into) the interior of a phase.

The Galvani and cavity potentials are related through the surface
potential, y, by

w=yY +x. (1)

The surface potential represents the change in potential oebserved in moving

a test particle from a cavity "just outside” a phase to a point "inside"” the

phase. It is unmeasurable and is not thermodynamically reversible.

The electrochemical potential of a given species i, u,, (or electron

potential as used by Grahame? with electrons as the given species) was

definition is not specified.
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rigorously defined by Guggenheim'®® to be proportional to the
thermodynamically reversible work of moving a test particle of the given
species from the reference state to the point in question. This term
includes all chemical and potential interactions between particles, short and
long range. A consequence of the above definition is that the
electrochemical potential of a given species at equilibrium is independent of

position.

The electrochemical potential can be separated into two terms: one
incorporating chemical interactions (independent of electrical state) and
one incorporating the effect of the electrical state.

W = RT In{e, fia®) + 2z, Fd . (2)
The chemical potential has been expressed here in terms of variables
characteristic of species i: the concentration ¢;, the activity coeffcient f;,
and a reference state quantity a®. The potential & used to characterize the

electrical state can be arbitrarily chosen; therefore this separation is

arbitrary and has no physical significance.

The electrochemical potential in equation (2) is thermodynamically
defined; the chemical potential and the electrical potential are not. The
choice of a potential therefore specifies a choice of chemical potential and,
through it, a choice of activity coefficient. This activity-coeflicient is as well

or as poorly de'ﬁned as the potential is well or poorly defined.

The real’” potential, a;, was used by Parsons? to identify the chemical
potential specified by choosing a cavity potential in the separation of the

electrochemical potential into chemical and electrical terms.

** The term "real potential” used nere s misleading as it does not distinguish Seiween
eiecirical and chemical potentials. A hetzer choice of terms might be "real chemical porential”
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i Tay 2 FY . (3)

The chemical potential so specified is independent of long-range electrical

interactions.

The arbitrary nature of the definition of an electrical potential is
explicitly evident in the following definitions. The potential can be defined
as the electrochemical potential of a given ionic species, ie., referenced to
the potential of a suitable reference electrode. This potential is related to a
common electrochemical measurement but has the disadvantage that the
potential has a value of minus infinity in a phase in which the reference
species is absent. The electrochemical potential of electrons, for example,
is not useful for characterization of electrical state in electrolytic solutions
in which electrons dc not exist.

The quasi-electrostatic potential introduced by Smyrl and Newman!®?

defines the potential in terms of a reference species n through

tn = RT In(cp) + 2, F . (4)

The electrochemical potential of any other species i is expressed as

pe = BT In(e,) + BT [In(f,) - —In(f,)]
" (5)
+ RT (in(a?) - ?—ln(a.,:’)] _

This definition can be used in a seolution of vanishing concentration of

species n because of the term BT ln(¢, ) in equation {(4).

2. PHYSICAL SIGNIFICANCE OF DEFINED POTENTIALS

All the definitions of potential discussed here satisfy the condition that

they reduce to

2 F{ 9% — 8%) = u2 - uf (8)

where o and «' are phases of identical compesition, temperature, and
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pressure. The arbitrariness {and the need for careful definition) of the
potential therefore cancels in thermodynamic calculations of potential
differences between phases of identical composition. These potentials are
not equally useful, however, in determining the local electrical state within a
given system or potential differences between phases of differing

composition.

Consider the electrochemical system shown in Figure 1. The cell
potential measured between leads of identical composition (a and a') is
related to the difference in electrochemical potential of electrons between
the two phases (see equation (8)). Because the leads are of the same
composition, this difference also corresponds to the cavity potential
difference and the Galvani potential difference (as well as any of the other

potential differences defined above).

The electrochemical potential of electrons in Lthe cell at equilibrium is
independent of position; thus if all the phases {(a, 8, 7. 6. & and «') were
metallic, the electrochemical potential of electrons would be constant
throughout the system. and the cell potential would be zero. The cavity
potential, however, will vary throughout the system due to the different
chemical environments within each phase. The cavity potential of the phase

a and the phase o' would be equal.

If one of the phases, say §, were electrolytic, a nonzero cell potential
could ensue. Electrons do not exist within the electrolyte; they must be
related to the ionic species in the electrolyte by heterogeneous reactions,
e.g., a metal-dissolution reaction:

My= M5 +ey . (7)

FEach equilibrated reaction yields a relationship among the electrochemical
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Figure 1. Schematic representation of an electrochemical cell.
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potentials of the species involved. For the above reaction,

L= g + U (8)
In this way, the cell potential can be related to the electrochemical
potentials of the electrolytic species (see section 3 and chapter 2 in

reference (1)).

The electrochemical potential of electrons is not a useful measure of
the local electrical state throughout an electrochemical system containing
non-metallic phases. The cavity potential is a preferred definition of local
electrical state because it has meaning in all phases (is not dependent upon
the existence of a given species) and (in contrast to the Galvani potential) it
can be measured. The cavity potential is not, however, preferred to be made
mandatory because the potential of the cell can be calculated and verified

without measuring any cavity potentials.

3. CALCULATION OF POTENTIAL DIFFERENCES

Consider the system
Pla) ' M| soln.(g) | soln.{g) | Pt{a’}. (9)
where 4 is a metal electrode and ¢ and & represent electrolytic seolutions,
The cell potential for this system is defined between metals of the same
composition in terms of the difference in electrochemical potential of

electrons (see equation (8)).

The electrochemical potential of electrons in phase a is equal at
equilibriurn to the electrochemical potential of electrons in phase /M.
Electrons in phases M and & must be related to icnic species in the
electroiyte by heterogeneous reactions, e.g., a metal dissolution reaction,

M +e =M, (10)

at the M /¢ interface and a hydrogen-evolution reaction,
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1
2
at the ¢’/a’ interface. The cell potential can be written as

Hy=e + H", (11)

FU = p& —ps (12)

or

1 .
FUS o i, = kps + bge = g - (13)
Separation of the electrochernical potential into chemical and electrical

contributions (equation (2)) yields

[ ct+ [ f :“ l
FU = FU? + RT In| —=5= | + RT In| == [ + = RT In[Py ]
C e [ e 2 2 (14)
~ F($¢ — &%),
where

[ ag. t . .

FU* = RT In| — * 3 bH, TR {15)
Qg

The potential difference {(®* — &) is referred to as the liquid-junction
potential and is not a thermodynamic property. Its magnitude is dependent
upon the arbitrary choice of potential definition.!®® Neglect of the liquid-
junction potential, coupled with assurmnption of unity activity coefficients and

pressure leads to the Nernst equation.??

Equation {13) can be rearranged under the assumption that liquid-

junction potentials can be neglected to yield

FO¥ =09 = FU = pf + ( > uf, - uf) (18)
Attempts have been made to take advantage of independent calculations
and measurements of chemical potentials in order to calculate electrode-
electrolyte potential differences via equation {16) for metals in contact with
an electrolytic solution.'®*!'8% This approach is related to the attempted

calculation or measurement of individual ionic activity coefficients.!96-188
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Since U/ can be measured experimentally, the far right-hand term can be
calculated by applying a Born-Haber cycle to the electrode reaction, and
the electrochemical potential of electrons in the metal phase can be
calculated from the electronic theory of metals or obtained from
metal,/vacuum electron emission experiments, it is argued that an absolute
potential difference across the metal-solution interface can be calculated

and tabulated.

Calculations of individual chemical potentials for charged species,
however, depend upon the choice of individual ionic activity coeflicients,
which are not specified thermodynamically.'® This is clear from the
definition of chemical potential given in equation {2). The calculation of
potential differences between dissimilar phases therefore cannot have an

absolute thermodynamic meaning.

Calculation of Galvani potential differences is especially tenuous. The
Galvani potential is unmeasurable and must be calculated from assumptions

or models which are themselves unmeasurable or unverifiable.

4. MEASUREMENT OF CAVITY POTENTIAL DIFFERENCES

The definition of cavity potentials makes measurement of the potential
within a region of changing potential uncertain. Methods have been
described, however, to measure the difference in cavity potential between
phases characterized by spatially invariant potentials. These phases do not
have to be of the same composition. The methods presented here rely on

the use of clean surfaces to aid in proper characterization of the interface,
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4.1. Gas-Ground Measurements

Maxwell!™ described a way to measure the potential of a point in air
relative to ground. A conducting sphere of small radius a, shown in Figure
2, is placed at the point in question and connected to ground by a thin wire.
The sphere is then insulated énd carried to an electrometer or an
electroscope. The charge on the sphere @ is ascertained. The potential V of

the sphere relative to ground is given by

y= 2 (17)
ac
It is equal in magnitude and opposite in sign to the potential of the air. The

potential measured in this manner is the cavity potential.

Another method described by Maxwell'”® to measure the potential of air
relative to ground involves the use of an electrode that loses a continuous
stream of conductive material {electrolyte or metallic chips). The potential
of the electrode approaches that of the air as the electrode loses its excess

charge and can be measured.

4.2. Liquid-Liquid Measurements

A more sophisticated liquid-jet technique is presented by Llopis!’! to
measure the cavity potential difference between two liquid phases. A jet of
liquid, shown in Figure 3, is directed along the axis of a tube, the inner
surface of which is covered with a stream of the other liquid. A potentiostat
is used to adjust the potential of one liquid relative to the other until the
electric field in the gap between the two liguids has a zerc value. This
condition exists when movement of the liquid jet relative to the outside tube
results in no current flow. Under this condition the cavity potentials in the

two phases are equal. The cell potential required to achieve an absence of
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Figure 2. Measurement of cavity potential of a point in air relative
to ground:

a) sphere at point connected to ground by wire

b) sphere in isolation being carried to electroscope

c) measurement of charge on sphere by electroscope
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an electric field is the original cavity potential difference.

This technigue was developed by Kenrick!?? and used by Frumkin'?® and
Randles.!”™ Rapid equilibration of the gas-liquid interfaces is essential in

obtaining meaningful results.

4.3 Metal-Metal Measurements

The measurement of cavity potential differences between two metals is
presented by Parsons.®® The experimental setup is presented in Figure 4.
Metals a and B8 are connected through a potentiostat and ammeter with
metals of the same composition, a and a'. The region between a and § is
evacuated or filled with an inert gas, preferably at low pressure. The
potential difference is adjusted with the potentiostat until the electric field
E between the two metals is zero. This state exists when a movement of the
metal a relative to the metal 8 produces no current as measured at G. The
cavity potentials of the two metals must be equal, and therefore,

FE = ol —al_ (18)
If the metals a and § were placed in contact and equilibrated, the ceil
potential would be equal to zero. The electrochemical potential of electrons
in a would be equal to that in 8, and

al - Fy* = af - Fyf. (19)
Thus,

E =y -yf (20)
The cell potential required to eliminate the electric field between the two

metals is equal to the cavity potential difference between the two metals.
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Figure 4. Scheme for measurement of cavity potential differences

between a metal o and a metal 8.98
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4.4. Metal-Flectrolyte Measurements

A similar measurement can be rmade for metal/electrolyte systerns.%®
The experimental setup is presented in Figure 5; the gap A between the
metal of interest § and the solution § is either evacuated or filled with an
inert gas. The potentiostat is adjusted to eliminate the electric field in the
gap. The cell potential is generally related to the cavity potential difference

between the two phases by

[ Hﬁ - ab"m
FE = a8 - 2|+ r(vf 99 (21)

Zm

and when the electric field is eliminated within the gap,

¥ o=y, (22)

Thus, under the condition that the electric field is eliminated within the gap,

[

&
FE = al. - I

“a oy | (23)

If the metals # and g were joined, the cell potential would be zero; theretore

[

7y _aésm
al - =l = -F(vf -9 (24)

Zm

The cell potential required to eliminate the electric field yields the cavity
potential difference between the metal a and the =lectrolyte 4 in contacl
with a metal ¢. If the immersed electrode were of the same composition as
a, this experiment would yield the cavity potential difference between the

electrolyte and o immersed in the electrolyte.

This technique differs from the metal/metal technique only in that an
electrolyte is involved. A similar approach is presented by Bockris and
Reddy'™ in which the gap between the metal and the electrolyte contains

ionized gas. The use of ionized gasses is also discussed by Llopis.!?!
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Figure 5. Scheme for measurement of cavity potential differences

between a metal a and an electrolyte 5.98
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4.5. Metal-Vacuum Measurements

The work of extraction of electrons from metals into vacuum by
thermionic or photoelectric emission can be measured.!’® When a metal is
heated, high energy electrons receive sufficient energy to escape from the
surface of the metal. The current density of thermionic emission for a clean

surface with no electric fleld is given by

-2
i= Al —7)TPexp( =22y, (25)
. kT
where A is a constant, 7 is the average reflection coefficient for electrons

incident to the interface, and ¢, is the work function of the metal.

The emitted current density is measured as a function of temperature,
and the work function is obtained from equation (15). The work function
presented here is commonly represented to be minus the "real’ chemical
potential of electrons within the metal (see equation (3)). The association
between the work function measured in this way and the "real” chemical
potential is, however, not thermodynamically rigorous. Diflerences in
chemical or electrochemical potential belween phases at different
temperatures are not thermodynamically meaningful. This difference
depends upon the arbitrary choice of a secondary reference state for
entropy, and this reference state does not cancel. Furthermore, the system

1s not in a condition of equilibrium.

Photoemission of electrons is an important tool for characterization of
electronic solids.!?”? The results are generally analyzed through a modified
version of the Einstein equation,

Eein = hv — 9y — E; (26)
where Ei, is the measured kinetic energy of the emitted electron, hv is the

incident photon energy. »,, is the work function, and E; is the energy of the
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emitted electron before absorption of the photon energy. Photons with
energies below the work-function value cannot (in the absence of potential
gradients) produce electron emission. Measurement of the electron
emission as a function of photon energy therefore constitutes a means of
determining the work function. The work function obtained from
photoermission data is not a thermodynamic quantity; these experiments are

conducted isothermally but still involve the passage of current.

5. CONCLUSIONS

Electrical potentials are defined in terms of the work of moving a
charged test particle from a reference location to the point of interest. The
test particle, the physical character of the locations to and from which the
particle is moved, and the nature of the work invoived can be arbitrarily

chosen. The potential can therefore be arbitrarily defined.

The arbilrariness (and the need for careful definition) cancels in
thermodynamic calculations between phaseé of identical compositioli.
Careful definition of potential is needed, however, for characterization of
local potential diﬂerénces between phases of dissimilar composition. The
cavity potential is a preferred definition of local electrical state because it

has meaning in all phases and can be measured.
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Chapter 6. The Equilibrated Liquid-Junction Photovoltaic Cell

Statistical-mechanical and macroscopic-transport models have been
used to characlerize the semiconductor electrode in the liquid-junction
photovoltaic cell. The model of the semiconductor {(whether statistical or
macroscopic in approach) can be coupled to models of the semiconductor-
electrolyte interface and other parts of the cell to describe the cell
behavior. Both mathematical approaches relate the electrical potential to
concentrations of charged species in the semiconductor through Poisson’'s
equation. Statistical-mechanical models yield these concentrations in terms
of the Fermi energy, a statistical parameter (see, e.g., Grove®® or Sze®!):
macroscopic models rely on material balances to generate the necessary

equations,.

The object of this work is to identify the relationships between
statistical-mechanical and macroscopic-transport models of the
semiconductor in the liquid-junction photovoltaic ceil. Parameters
characteristic of the statistical-mechanical model are be compared to
parameters characteristic of the macroscopic-transport model. This

comparison is possible through comparison of the equilibrated cell.

A mathematical wmodel of the liguid-junction photovoltaic cell is
presented in Chapter 2 in which macroscopic-transport equations
describing the semiconductor and the electrotyte were coupled with a
kinetic model of the semiconductor-electrolyte interface. In this approach,
interfacial equilibrium constants characterize the equilibrated liquid-
junction cell. This model forms the basis of the comparison presented here.
Calculation of interfacial equilibrium constants in terms of system and

statistical parameters is presented.
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A wealth nf information concerning semiconductor, electrolytic, and
interfacial properties is incorporated within interfacial equilibrium
constants. The equilibrium {(non-illuminated) condition will be examined in
section 2 to identify the relationships ameng the interfacial equilibrium
constants and these system properties. The equilibrium relationships are

conveniently studied through a statistical-mechanical approach.

1. STATISTICAL-MECHANICAL MODEL

The distribution of electrons within an equilibrated semiconductor has
been calculated from statistical considerations.?®?*! The most probable
distribution is assumed to be the one which can be obtained in the greatest
number of ways subject to the constraints of the system. For electrons in a
crystal, the significant constraints are that the electrons are
indistinguishable and that no state can contain more than one electron (the
Pauli exclusion principle). A system described in this manner is
characterized by the Fermi-Dirac distribution function:

ny

T

where n; is the number of electrons within an energy level E with

{1 + exp[{5—FE;)/ kT - . (1)

degeneracy g;. The Fermi energy E, is a statlistical parameter defined as
the energy at which the probability of cccupancy is one half. Calculation of
electron and hole concentrations in terms of the Fermi energy is presented

in section 2.1.

1.1. Fermi Energy

The Fermi energy has the characteristics of a thermodynamic property,
the electrochemical potential {see equation (2) in Chapter 2). The

relationship between the Fermi energy {which appears in the Fermi-Dirac
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distribution function) and the electrochemical potential of electrons can be

obtained from statisticai-mechanical arguments.!78

The statistical analog of entropy is

S=k ) IlnW, (2)
‘
where #; is the probability of occupation of a state i. For a Fermi-Dirac
system,
R

where 7n; 1s the number of particles in the state i with degeneracy g, and
energy .. Through application of Stirling's approximation and the Fermi-

Dirac expression for the occupation of state i, the entropy becomes

E E, ) - BEy)

[
S = ng‘lIn[li-exp( o7

5 (4)
regn B
The total number of electrons in the system and the total energy of the

system are

Ne=Pm, (5a)
and
E=YmnE, (5b)
1]
respectively. The entropy is expressed in terms of these system properties

as

{

-E E; E
EE - ZQE; v Jify

S = ng‘!n[1+exp( . =7 +T = .
s E_NE
T T

The partial derivative of the entropy with respect to the total electron

concentration with temperature, system energy, and concentrations of
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other species held constant is

| oS_ - & )
I ONr (7.Enur T

The electrochemical potential, expressed in terms of the entropy, is given by

_lac —_n8S_
1 ONr |P.Tjur Tl ONr |v.Enyur

The Fermi energy and the electrochemical potential of electrons are

(8)

therefore related by

Ef = Ju'g‘ aV (9)

3"{ l 6N7-

where the electrochemical potential and the Fermi energy are given the

3
TEnj..r

same units of energy, e.g., eV. Under the assumption that the
semiconductor volume is independent of electron concentration, the Fermi
energy is equivalent to the electrochemical potential of electrons and can
be related to the electrochemical potential of conduction electrons by a
consiant. Similar arguments can be used to define individual Fermi energies

for valence-band and conduction-band electrons.

1.2. Activity Coefficients

The Fermi-Dirac distribution function (equation (1)) is frequently
assumed to be adequalely represented by a Boltzmann distribution (see

20 or Sze?! and see equation (30)). Assumption of the Boltzmann

Grove
distribution is consistent with the ilransport development presented in
Chapter 2. Use of the more general Fermi-Dirac distribution enters into the

transport development through introduction of individual ionic activity

coefficients: one for electrons and one for holes.

Through Ferni-Dirac statistics the concentration of conduction

electrons is given by
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= N(E)
"= ) TTexpl(E-E,)7kT] 22 (10)
and the concentration of holes by
p = ?[1 - L N(EYdE (11)
E'ol 1+ exp[(E-E;)/ kT] '

If the distribution of available energy levels is narrow, the valence and
conduction electrons can be characterized by single-valued energy levels,
E, (the highest energy level of the valence band) and £ (the lowest energy

level of the conduction band), respectively. Thus;

_ 1 T
™ = 1% expl(E, —E; )/ kT] {N(E)ﬂ’ (12)

or

- Ne
nETE expl(E —Ep)/ kT] ° (13)

where N, is the concentration of conduction-energy sites for electrons. A

similar term, A, is defined as the concentration of valence-band sites.

From the definition of the electrorhemical potential, the chemical

activity,

& =¢fi. (14)
can be expressed as

(15)

M = -th@l
a; = exp .

kT

In equation (13), the concentration of conduction electrons is given as a
function of the Fermi energy level. The energy E. in this equation depends
upon potential as

E, =E +2z,F¢, (186)

where E; is a constant, independent of potential. The electrochemical
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potential of conduction electrons and the Fermi Fnergy are related by an

arbitrary constant (see section 2.1);
“.— = Ef + lu’..- ‘ (17)

Equations (38) through (42) can be combined to yield

_expl{p- —p) + BN/ kT
o7 N, 1-n/N, |

(18)

The secondary reference state quantities, E,, p.:_. and ,u:’_. are chosen to

allow the activity coefficient to approach unity as the concentration of
conduction electrons approaches zero. Thus, the activity coefficient is

obtained as a function of composition;

- —1
Jo-= 1-n/N, '

The activity coefficient of conduction electrons is presented in Figure 1 as a

(19)

function of dimensionless concentration n/ N;.
A similar activity coefficient can be obtained for the holes as

1
1 =-p/ N, .
The assumption of unity activity coefficients is in harmony with the

foe = (=0)
assumption of of the Boltzmann limits to the Fermi-Dirac distribution. Use
of the Fermi-Dirac distribution results in activity coefficients that are

functions of concentration.

1.3. Interfacial Energy Levels

The equilibrium fracticnal occupation of surface sites at the interface

is related to the energy of the sites through Fermi-Dirac statistics:

1

e, = ,
© S T S BB (21)

where the Fermi energy is that calculated for the bulk of the semiconductor
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Figure 1. The activity coefficient of conduction electrons as a
function of dimensionless concentration.
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{see equation (37}). Selection of energy levels for three separate types of
surface states (£3, £, and £7) and concentration of ISS sites (", . T, . [)

leads to adsorbed 2lectron concentrations as

Yv 1

0y = 5= = ; (22a)
Ty 1+ 9(53"1‘-})/#7'
Yt 1

B = == = ~ ) {22b)
Lg 1+ e(E'f Ep )/ kT

and

Ye 1

B, = — = . 22c

¢ Pc 1 + Q(E:-Ef)/kf' ( )

The energy levels presented here depend on the electrical potential (see

equation (16))

An equivalent formulation cannot be used to describe Lhe distribution
of adsorbed ions at the IEP; the energy levels £ of different ionic species
are not clearly related, and an equilibrium Fermi energy E, must be defined
for each individua! speries in the absence of kinetic equilibrium constraints.
The Fermi energies so defined do not have a clear relationship with the

Fermi energy established in the semiconductor.

A kinetic argument is used instead to establish the equilibrium
distribution of ions adsorbed in the IHP. The rate of adsorption of a species

i (see Chapter 2) is expressed by

[—2,(1-,)Fag,
T = kf';expl =T i
23
28, FM’; (23)
— ky LexPl (T-.np = Z Ye)

At equilibrium the net reaction rate is zero, and the concentration of

species i at the inner Felmholtz plane is
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Vi Ky z; FA®, Vi
= =4 2 e, (1 - :
or
Vi Ve .\ -AE/RT
- =c;{l1 - ) ) 25
1'.—‘ P l( ; I“U;p ( )
where
k[.z
AE, = =2, FA®, + RT In( P ). (28)
b

The fractional occupation of the IHP by a species i in terms of the
adsorption energies AF, is derived from an extension of equation (25) to be

-AE,/ RT
7 cie

Tap 14 Y coe Mo ET (27)
k

The eguilibrium fractional occupation of the [HP by a single species i,
7:i(s) corresponds to thal given by the Langmuir adsorption isotherm (see,
e.g.. Delahay'?) as

Yils) = a_ie-m/m ’

?ihp = 7ils) )
where a, lis the activity of the ionic species in the bulk of the solution, and

(28)

BE; = MGl (29)
the "siar.dard” free energy of adsorption. The "standard” free energy of

adsurplion is dependent upon the equilibrium potential difference belween

the [EP and the QKP.

The equilibrium concentration of adsorbed electrons is therefore
obtained in terms of equilibrium site energies and the semiconducter Fermi
energy. The equilibrium concentrations of adsorbed ions are obtained in
terms of concentrations adjacent to the interface and adsorption energies.
The coupling between the semiconductor and the electrolyte under

equilibrium conditions can be expressed in terms of the interfacial
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equilibrium constants discussed in Chapter 2. The calculation of these
equilibrium constants in terms of systern properties is presented in the

following section.

2. CALCULATION OF EQUILIBRIUM CONDITIONS

The condition of equilibrium is defined by the equality of the
electrochemical potential {or equivalently of the Fermi energy) of a given
species at any point in the system. At equilibrium and in the absence of
corrosion, the interfacial reactions have a zero net rate. The thermal
generation of electron-hole pairs in the bulk of the semiconductor is exactly
balanced by recombination. Potential and concentration variations in the
system do exist within this framework and are caused by the presence of a
charge-laden interface. Under the assumption of local equilibration, the
presence of a counterelectrode can be neglected. The cell can therefore be
examined in terms of its major components: the semiconductor, the
solution, and the semiconductor-solution interface. Equilibration with the

counterelectrode can be considered subsequently.

2.1. Semiconductor

The statistical-mechanical approach can be used to calculate the
equilibrium condition of the semiconductor. The approach presented in this

20.21,69,178

section 1s described elsewhere and is presented here for

completeness.

Under the assumption that the activity coefficients of electrons and
holes are given by equations (19) and (20), respectively, the equilibrium

concentrations of electrons and holes are given by

n= (Nc -—n)exp[—(Ec— Ef )/kT] , (30)
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and
p = (N, —plexp[(&,- E; )/ kT} . (31)
respectively. The Fermi energy is a sufficient indicator of equilibrium

conditions since the electrons and holes are chemically equilibrated.’

The product of the electron and hole concentrations is
np = (N, —n}{(N, -n)exp(~£,/kT), (32)
where £ is the semiconductor band-gap energy. Under the assumption that
the ratios n/N, and p/N, are much less than one (i.e., the activity
coefficients for electrons and holes have a value of one), the product np is a
function of the semiconductor properties, £. N;. and N,. For a given
semiconductor,
np =nd, {33)
where n; is called the intrinsic concentration.

Consider a region of the semiconductor far from an interface and
where, therefore, the imposition of electroneutrality is valid. The condilion
of electroneutrality is that

po + (Nd ""Nu) —na = 1 (34)
where n® is the bulk electron concentration, (N; - N,) represents the
background charge (doping level), and p? is the bulk hole concentration.
The donors are assumed to be completely ionized. This assumption is

consistent with the assumption of unity activity coeffcients for electrons

and holes.

Substitution of equation (33) into equation (34) leads to the builk

electron concentration as a function of the background charge and Lhe

* Under non-equilibrium conditions, a single fermi energy does not sufficiently specify ihe

semiconductor. [ndividual Termi energies or individual elecirochemical! potentials must se
defined in this case to characterize each species, hoies and elecirons.
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intrinsic concentration.

1
n® = ‘2‘[(Nd ~Ng) + ((Ng=N )% + 4nd)V2] (35)
The intrinsic concentration is determined via equation (32) as a function of

system properties.

The Fermi energy in the bulk of the semiconductor referenced to the

conduction-band energy is

Ep = E, + kT In( =), (36)
N;
or
Ef = E; - F&+kT In(—) . (37)
N

The Fermi energy is the statistical equivalent of the electrocherical
potential of electrons in the semiconductor (see eguation (9}), and is
constant throughout the semiconductor at ecquilibrium A value for the
Fermi energy, valid throughout the semiconductor, can be calculated
through equation (37) for the semiconductor far from an interface where
the electron concentration is n° and the potential_‘b is zefo. This value is

useful for evaluating equilibrium conditions at the interface (see equation
(22)).

From equation (2) of Chapter 2 (or equivalently from equations (18),
(30), and (31)) the equilibrium concentrations of electrons and holes are
given as functions of potential by

N =n exp(—®F/ RT) = constant , (38)
and

P =p exp(®F/ RT) = constant . (39)

The potential distribution in the semiconductor is related to the charge

distribution by Poisson's equation. Upon incorporation of equations (38)
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and (39), Poisson’s equation can be written as

2
20 o L[ pe¥RT _ Ne¥ BT 4 (Ny-N,)]. (40)
dy,c £3c

A boundary condition in the bulk is

20 as y, > =, (41)
and theretore
dé
dYee Yse (42)

These conditions allow ¥ and P to be determined in the bulk of the
semiconductor. At tire interface (Yse = Yogs ) an electric field is present due
to zharge adsorbed onto the semiconductor-solution interface. This electric

field can be related to systam variables as

(D45 —%;
Loss = = L."_’E_g_...i’_)__ (43)
1
Integration of Poisson’s equation yields
Eps = = %R—T {N(e"’"nm— 1) + Ple T ET_ y)
sc (44)

- - N,)]],
whzre the potentiai at the 0SS is given as a function of the electric field at
the 0SS. An iterative solution to equation (44) can be obtained via Newton's

metiod.

The relationships developed in this section are coupled with those
developed for the solution and the interface to specify concentration and
potential variables in the bulk of the semiconductor, the bulk of the
solution, and at the interface. Evaluation of these variables in the region
between the bulk of the semiconductor and the interface is not a necessary
part of this analysis and can be accomplished by numerical solution of the

equalions presented in Chapter 2.
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2.2. Electrolyte

The equations governing the solution are. as in the semiconductor,
Poisson's equation and material balances ({equations (14) and {(13)
respectively in Chapter 2). Under equilibrium conditions, the material
balance equations can be replaced by the equality of electrochemical
potential of species i throughout the solution. This condition can be
expressed as
3, 4F/RT

C; =cie

The boun-dary condition for Poisson’s equation states that the potential

= constant . (45)

tends to zero far from the interface. The potential defined in this manner
differs by a constant from the potential used to define the electrical state in
the semiconductor. The constant in equation (45) is equal to the bulk ion
concentration, therefore
c, = Ct.wme—z‘érmr | (48)
This resvlt is in harmony with assumption of the Boltzmann concentration
dist~ibution.
Poisson’s equation can be integrated to obtain the electric field at the

CFP in terms of Lhe potential at the OHP. The electric field is given by

(‘i’ _éa )
Epp = - _i‘?’_a.;_’ﬂ‘.'___ (47)

Ther=fore;
2RT | -3, %F/ RT /2
{Pinp =Ponp ) = = 53{ N lz T - 1)]} . (48)
13

where the root chosen has the same sign as the potential at the OKP (see

chapter 7 in reference (99)).
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2.3. Interfacial Reaction-Rate Constants

The potential is related to the charge adsorbed at the inner surface
states and the inner Helmholitz plane by Gauss’s law, presented in equations
(26) and (27) of Chapter 2. The concentrations of electrons at the inner
surface states are given in terms of the Fermi energy by equation {22) and

the concentrations of ions at the inner Helmholtz plane by equation (25).

The remaining parameter needed to solve the equations presented for
the equilibrated system is the OSS potential. One could cheoose a parameter
subject to experimental measurement, such as the difference between the
cavity potential in the bulk of the electrolytic solution and in the bulk of the
semiconductor {or between &, and &,,). The choice of parameter is
arbitrary, anc¢ such measurements can be used with either choice for

comparison to Lthe whole model.

The equztions presented for the equilibrated liquid-junction cell can be
solved by systematic and consecutive calculations to obtain equilibrium
concentrations and potentials. The interfacial equilibrium constants can be
calculated subsequently as functions of the equilibrium interfacial

concentrations and potentials from

F —_
K, = exp[—- Vi Ad; ] H o W (49)
[

as presented in the steady-state development (Chapter 2).

2.4. Counterelectrode

The distribution of potential within an electrochemical system cannot
be determined from thermodynamic equilibrium considerations alone. The
cell potential {as measured with leads of identical composition) can be

calculated for an equilibrated system, but the potential distribution within
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the cell requires additional experimental characterization. The microscopic
model of the cell must yield the same equilibrium cell voltage as obtained
from thermodynamics; therefore, for a given model of the semiconductor-
electrolyte interface, the equilibrium potential drop across the

counterciectrode-electrolyte interface is given by

Vastrcs = Ve = Visse = Vsersot — Vesm - (50)

where V3, is the equilibrium cell voltage obtained from thermodynamic
calculations and V},, are the equilibrium potential drops obtained from the

model for each interface j/k in Lthe system.

3. CONCLUSIONS

Statistical-mechanical and macroscopic-transport meodels of a
semiconductor are related through equilibrium parameters. The Fermi
energy of a semiconductor, for example, is equivalent to the electrochemical
potential of electrons. The assumption of Boltzmann distributions for
electron and hole concentraiions in the statistical model is in harmony with
the assumption of unity activity coeflicients for electrons and holes in the
macroscopic model. Use of the more general Fermi-Dirac concentration
distribution leads to activity coefficients for electrons and holes that are

functions of concentration..

The semiconductor and electrolyte of a liquid-junction photovoltaic cell
are related under equilibrium conditions by interfacial equilibrium
constants (see Chapter 2), and their values can be determined in terms of
system and statistical parameters. The Fermi energy and interfacial energy
levels enter into the calculation of these interfacial equilibrium constants
through lhe caiculation of concentrations of adsorbed electrons. The

concentrations of adsorbed ionic species are related to adsorption energies
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(which are dependent upon the equilibrium potential difference between the
semiconductor and the electrolyte) and concentrations of ionic species

adjacent to the interface.

The equilibrium condition for a semiconductor in contact with an
electrolytic solution can be determined in terms of the coupled
macroscopic-transport and statistical-mechanical models. The equilibrium
potentials and concentrations are obtained in the bulk of the
semiconductor, the semiconductor-electrolyte interface, and in the bulk of
the solution in terms of the semiconductor band gap, dopant concentration,
permittivity, and concentrations of conduction and valence-band sites; the
sclution permittivity, bulk ionic concentrations, and energies of adsorption:
the concentrations and energies of interfacial sites; the distance between
the planes of charge at the interface (0SS, ISS, IHP, and UKEP), and the
potential of the solution side of the interface (OHP). This equilibrium
information is incorporated within the equilibrium constants for interfacial
reactions used in the macroscopic-transport model of the liquid-junction

photovoltaic cell.
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Chapter 7. Experimental Methods for Characterization

of Liquid-Junction Photovoltaic Cells

A mathematical model of the liquid-junction photovoltaic cell has been
presented in Chapter 2. This model incorporates a microscopic model of the
semiconductor-electrolyte interface coupled with macroscopic models of
the other elements of the cell. The parameters that characterize the system
have well-defined physical meaning, but some interfacial parameters are not
directly measurable. A measure of the validity of the microscopic model of
the semiconductor-electrolyte interface can be obtained by comparison to
carefully chosen experiments. These experiments are designed to
characterize the electrochemical system and to verify the applicability of

the mathematical model.

Characterization of electrochemical systems is carried out through
“in-situ” methods and "ex-situ” methods, where the parameters measured
are considered to be independent of environment {or dependent in a known
way). "In-situ” methods are used to obtain characteristic potential
differences, current-potential curves, and capacitance data. “Ex-situ”
methods are used to measure bulk transport and kinetic properties. This

paper describes some of these experimental methods,

1. IN-SITU METHODS

This section describes some of the experimental approaches used to

characterize the liquid-junction photovoltaie cell.

1.1. Potentials

Potentijals characterize the electrical state of a given location relative

to a reference electrical state. Potenlials have meaning only in terms of a
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difference, and this potential difference is proportional to the work of
moving a charged test particle from the reference location to the point of
interest. The test particle, the physical character of the locations to and
from which the particle is moved, and the nature of the work involved can be

arbitrarily chosen. The potential can therefore be arbitrarily defined.

The arbitrariness (and the need for careful definition) of the potential
cancels in thermodynamic calculations of potential differences between
phases of identical composition. The cell potential under equilibrium

conditions can be calculated and measured directly.®®

The distribution of potential within an electrochemical system cannot
be determined from thermodynamic equilibrium considerations alone. The
equilibrium cavity-potential drop across each interface can be measured
(see Chapter 5) or calculated from malhematical models (see Chapler 8)
under the constraint that the sum of equilibrium potential drops through

the cell equal the appropriate thermodynamic quantity.

1.2. Current-Voltage Characteristics

Measurement of current-potential curves*®193.17817% ¢5r the liquid-
junction photovoltaic cell provides a means of comparison of mathematical
model and experiment.87-80.180.181 Species in the semiconductor frequently
limit the electrochemical reaction, and this makes characterization of ionic
mass transfer less crucial. Use of the rotating disk is still recommended to
aid in the characterization of the experimental system and to eliminate
spurious effects. The equations governing mass transfer in a rotating disk

system have been developed and are presented elsewhere.!8%-184
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1.3. Capacitance

Capacitance experiments yield an over-all impedance for the
electrochemical cell. The experimental impedance for solid electrodes has
been observed to depend upon frequency.'®® The details of such
measurements are presented elsewhere.125 Electrochemical
Photocapacitance Spectroscopy'®®!®7 has been used to determine energy
levels for deep traps and surface sites for electrons. The capacitance at a
given frequency is measured as a function of incident photon energy.

Discontinuities in the capacitance curve indicate the energy of the site.

Quantitative interpretation of experimental impedance resuits depends
upon a postulated mathematicai model of the cell. Two models are

presented below.

1.3.1. Mott-Schottky Model. Mott!®® and Schottky'®® used an idealized view
of the semiconductor-electrolyte interface to derive a relationship between
the capacitance of the space charge region and system parameters (see also

Gerischer®®);

L 2 (
2~ Age(Ny - N,)°

Given g, the permittivity of the semiconductor, and A, the surface area of

V"Vfb"k—::'). (]_)

the interface, the flat-band potential, V,,, and the eflective donor or

acceptor density, {N; — N; ). can be found.

The Mott-Schottky model is based upon the assumptions!?® that:
1. there is no resistance in the semiconductor or electrolyte bulk,
2. no faradaic charge transfer occurs at the interface (the electrode is
ideally polarizable),

3. there are no surface sites for electrons,
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4. no specific adsorption occurs at the inner Helmholtz plane,

5. the semiconductor permittivity is constant,

8. only one kind of donor is present, and that donor is complet.ely‘ ionized
(uniform background charge),

7. any defect distribution in the semiconductor is homogeneous, and

8. the interface can be represented by a one-dimensional model.

Experimental results for a system that follows the Mott-Schottky
relationship are presented in Figure 1 (data from Horowitz!%!). Under the
assumption that the term, kT/e, can be neglected (kT/e = 0.026 V at room
temperatures), the flat-band potential is obtained from the intercept at
infinite capacity, and the doping level is obtained from the slope. Further

discussion of the Mott-Schottky model is presented by Pleskov.!%?

1.4. Microscopic Models., A microscopic model of the semiconductor-
electrolyte interface, or of the entire liquid-junction cell {(see Chapter 2),
can yield values of the cell impedance which can be compared to the
experimental results. This approach depends upon numerical computations
and lacks the simple elegance of the modei discussed above, but it also can

be free of the restrictive assumptions which limit the Mott-Schottky model.

The differential capacitance of a given compoenent of the cell is given by

c=~3D) . (2)
A circuit analog of the semiconductor-electrolyte interface in the liquid-
junction photovoltaic cell is presented in Figure 2. Each interface generates
a contribution to the cell impedance, although some can be neglected.
From a model of this sort, an eflective system capacity can be calculated

and compared to experiment.
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Figure 1. Mott-Schgttky plot of p-type GaP in buffered solution at
pH=2, 7, and 9. 17
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Figure 2. Circult analog to a semiconductor-electrolyte interface.
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2. EX-SITU MEASUREMENTS

Bulk transport and kinetic properties can be assessed cutside of the
electrochemical cell. Such measurements are dependent upon the ability to
isolate phenomena which can be described by equations incorporating the
desired physical property. The accuracy of the measured property is
dependent upon both the wvalidity (and generality) of the governing

equations and the experimental design.

2.1. Semiconductor Properties

The semiconductor properties of interest in the model of the liquid-
junction cell (see Chapter 2) are the electron and hole mobilities, u_ and u,
respectively, the bulk electron and hole concentrations, n® and p°
respectively, the dopant concentration {(N; — N,). the band gap (& - E,),
the homogeneous recombination rate constant k.. ( or the lifetime T,), the
dielectric permittivity £, and the optical absorption coefficient a. The
measurements described below are related to the determination of these

parameters.

2.1.1. Electrical Conductivity. In the limit of infinite dilution, the
conductivity of the semiconductor is related to the concentrations and
mobilities of the charge carrying species by

c=e*{un +u,p), (3)
where e is the electronic charge, and n and p are the concentrations of
electrons and holes, respectively. Direct measurements of the conductivity
can be made. The main sources of error are contact resistances, which can
be reduced by inducing currents with alternating or rotating magnetic fields

or by rneasuring the potential drop across a sample with high impedance
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probes.!®® Completely contactless rmeasurement schemes can be limited,

however, by sensitivity, linearity, or geometrical constraints.!%+

The conductivity varies significantly with temperature. The mobility is
constant from 0 to 100 K, and conductivity increases in this range are due
to increases in the carrier concentrations. Above 100 K and below the onset
of intrinsic conduction (300 to 400 K), the conductivity decreases with
temperature due to a decrease in the carrier mobility.!°® The value of the
forbidden energy gap can be determined from the variation of the
conductivity with temperature within an intrinsic semiconductor.'®® The
value obtained in this manner is subject to errors due to the uncertainty of
having an intrinsic condition and the variation of the mobility and band gap

with temperature.

Conductivity measurements at a given temperalure yieid information
about the product of mobility and concentration. Additional experiments

are necded to separate these quantities.

2.1.2. Hall Effect. The interaction of magnetic and electrical fields ailows
an experimental characterization of the semiconductor (or metal} bulk. An
electric field is used to drive a current through a sampie, as shown in Figure
3, and a magnetic field is applied in the direction normal to flow. A
transverse potential develops, counteracting a carrier concentraticn
gradient in that direction. (The current and the electric field vectors are
not in the same direction in the presence of a transverse magnetic
field.)!%%19  This phenomenon is called the Fall Effect,!?® and the
proportionality constant relating the transverse potential ¥y, the current
density i, the sample width ¥, and the magnetic field A is the Eall

coefficient Ry.
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Figure 3. Scheme for measurement of Hall effect.
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Vy = RHIHW . (4)

If the Hall constant is negative, electrons are the majority carriers (n-type)

if positive, holes are the majority carriers (p-type).
The Hall coefficient is related to carrier concentrations by

=1
Ry-=~ — (5a)

if electrons are the only mobile species present and by

1
Rys = pe
if holes are the only mobile species present. The expression for the Hall

(5b)

coefficient when both are present is given by*!:197

(8)

1 [ u?p —u?n
Ry = = =
e l(u_n +u,.p)

Measurement of the Hall coefficient and the conductivity gives the
mobility of the major carrier species. The temperature dependence of the
Hall coefficient provides information about the energy and concentrations of
"acceptor and/or donor ions and trap states. The interpretation of Hall
measurements in terms of dopant parameters, however, is not unique.!%8
Donor addition can be used to verify an interpretation of Hall

measurements.

2.1.3. Drift and Photodecay Measuremenis. The direct measurement of the
response of a semiconductor to a pulse of light provides information about
the mobility and the recombination rate. A typical apparatus is presented
in Figure 4. A long filament of the semiconducting material has an electric
field applied to it. A local increase in carrier concentration (above the
equilibrium values) is caused by a short burst of illumination. The carriers
are separated by the electric field. As the pulse of carriers moves, it is

diminished by recombination, and it spreads due to diffusion processes. The
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arrival of the pulse at the cross arm increases the current at this arm. The
time for the pulse to move a known distance in the known electric field is a
direct measure of the mobility, and the rate of decrease of the signal area
with time (obtained by varying the distance between light source and

colliector) gives the lifetime.

The mobility measured in drift experiments does not agree at high
temperatures with the mobility measured in Hall experiments. This
difference is due to inconsistencies in the assumptions made concerning

recombination.

Direct measure of the change in photoconductivity with time after a
homogeneously distributed pulse of light is also used to measure the
lifetime.!%® The conductivity of the sampie as a function of time ¢ is related

to the lifetime T by

t
0 = Ogark + (Tuttum — Tuare) €XP(— :r"') : (7)
The conductivity in the dark oagee and under illumination gi.m, are
measured, and the conductivity in the dark after an extended period of

illumination is measured as a function of time to get the time constant T.

2.1.4. Seebeck Effect. Thermoelectric characteristics of semiconductors
are used to provide information on the energy of majority carriers, and,
indirectly, the electron or hole concentrations. A temperature difference
between the two ends of a semiconductor gives rise to a potential difference
@ AT, where @ is called the thermoelectric power.!'?® The thermoelectric
power measured in this way in an n-type semiconductor is related to the
energy barrier overcome by the carriers by

QAT = (E, — E,) + 2kT, (8)

where £ is the conduction band energy and £, is the Fermi energy. The
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analysis of the Seebeck eflect {(or the related Peltier effect in which a
temperature difference is caused by a potential difference) is not
straightforward. There is no thermodynamic basis for the interpretation of

this eflect.

2.1.5. Dielectric Permittivity The dielectric permittivity ¢ relates the
displacement vector in Maxwell's theory of electromagnetism!792% to the
electric fleld. It is a real quantity (see Appendix A). The complex

permittivity, used in the study of opties, is related to the permittivity by

V= 1o

=g - . 8

E o (9)

where j 1s v =1 and o is the angular frequency associated with the

electromagnetic radiation.

The index of refraction, the ratio of the speed of light in a given
medium to the speed of light in vacuum, is a real number. A complex index
V_Of refraction n’ is given by
n' =n(l-jk}), (10)
where k is the absorption index {equal to zero in vacuum). Through
Maxwell's equations, the complex index of refraction is related to the
complex permittivity by

,_Is' 1/2
n—[;; - (11)

where g, is the permittivity of vacuum, g, = 8.8542x107!'* C/V-cm. The

matching of real and imaginary parts yields

1 —k?
nz = Ei__ll (12&)

g

and
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2. _9__
s (12b)
The dielectric constant ( &/&, ) is typically oblained from equation (12a)

under the assumption that k <<1,89:101.201

The absorption of light also provides a convenient measure of the
band-gap energy of a semiconductor. Semiconductors are transparent to
light below the band-gap energy. A sharp increase in the absorption
coefficient is therefore observed for photons greater than the band-gap

energy.

2.1.8. Surface Techniques Surface analysis techniques such as electron
microscopy, LEED, Auger, and ESCA?%2 can provide clues to the structure of
the semiconductor surface, and thus allow estimates of interfacial
paramelers. (See also Many et al.???) Interfaces are in general strongly
dependent upon environment; a semiconductor-vacuum interface is vastly
different from a semiconductor-electrolyte interface. Use of ex-situ surface
analysis techniques provides a guide, however, in estimating interfacial

parameters.

2.2. Electrolytic Properties

The properties of interest in the electrolytic seolution are the bulk-
solution icnic concentrations and diffusion coefficients and the solution
permittivity. Solution concentrations can be obtained from standard
analytical chemistry techniques,?°42%% and the permittivity of the solution

can be measured in the manner discussed above.

Ionic diffusion coefficients are related to ionic mobilities by the Nernst-

Einstein relationship,
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lonic diffusion coefficients are not generally reported in the literature, but
they can be obtained from values of the equivalent ionic conductance which

are reported (see Newman®?),

The equivalent ionic conductance is related to ionic mobility by
A =z | Py (14)
The ionic diffusion coefficients can be calculated from the equivalent ionic
conductance by
RTXM
A Vo

Equivalent ionic conductances are determined by measuring the equivalent

D, = (15)

conductance
A=A+, (16)
and the transference number {, for solutions of single salts and
extrapolating the values so obtained to infinite dilution. The transference
number is related to the ionic conductances by
A+

T a+ Av
Equations {18) and (17) yield A, and A_.

t, (17)

Discussion of mass transfer and diffusion coefficients is presented by

Bird et al.?%% and Reid et al.?%7

3. CONCLUSIONS

The mathernatical modeling of the liquid-junction photovoltaic cell must
depend wupon a model of the semiconductor-electrolyte interface.
Experiments can be designed to obtain information for comparison to the
model; this comparison serves to verify the applicability of the model of the

interface.
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"Ex situ”" measurements are used to obtain bulk transport and kinetic
properties, and "in situ" measurements are used to verify the applicability
of an interfacial model. Current-potential and capacitance characteristics

can be coupled with measurement of cavity potential differences between

bulk phases.
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Notation

1. Roman Characters

radius of sphere, cm

relative activity of species i, mol/cm®
molar concentration of species i, mol/cm?
diffusivity of species i, cm?®/s

photon energy, eV

Fermi energy, eV

energy of species or site i, eV

ionic adsorption energy, J/mol

molar activity coefficient of species i
Faraday’s constant, 96,487 C/equiv
degeneracy of energy i, mol/cm?
Gibbs free energy, J

rate of thermal electron-hole pair generation,

mol/s-em?®

rate of photo electron-hole pair generation,
mol/s-cm?

current density, mA/cm?

exchange current density, mA/cm?

Boltzmann constant, 1.3805x107%3 J /K

forward reaction rate constant for reaction
backward reaction rate constant for reaction !
rate constants for homogeneous reaction k&
equilibrium constant for reaction {

solar absorption coefficient, 1/cm
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M; symbol for chemical formula of species i
n number of electrons involved in electrode reaction
n electron concentration, mol/cm?

Ny intrinsic electron concentration, mol/cm?®

N total site c_:oncentfation. mol/cm?

N,y total bulk electron-acceptor concentration,
mol/cm?

Ny total bulk electron-donor concentration,
mol/cm?®

N flux of species i, mol/cm®s

P hole concentration. mol/em?

Piy "~ heterogeneous reaction order

P pressure, bar

Fit heterogeneous reaction order

7o incident solar flux, mol/s-cm?

T heterogeneous reaction rate, mol/s-cm?

R universal gas constant, 8.3143 J/mol-K

R net rate of production of species i,
mol/s-em?

Frgc net rate of electron-hole recombination,
mol/s-cm?

54 stoichiometric coeflicient of species ¢ in an electrode
reaction

g entropy, J/K

T absolute temperature, K

u; mobility of species i, cm®mol,/Js

vV potential drop across depletion layer, V

w depletion layer thickness, cm

A probability of cccupation of state 1



180

distance variable, cm

charge number of speciesi

2. Greek Characters

Pj-x

Pw

“real’ chemical potential, J/mol
symmetry factor

surface concentration of energy or species k,
mol/cm?

total surface-site concentration of energy or species k,
moi/cm?

distance between interfacial planes (gap denoted by k).
cm

permittivity, C/V-cm

photon efficiency

total overpotential at interface k&, V
fractional oecupation of surface sites
conductivity, mho/cm

Debye length, cm

electrochemical potential of species i, J/mol
reflectance associated with interface j -k
Galvani {inner) electrical potential, V
work function, V

electrical potential, V

surface potential, V

cavity (Volta or outer) potential, V

3. Superscripts

equilibrium



4 secondary reference state at infinite dilution

’ secondary reference state in semiconductor

4. Subscripts

bulk associated with the bulk

¢ associated with conduction band in semiconductor

CE associated with the counterelectrode

cell associated with the cell

e relating to etectrons

h* relating to holes

ihp associated with inner Helmholtz plane

15§ associated with inner surface states

k dummy subscript

L associated with reaction {

] equilibrium value or initial value

ohp associated with outer Helmholtz plane

0SS associated with outer surface states

se associated with semiconductor

sol associated with solution

¢ associated with trap band in semiconductor

7 associated with valence band in semiceonductor

1 associated with the region between the 0SS and the ISS
2 associated with the region between the 1SS and the [EP
3 associated with the region between the [HP and the OHP

181
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Appendix A. Application of Maxwell’'s Equations

to Electrochemical Systems

The electromagnetic principles presented by Maxwelll?02%C are a
foundation for the characterization of electrical systems. The object of this
section is to present the relationship between Maxwell's equations and the
macroscopic transport equations used in electrochernical systems
analysis.”? The relationships among the complex permittivity, the complex
index of refraction, and the permeability used in Poisson's equation will also

be presented.

1. Macroscopic Transport Equations

Maxwell's equations are used here as a starting point. In differential

form,
VE = fT. | (A-1)
VB = 0,' _' : (A-2)
IxE = — %% : (A-3)
and
VxB = i + pe 22, (A-4)

where £ is the electric field (related to the electric potential by £ = - V¢), p
is the charge density, ¢ is the permittivity (defined by D = ¢£ where D is the
displacement vector), # is the magnetic field, 4 is the permeability, and i is
the eiectrical current density. The magnetic pole density was assumed to be

zZero.

Equation (A-1) is Poisson's equation, which is used directly in the

macroscopic development. Under the assumption that the permittivity and
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the permeability are constant, the divergence of equation (A-4) yields

V(VXB) = u¥i + ue gt-(v-z) . (A-5)

which may be rewritten as

dc.
0= FE u(VM + 57). (a-6)
3 at
where the electric current was expressed in terms of the individual ionic

fluxes N, as

i= FZ Z N, (A-7)
)
and the charge density was introduced from equation {A-1) in terms of

individual ion concentrations as

p= FE ZiCy - (A-8)
L
A material balance for a species i yields
de;
VN, + Et—‘- =R . (A-9)

where F, is the homogeneous generation term for speciesi. Conservation of

charge provides that Zz,-,Ri =0; thus equation (A-8) follows from
i

multiplying equation (A-9) by 2z, and summing over all species i. The
deveiopment presented above does not involve assumptions concerning the
magnetic fieid. In the presence of a magnetic field, macroscopic equations
may be used in conjunction with equations (A-2) and (A-3).

Macroscopic transport eguations are therefore consisient with
Maxwell's equations. Equations (A-1) and (A-9) are used frequently in the
macroscopic analysis of electrochemical systems. The total flux of a species
i in a dilute solution is given® in terms of migrational, diffusional. and

convective contributions by
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N, = = zyu Fe;V$ = D,Vey + ;v , (A-10)

where v is the bulk phase velocity.

2. Compiex Permittivity

The curl of equation {(A-3) yields

UxX(VXE) = - Vx(%f— . (A-11a)}

or

VV-E) = V2E = — g—t(VxB) . (A-11b)

The time derivative of equation {A-4) is

3 B 8E
at(VxB) =4 + uE 3% (A-12)

Equations (A-11b) and (A-12) can be combined to eliminate the magnetic

field B;

H FPE
T rverd (A-13)

In the absence of concentration gradients and with p =0, the electric

VWVE)~VE=-p

current is related to the electric fleld by the conductivity, Le.,

i=0oF, (A-14)
thus equation {(A-13) becomes
AE 2L
va = — —_— -
E = uo 3% + ue Pye (A-15)

A general form for the electric field associated with electromagnetic
radiation is

E = Epelvt, (A-18)

where £, is the maximum value of the electric fleld, j is v =1, and « is the

angular frequency associated with the radiation. Introduction of equation

(A-18) into equation {(A-15) yields
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VE, = - uo(e - %)E,,. . (A-17)

It is convenient Lo define a complex permittivity &' such that

‘= —jl -
g=e—- . (A-18)

The imaginary term disappears in vacuum (¢ = 0}, and the right hand term
of equation (A-17) becomes zero in a stationary electric field (w = 0).

3. Coruplex Index of Refraction

The velocity of the electromagnetic radiation is a constant given by

v = (ue) V2, (A-19)
or in vacuum,

c = (u,g,) 2. (A-20)

The index of refraction is defined as the ratio of the velocity of light in

vacuum to the velocity of light in the given medium:

n==%. (A-21)

(e - 1T
. £ -
[ o  wio |_ wle = ) ' (A-22)
HaEqW Heo Eg
or, with u = u,,
(n)? = f— (A-23)

where

('n')z =n2 ._J_E'.g.....

A-24
HoEo ( )

The complex permittivity is related to the complex index of refraction
by equation (A-23), and to the permittivity by equation (A-18). The complex
index of refraction is related to the index of refraction by equation (A-24),

which is frequently written as
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n' =n(l-jk), (A-25)

where k is the absorption index (equal to zero in vacuum).
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Appendix B. Computer Program Documentation

Brief descriptions, program listings, and data input files are presented
for the computer programs presented in this dissertation. Program LICMPY
performs the calculations for the modeling and optimization of the liquid-
junction photovoltaic cell, and program RCALC performs the calculations for

the primary current distribution and resistance of a slotted-electrode cell.
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1. PROGRAM LICMFY

The following program was written to solve the coupled equations {see
Chapter 2) which govern the liquid-junction photovoltaic cell. The program
also allows calculation of cell performance by coupling the one-dimensional
model with primary resistance calculations (see Chapters 3 and 4). The
input data include parameters for the semiconductor, the semiconductor-
electrolyte interface, the electrolyte, and the counterelectrode. These
parameters and their units are defined within comments in the subroutine
READ. The cell characteristics are calculated for input wvalues of
illumination and current density. Qutput control parameters are defined
within comments in the main program listing. A sample input file is

presented after the program listing.

The governing equations were written in finite-difference form and
properly linearized. The equations are written in dimensionless form.
Numerical accuracy was enhanced by definition of concentration variables
that are uniform under equilibrium conditions. The concentration and

potential variables in the semiconductor are

n _ £
AN(J) = me RT
F&
P(J) = E—%E— e BT,
and
prIy) = £2.,

where the index J marks the location. The corresponding variables in the

electrolyte are
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3 Fé

CSOLL.J) = -;-‘-—e RT
{.-

and

Fé
PHI(J} = =— .
Under equilibrium conditions, the dimensionless potential varies in the

semiconductor from zero to around 40.

Numerical accuracy was further improved by partial decoupling of the
three equations governing the semiconductor. Separate variables were
defined for the charge density, RHO(J), the electron flux, FN{J), and the hole
flux, FP(J). Five equations govern the solution with four ionic species. These
were written as seven equations, with separate variables defined for the flux
of species 3, F3(J), and the flux of species 4, F4(J). Twenty eight equations
are written for the semiconductor-electrolyte interface, involving 21
variables that appear only at that location. These are decomposed to seven
equations involving the bulk phase variables in a local inversion routine,

LOCINV. A general method for local inversion is presented by White.?¢8

A description of the routines BAND and MATINV is presented by

Newman!®® and by White et al.?%%
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PROGRAM LJCMPY ( INPUT,OUTPUT)

PROGRAM FOR CALCULATING POTENTIAL AND CURRENT CHARACTERISTICS
OF THE LIQUID-JUNCTION PHOTOVOLTAIC CELL.

PROGRAM INCLUDES 13 REACTION STEPS AT THE SEMICONDUCTOR-
SOLUTION INTERFACE.

DIMENSION ERR(9),RMOD(13)

COMMON/BA/ N,NJ,A(7,7),B(7,7),C(7,250),D(7,15),6(7),X(7,7),Y(7,7)

COMMON/LI/ AA(28,28),B8B(28,28),cc(28,1),DD(28,28),GG(28)

COMMON/LI2/ AM(28,28),38M(28,28),DM(28,28),6M(28)

COMMON/SC/ PHI(250),P(250),AN(250),DFN(250),DFP(250),FN(250),
FP(250),RHO(250),D2(250)

COMMON/RUN/ EX,H,H2,HD2,EXH,NJJ,INDEX(7,250),KERR,ERRSUB,IJ

COMMON/IN/ ALM,DELT,BD,SO,CURRNT,QII,SPOSN,TET,ANI2,DSC,DSOL,MSOL

COMMON/IN2/ BE,B3,RSC,GSC,RSOLN,GSOLN,GV,GT,GC,SI,DELL,DEL3

COMMON/SOL/ CBULK(4),Z(4),CSOL(4,250),F(4),HS,DC(4,250),XP(4)

COMMON/FLUX/ F3(250),F4(250)

COMMON/IFC/ RATE(13),EQUIL(13),5(13,13),CONC(13),RXN(13),RXS(13)
,CIF(5)

COMMON/IFC2/ PHISS,PHISC,PHIHP,BKISS

COMMON/SMQ/ SMQ,QI,QSL,SMQL

COMMON/CHG/ SQL{250)

COMMON/STOP/ NSTOP

COMMON/M/ MODE,MRPRNT,MREAL,MERROR,MPARAM

COMMON/CONV/ CL,CPOT,CCHG,COND

COMMON/CE/ DIST,EXCOB,NREACT,CLIM3,CLIM4

COMMON/OPT/ MOPT,SFLUX,ACE,RESIR

COMMON/INIT/ PHIOSS,PHIOHP,CELECQ,CHOLEQ,MDIM,DPOT1,DPOT2,DPOT3
,FRACVQ, FRACTQ, FRACCQ, FRAC3Q, FRAC4Q, FUOV,FUOT, FUOC, FUOLHP

COMMON/END/ CURAN(40),VOLT(40),VNOT(40),VWIR(40) ,VWCE(40)
,CHGISS(40),CHGIHP(40),CHG(40)
,POWERL( 40) ,POWER2(40) ,POWER3(40) ,POWER4( 40)

TRACE SUBPROGRAM TIME

FORMAT( * J=*% I3,* G =* 7(E10.2))

FORMAT({ * INDEX:*,7(I10))

FORMAT( 4(I3))

FORMAT( 4(F10.5))

FORMAT( 13)

FORMAT( 2(13))

ERREQN LIMITING VALUE FOR THE DIFFERENCE BETWEEN FORWARD AND
BACKWARD REACTION RATES. NET REACTION RATES LESS THAN ERREQN
ARE SET EQUAL TO ZERO.

ERRSUB LIMITING VALUE FOR G(I) RELATIVE TO THE BIGGEST TERM
IN THE EQUATION.

ERREQN = O.
ERRSUB = 1.0E-09

H,HS MESH INTERVALS FOR THE SEMICONDUCTOR AND THE SOLUTION
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RESPECTIVELY. (DEBYE LENGTHS)
DSC,DSOL  DISTANCE FROM THE INTERFACE TO THE CURRENT-COLLECTOR
AND INTO THE SOLUTION RESPECTIVELY. (DEBYE LENGTHS)

READ 101,H,HS,DSC,DSOL

1J = DSOL/HS + 2.1

NJ = DSC/H + FLOAT(LJ) + 0.1
N=7

NJJ = NJ -1

I1JJ = 1J-1

H2 = H¥#2

DIST DISTANCE FROM COUNTERELECTRODE TO OUTER POINT OF
SOLUTION. (M)

EXCOB BUTLER-VOLMER EXCHANGE CURRENT DENSITY FOR COUNTER-
ELECTRODE REACTION WITH NO MASS-TRANSFER LIMITATIONS.

(MA/CM2)

CLIM3,CLIM4 MASS~-TRANSFER LIMITING CURRENTS FOR SPECIES 3 AN
AND 4 AT COUNTERELECTRODE. (MA/CM2)

NREACT ELECTRON-TRANSFER NUMBER FOR COUNTERELECTRODE
REACTION (DIMENSIONLESS)

READ 101,DIST,EXCOB,CLIM3,CLIM4
READ 102 ,NREACT

ERRMAX MAXIMUM CONVERGENCE ERROR ALLOWED.

NDATA NUMBER OF DATA SETS.

NPRINT LTERATION AFTER WHICH ALL G(I) ARE TO BE PRINTED.

JPRINT ITERATION AFTER WHICH ALL INTERMEDIATE RESULTS ARE TO
BE PRINTED.

JCMAX MAXIMUM NUMBER OF ITERATIONS ALLOWED.

NCOUNT , JCOUNT DUMMY COUNTERS .

ERRMAX = 1.0E-06
READ 100,NDATA,NPRINT,JPRINT,JCMAX

MRPRNT = O SUPPRESSES PRINTING OF RESULTS AT EACH MESH POINT.

MERROR = O SUPPRESSES PRINTING OF CONVERGENCE CRITERIA.

MPARAM = O SUPPRESSES PRINTING OF INPUT PARAMETERS AFTER THE
FIRST DATA SET AND LIMITS THE NUMBER OF PARAMETERS READ FOR
EACH SUCCESSIVE DATA SET.

MPARAM = 1 ALLOWS READING AND PRINTING OF A COMPLETE SET OF
PARAMETERS FOR EACH NEW DATA SET.

MREAL = 0 YIELDS PRINTING OF COMPUTER VARIABLES FOR
SEMICONDUCTOR CONCENTRATIONS.

MREAL = 1 YIELDS PRINTING OF REAL CONCENTRATIONS, NORMALIZED
TO THE BACKGROUND CHARGE.

READ 100 ,MRPRNT,MERROR,MPARAM,MREAL

MSOL = O; ILLUMINATION AT ELECTROLYTE-SEMICONDUCTOR INTERFACE
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MSOL = 1; TILLUMINATION AT SEMICONDUCTOR-CURRENT COLLECTOR

INTERFACE

MOPT = 0O; DO NOT CALL OPTIMIZATION ROUTINES
MOPT = 1; CALL OPTIML

MOPT = 2; CALL OPTIM2

MOPT = 3; CALL OPTIM3

READ 103,MSOL,MOPT

DLIML = 5.0

DLIM2 = 1.0

UPl = EXP(DLIM1)-1.0
DN1 = 1.0-EXP(-DLIM1)
UP2 = EXP(DLIM2)-1.0
DN2 = 1.0-EXP(-DLIM2)
NCOUNT = 0

NSTOP = O

CALL READ(NCOUNT)

DSC = 1689.*DELL
NJ = DSC/H + FLOAT(IJ) + 0.1
NJJ = NJ -1

NCOUNT = NCOUNT + 1

MRPRNT = 0

IF(NCOUNT.EQ.1) MRPRNT = 1

IF{ NCOUNT.EQ.2) MRPRNT = 1

IF(NCOUNT.EQ.31) MRPRNT = 1
IF(NCOUNT.EQ.17) MRPRNT = 1
EXH = EXP(-ALM*H)

HD2 = (H*DELT)**2

SMQ = 0.

INITIALIZATION OF VARIABLES

IF(NCOUNT.GT.2) GO TO 10
QS = 3.0*S0 - 1.0E-06
QG = 32.0%EXP(~5.%S50)
ANQ = .5E-=27
PQ = ANI2/ANQ
IF(MDIM.EQ.4) QS = PHIOHP
EXSQ = EXP(~5.6*S0)
IF(MDIM.EQ.4) QG = -PHIOSS*EXSO
IF(MDIM.EQ.4) ANQ = CELECQ
IF(MDIM.EQ.4) PQ = CHOLEQ
DO 571 = 1,17
PHI(J) = QS*(1.0 = EXP(-(J-1)*HS))
F3(J) = 0.
F4(J) = 0.
DOS5I=1,4
CSOL(I,J) = CBULK(I)
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DC(I,J) = O.

CONTINUE
LCT = 0

DO 6 J = LJ,NJ

PHI(J) = QG*(1.0 ~ EXP(-LCT*H))

P(J) = PQ + 1.0%S0O

AN(J) = ANQ + SO*0.1E-07

DFN(J) = 0.

DFP(J) = 0.

FN(J) = O.

FP(J) = O.

RHO(J) = =1.0

D2(J) = 0.

LCT = LCT+1

CONTINUE
CIF(1) = 0.0005 + 0.0025*SO
CONC(4) = GV - CIF(1)
CIF(2) = 0.00005 + 0.00025%S0
CONC(6) = GT ~ CIF(2)
CIF(3) = 0.00005 + 0.00025%S0
CONC(8) = GC - CIF(3)
CIF(4) = 0.01193 - 0.016*S0
CIF(5) = 0.01193 ~ 0.016*S0
CONC(11) = 1. = CIF(4) - CIF(5)

[F(MDIM.EQ.4) CIF(1l) = FRACVQ*GV
IF(MDIM.EQ.4) CIF(2) = FRACTQ*GT
IF(MDIM.EQ.4) CIF(3) = FRACCQ*GC
IF(MDIM.EQ.4) CIF(4) = FRAC3Q

. IF(MDIM.EQ.4) CIF(5) = FRAC4Q

IF(MDIM.EQ.4) CONC(4) = FUOV*GV
IF(MDIM.EQ.4) CONC(6) = FUOT*GT
IF(MDIM.EQ.4) CONC(8) = FUOC*GC
IF(MDIM.EQ.4) CONC(1l) = FUOIHP
DPL = 0.04
DP2 = 0.0
DP3 = 0.8*PHI(1J-1)
IF(MDIM.EQ.4) DPl = DPOTL
IF(MDIM.EQ.4) DP2 = DPOT2
IF(MDIM.EQ.4) DP3 = DPOT3
PHISC = PHI(IJ) - DP1
PHIHP = PHI(LJ-1) + DP3
PHISS = PHIHP + DP2

DO 7 L=1,13

RXN(L) = O.

CONTINUE

CALCULATION OF EQUATION COEFFICIENTS AT EACH MESH POINT

JCOUNT = 0O
MERROR = 0
KERR = O

209
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20

30

35

40

45

50

48

2001

LF( JCOUNT .GE.JCMAX) GO TO 65
JCOUNT = JCOUNT + 1
PHI(NJ+l) = 2.%PHI(NJ) - PHI(NJ-1)
IF( JCOUNT.GE.NPRINT) KERR = 1
IF(JCOUNT.GE.JPRINT) CALL PRINT(NCOUNT)
IF( JCOUNT.GE.(NPRINT~2)) MERROR = 1
DO 20 I=1,N
DO 20 K=1,N
X(1,K) = 0.
Y(I,K) = 0.
CONTINUE
J=0
J=J+1
DO 35 I=1,N
G(I) = 0.
INDEX(I,J) = O
DO 35 K=1,N
A(I,K) = 0.
B(I,K) = O.
D(I,K) = 0.
CONTINUE
IF(J.GT.1) GO TO 40
CALL BCL(J)
GO TO 50
IF(J.GT.1J) GO TO 45
IF(J.LT.IJJ) CALL SOLN(J)
IF(J.EQ.IJJ) CALL INTRFC(J)
GO TO 50
IF(J.LT.NJ) CALL SC(J)
IF{J.EQ.NJ) CALL BCNJ(J)
KERRR = 0
DO 48 L=1,7
IF(G(L).NE.0.0) KERRR = 1
KERR = 0

IF(KERRR.EQ.1 .AND. JCOUNT.GT.NPRINT) KERR = 1
IF(J.LT.(NJ-4) .AND. J.GT.(IJ+5)) KERR = 0

IF(J.GT.5 .AND. J.LT.(IJ-5)) KERR = 0

IF(KERR.GT.0) PRINT 200,J,G(1),G6(2),G(3),6(4),G(5),6(6),6(7)
IF(KERR.GT.0) PRINT 400, ( INDEX(TL,J), I=1,7)

210

IF(KERR.GT.0 .AND. J.GE.IJ) PRINT 2001,PHI(J),AN(J),P(J),FN(J),

1 FP(J),RHO(J)

[F(KERR.GT.0 .AND. J.LT.IJ) PRINT 2001,PHI(J),(CSOL(I,J), I=1,4)

1 ,DC(4,J)
FORMAT( 3X,6(El2.4))
CALL BAND(J)
IF{J.LT.NJ) GO TO 30

CALCULATION OF NEW VALUES FOR VARIABLES

LoC = 1
NE = N+l
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55

211

NP = 28
J = 1J
DO 49 I=NE,NP
CC(I,1) = GG(I)
DO 49 K=1,N
CC(I,1) = CC(I,1) - AA(I,K)*C(K,J-1) - BB(I,K)*C(K,J)
CONTINUE
cC(7,1) = ¢(7,1J)
DO 51 Jel,IJJ
IF(C(1,J).LT.=-DLIM2) C(1,J) = -DLIM2
IF(C(1,J).GT.DLIM2) C(1,J) = DLIM2
PHI(J) = PHI(J) + ¢(1,I)
F3(J) = F3(J) + C(6,J)
F4(J) = F&{J) + C(7,])
DO 51 I=1,4
IF(C(I+1,J).LT.~DN2*CSOL(I,J)) C(I+l,J) = —DN2*CSOL(I,J)
IF(C(I+1,J).GT. UP2*CSOL(I,J)) C(I+1,J) = UP2*CSOL(I,J)
CSOL(I,J) = CSOL(I,J) + C(I+1,J)
IF(J.EQ.1) GO TO 51
DC(I,J-1) = DC(I,J=1) + C(I+1,J) - C(I+1,J-1)
CONTINUE

DO 55 J=LJ,NJ
FP(J) = FP(J) + C(4,J)
FN(J) = FN(J) + C(5,J)
i

IF(C(6,J).LT.-0.2) C(6,J Ce?
IF(C(6,J).GT.0.2) C(6,) ﬁék
RHO(J) = RHO(J) + C(6,J) \/

D2(J) = D2(J) + ¢(7,1)
IF(C(1,J).LT.~DLIML) C(1
IF(C(1,J).GT.DLIM1) C(1,
LF(C(2,J).GT .UP1*AN(J))
IF(C(2,J).LT.0.) C(2,J)
IF(C(2,J).LT.=DN1*AN(J))
IF(C(3,J).GT.UPL*P(J)) C
IF(C(3,J).LT.~DNL*P(J))
PHI(J) = PHI(J) + C(1,])
AN(J) = AN(J) + C(2,J)
P(J) = P(J) + C(3,J) o o
IF(J.EQ.IJ) GO TO 55
DFN(J) = DFN(J) + C(2,J) = c(2,J-1)
DFP(J) = DFP(J) + C(3,J) - C(3,J-1)
CONTINUE
IF(CC(27,1).GT.DLIM2) CC(27,1) = DLIM2
1F(CC(27,1).LT.~DLIM2) CC(27,1) = -DLIM2
1F(CcC(7,1).GT.DLIM2) CC(7,1l) = DLIM2
IF(CC(7,1).LT.-DLIM2) CC(7,1) = =DLIM2
IF(CC( 8,1).GT.DN2*CONC(4)) CC( 8,1) = DN2*CONC(4)
IF(CC( 9,1).GT.DN2*CONC(6)) CC( 9,1) = DN2*CONC(6)
IF(CC(10,1).GT.DN2*CONC(8)) CC(10,1) = DN2*CONC(8)
IF(CC(28,1).LT.-DN2*CONC(11)) CC(28,1) = -DN2*CONC(1l)
IF(CC(28,1) .GT.UP2*CONC(11)) CC(28,1) = UP2*CONC(11)

<
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56

57
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IF(CC(13,1).LT.-DLIM2) CC(13,1) = ~DLIMZ
IF(CC(13,1).GT.DLIM2) CC(13,1) = DLIM2
PHISS = PHISS + CC(27,1)
PHIHP = PHIHP + CC(7,1)
DO 56 1T = 1,5
IF(CC(1+7,1) .LT.-DN2*CIF(I)) CC(I+7,1) = -DN2*CIF(I)
IF(CC(I+7,1).GT.UP2*CIF(I)) CC(I+7,1) = UP2*CIF(I)
CIF(I) = CIF(I) + CC(I+7,1)
CONTINUE
CONC(4) = CONC(4) - CC(8,1)
CONC(6) = CONC(6) - CC(9,1)
CONC(8) = CONC(8) - CC(10,1)
PHISC = PHISC + CC(13,1)

RXN(6) = RXN(6) + CC(l4,1)
RXN{8) = RXN(8) + CC(15,1)
RXN(9) = RXN(9) + CC(16,1)
RXN(1) = RXN(1) + CC(17,1)
RXN(2) = RXN(2) + CC(18,1)
RXN(3) = RXN(3) + CC(19,1)
RXN(4) = RXN(4) + CC(20,1)
RXN(5) = RXN(5) + CC(21,1)
RKN(7) = RXN(7) + €C(22,1)
RXN(10) = RXN(10) + CC(23,1)
RXN(11l) = RXN(11) + CC(24,1)

RXN(12) = RXN(12) + CC(25,1)
RXN(13) = RXN(13) + CC(26,1)
CONC(11) = CONC(1ll1l) + CC(28,1)

EVALUATION OF ITERATION ERRORS

ERRSOL = 0.
IF(ABS(PHI(LJJ)).GT.0.1E-06) ERRSOL = G(1,1JJ)/PHI( LJJ)
ERPNJ = C(3,NJ)/P(NJ)
ERRC4 = C(5,1JJ)/CSOL(4,1JJ)
ERRPHI = C(1,NJ)/PHI(NJ)
ERRAN = C(2,1J)/AN(LJ)
ERRP = C(3,LJ)/P(1J)
DO 57 L=1,13
IF(ABS(RXN(L)).LT.ERREQN*RXS(L)/2.) RXN(L) = O.
ERR(L) = 0.

CONTINUE

IF(RXS(1}.NE.0.) ERR(1l) = CC(17,1)/RXS(l)
IF(RXS(2).NE.O.) ERR(2) = CC(18,1)/RXS(2)
IF(RXS(6).NE.O.) ERR(6) = CC(l4,1)/RXS(6)
IF(RXS(8).NE.O.) ERR(8) = CC(15,1)/RXS(8)
IF(RXS(9).NE.O.) ERR(9) = CC(16,1)/RXS(9)
LF(RXS(3).NE.0.) ERR(3) = CC(19,1)/RXS(3)
IF(RXS(4).NE.O.) ERR(4) = CC(20,1)/RXS(4)
IF(RXS(5).NE.O.) ERR(5) = CC(21,1)/RXS(5)
IF(RXS(7).NE.O.) ERR{7) = CC(22,1)/RXS(7)
RMOD( 1) = RXN(1)
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RMOD(2) = RXN(2)/BD
RMOD(3) = RXN(3)/BD
RMOD(4) = RXN(4)
RMOD(5) = RXN(5)/BD
RMOD(6) = RXN(6)
RMOD(7) = RXN(7)
RMOD(8) = RXN(8)/BE
RMOD(9) = RXN(9)/BE/B3

RMOD(10) = RXN(10)
RMOD(11l) = RXN(1l)
RMOD(12) = RXN(12)/BD
RMOD(13) = RXN(13)/BD
IF(MERROR.EQ.0) GO TO 60
PRINT 202,JCOUNT,ERRPHI,ERRAN,ERRP,ERRSOL,ERPNJ,ERRCS
202 FORMAT( * JCOUNT = *,13,% ERRPHI = * E10.3,* ERRAN = *
1 E10.3,* ERRP = % E10.3,/,13X,* ERRSOL = *E1Q,.3% ERPNJ = *
2 E10.3% ERRC4 = *E10.3)
PRINT 201,(L,ERR(L), L=1,9)
201 FORMAT( 3(13X,3(* ERR(*,I2,*) = *E10.3)/))
PRINT 204,(L,RMOD(L), L=1,12)
PRINT 207 ,RMOD({13)
204 FORMAT( 3(* RXN(*,12,*) =*E13.6,1X))
207 FORMAT( * RXN(13) =*El13.6,1X/)
206 FORMAT( 3(* RXS(*,I2,*) =*E13.6,1X))
208 FORMAT( * RXS(13) =*g13.6,1X/)
PRINT 203,PHI(NJ),AN(LJ),P(1J),PHI(IJ-1),FN(1J),FP(LJ)
203 FORMAT( * PHI(NJ) =*E13.6% AN(IJ) =*E13.6% P(IJ) =+
1 E13.6,/% PHI(SL) =*E13.6* FN(IJ) =*E1l3.6* FP(IJ) =*
2 El13.6/)
PRINT 210,PHISC,PHISS,PHIHP
PRINT 211,(CIF(L), L=1,5)
PRINT 212,CONC(4),CONC(6) ,CONC(8),CONC(L1)
210 FORMAT( * PHISC,SS,HP = * 8X,3(E13.6,1X))
211 FORMAT( * CIF(L) =*,5(El13.6,1X))
212 FORMAT( * CONC(I)=* 4(E13.6,1X)/)
60 IF(ABS(ERRPHI).GT.ERRMAX) GO TO 15
IF( ABS{ ERRSOL) .GT.ERRMAX) GO TO 15
IF( ABS(ERPNJ).GT.ERRMAX) GO TO 15
IF(ABS(ERRC4) .GT.ERRMAX) GO TO 15
IF(ABS{ERRAN).GT.ERRMAX) GO TO 15
IF( ABS(ERRP) .GT.ERRMAX) GO TO 15
DO 64 L=1,9
ERR2 = ERRMAX*1.0E-03
IF(ABS(RXN(L))/RXS(L).GT.1.0E-03) ERR2 = ERRMAX
IF(ABS(ERR(L)).GT.ERR2) GO TO 15
64 CONTINUE
GO TO 90
65 PRINT 205,JCOUNT
205 FORMAT( * SYSTEM DID NOT CONVERGE IN #*I3* ITERATIONS*)
90 IF(JCOUNT.LT.JCMAX) PRINT 221,JCOUNT
221 FORMAT( /* CONVERGENCE OBTAINED IN *I3* ITERATIONS*/)



aOaoon

214

CALL PRINT(NCOUNT)
LF(JCOUNT.GE.JCMAX .OR. NSTOP.EQ.1) NCOUNT = NCOUNT-1
IF( JCOUNT.GE.JCMAX .OR. NSTOP.EQ.l) GO TO 99
IF(NCOUNT.LT.NDATA) GO TO 1
99 CONTINUE
PRINT 600,NCOUNT-1
PRINT 620,(CURAN(K) ,VNOT(K) ,K=2,NCOUNT)
PRINT 601,NCOUNT-1
PRINT 620,(CURAN(K),VWIR(K) ,K=2,NCOUNT)
PRINT 602,NCOUNT-1
PRINT 620,( CURAN(K),VWCE(K),K=2,NCOUNT)
PRINT 603,NCOUNT-2
PRINT 620,( CURAN(K),VOLT(K) ,K=3,NCOUNT)
PRINT 604 ,NCOUNT-1
PRINT 620,( CURAN(K),CHGISS(K) ,K=2,NCOUNT)
PRINT 605,NCOUNT-1
PRINT 620,( CURAN(K) ,CHGIHP(K),K=2,NCOUNT)
PRINT 606 ,NCOUNT-1
PRINT 620,(CURAN(K),CHG(K) ,K=2,NCOUNT)
PRINT 607,NCOUNT-1
PRINT 620,( CURAN(K),POWERL(K),K=2,NCOUNT)
PRINT 608 ,NCOUNT-1
PRINT 620,( CURAN(K) ,POWER2(K) ,K=2,NCOUNT)
PRINT 609,NCOUNT-1
PRINT 620,( CURAN(K) ,POWER3(K),K=2,NCOUNT)
PRINT 610,NCOUNT-2
IF( MOPT.EQ.4) PRINT 620,( CURAN(K),ACE*POWER4(K),K=3,NCOUNT)
IF(MOPT.NE.4) PRINT 620, ( CURAN(K),POWER4(K) ,K=3,NCOUNT)

600 FORMAT( * POTENTIAL; NO CE OR IR*,/,I4)
601 FORMAT( * POTENTIAL; WITH IR*,/,I4)
602 FORMAT( * POTENTIAL; WITH CE*,/,14)
603 FORMAT( * POTENTIAL; WITH CE AND IR*,/,I4)
604 FORMAT( * CHARGE ON ISS*,/,I4)
605 FORMAT( * CHARGE ON IHP*,/,I4)
606 FORMAT( * CHARGE ON INTERFACE*,/,I4)
607 FORMAT( * POWER DENSITY; NO CE OR IR¥*,/,I4)
608 FORMAT( * POWER DENSITY; WITH IR*,/,I4)
609 FORMAT( * POWER DENSITY; WLTH CE*,/,I4)
610 FORMAT( * POWER DENSITY; WITH CE AND IR*,/,I4)
620 FORMAT( 2E15.7)
STOP
END

SUBROUTINE READ(NCOUNT)

SUBROUTINE FOR INPUT OF DATA AND CALCULATION OF DIMENSIONLESS
PARAMETERS.
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COMMON/IN/ ALM,DELT,BD,SC,CURRNT,QII,SPOSN,TET,ANI2,DSC,DSOL,MSOL
COMMON/IN2/ BE,B3,RSC,GSC,RSOLN,GSOLN,GV,GT,GC,SI,DEL1,DEL3
COMMON/RUN/ EX,H

COMMON/SOL/ CBULK(4),Z(4),CSOL(4,250),F(4),HS

COMMON/IFC/ RATE(13),EQUIL(13),S(13,13)

COMMON/IFC2/ PHISS,PHISC,PHIHP,BKISS

COMMON/M/ MODE,MPRINT,MREAL,MERROR,MPARAM

COMMON/CONV/ CL,CPOT,CCHG,COND

COMMON/CE/ DIST

COMMON/OPT/ MOPT,SFLUX,ACE,RESIR

COMMON/INIT/ PHIOSS,PHIOHP,CELECQ,CHOLEQ,MDIM,DPOTL,DPOT2,DPOT3
1  ,FRACVQ,FRACTQ, FRACCQ, FRAC3Q, FRAC4Q, FUOV,FUOT,FUOC,FUOLHP
DIMENSION DIFF(4),RDIM(13),RMOD(13)

FORMAT( 13(F5.1))

FORMAT( 12)

FORMAT( F20.15)

FORMAT( E10.3,F20.15)

FORMAT( 2(F20.15))

FORMAT( 3(F20.15))

FORMAT( 4(E10.3))

FORMAT( 3(E10.3))

FORMAT( 2(E10.3))

FORMAT( 4(F20.15))

FORMAT( E10.3)

FOR SET CURRENT AT BCNJ(J) (AS CURRNT) ..... MODE=l
FOR SET POTENTIAL AT BCNJ(J) (AS CURRNT) ... MODE=2
TO READ DIMENSIONLESS PARAMETERS....s000020, MDIM=]
TO READ DIMENSIONAL PARAMETERS.seecavscacns. MDIM=2
TO READ DIMENSIONAL PARAMETERS AND CALCULATE

INTERFACIAL EQUILIBRIUM PARAMETERS........ MDIM=3
TC READ DIMENSIONAI, PARAMETERS AND CALCULATE

PARAMETERS FROM BAND GAP AND INTERFACIAL

ISS SITE ENERGIES ¢ cvsecensercacerossnases MDIM=4

IF({ NCOUNT.EQ.0) GO TO 3
IF( MPARAM.EQ.0) GO TO 6
IF( MPARAM.EQ.1) GO TO 5
CONTINUE

READ 102,MODE

READ 102,MDIM

SPOSN = 100.0

TET = 2.57E=06

ANI2 = 2,25E-20

STOCHIOMETRIC COEFFICLENTS

NR = 13
NC = 13
DO 4 L=1,NR
READ 100,(S(I,L), I=1,NC)
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CONTINUE
CONTINUE
IF(MDIM.GT.1) GO TO 7
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REACTION PARAMETERS

READ 105,(RATE(L),EQUIL(L), L=L,NR)
EQUIL(4) = EQUIL(3)/EQUIL(1)/EQUIL(2)/ANI2
EQUIL(6) = EQUIL(5)/EQUIL(3)

EQUIL(7) = EQUIL(6)*EQUIL(4)

EQUIL(10) = EQUIL(1)*EQUIL(4)

EQUIL(11) = EQUIL(L0)/EQUIL(3)

EQUIL(12) = EQUIL(2)/EQUIL(3)

EQUIL(13) = EQUIL(12)*EQUIL(4)

READ 107,GV,GT,GC,SI

SOLUTION CHARACTERISTICS

READ 105,(CBULK(I),Z(1), I=l,4)
READ 105,BE,B3

SEMICONDUCTOR CHARACTERISTICS

READ 110,RSC,GSC,RSOLN,GSOLN

READ 106,DELL,DEL3,BKISS

GSC = GSC*DELL § GSOLN = GSOLN*DEL3
RSC = RSC*DELl $ RSOLN = RSOLN*DEL3
SI = 0.

READ 110,ALM,DELT,BD,QII

GO TO 6

kkkhhhhhhkhhkhkhhhhhhhhhkhkkkhkhkkhhhkhhkhkikhkhkhirhhkikhkhhkkhhkhhidehihiin

7 CONTINUE

RATE CONSTANTS

RDIM(1 AND 2) INTERFACIAL RATE CONSTANTS ( CM3 /MOLE~-SEC)
RDIM(3, 4, 5, 6, AND 7) INTERFACIAL RATE CONSTANTS

( CM2 /MOLE-SEC)
RDIM(8 AND 9) INTERFACIAL RATE CONSTANTS (1/SEC)
RDIM(10, 11, 12, AND 13) INTERFACIAL RATE CONSTANTS

( CM3/MOLE-SEC)

READ 104,(RDIM(L),EQUIL(L), L=1,NR)
GENERAL PARAMETERS

FARAD FARADAYS CONSTANT (C/EQUIV.)
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R IDEAL GAS CONSTANT (J/MOLE-K)
T TEMPERATURE { DEGREES K)

FARAD = 96487.

R = 8.3143

READ 104,T

SOLUTION PARAMETERS

CBULK(I) BULK ION CONCENTRATION (MOLES/CM3)
DIFF({I) DIFFUSIVITY (CM2/SEC)
EPSOL PERMITIVITY (C/V-CM)
COND BULK CONDUCTIVITY (1/0HM=-CM)

READ 106,(CBULK(I),Z(I),DIFF(I), I=1,4)
READ 109,EPSOL,COND
CTOT = CBULK(1)+CBULK(2)+CBULK(3)+CBULK(4)
DO 8 I=l1,4
CBULK(I) = CBULK(I)/CTOT

SEMICONDUCTOR PARAMETERS

DIFFE, DIFFH ELECTRON AND HOLE DIFFUSIVITIES

(CM2/SEC)
EPSC PERMITIVITY (C/V-CM)
BKCHG BACKGROUND CHARGE (EQUIV/CMI)
ADS PHOTON ABSOPTIVITY (1/CM)
EF PHOTON EFFICIENCY FACTOR (DIMENSIONLESS)
QINC INCIDENT PHOTON FLUX (MOLES/CM2~SEC)

STK2 HOMOGENEOUS RECOMBINATION RATE CONSTANT (1/SEC)
SPOSN  HOMOGENEOUS RECOMBINATION RATE CONSTANT (DIMENSIONLESS)
TKT HOMOGENEQUS RECOMBINATION RATE CONSTANT (MOLES/CM3)

CINT INTRINSIC CONCENTRATION (MOLES/CM3)

QIX CHARGE ADSORBED AT CURRENT COLLECTOR (MICRO-C/CM2)

S0 FRACTION OF INCIDENT RADIATION STRKING SURFACE
(DIMENSIONLESS)

READ 105,DIFFE,DIFFH

READ 109,EPSC, BKCHG

READ 108,ADS,EF,QING

READ 107,STK2,SPOSN,TKT,CINT
READ 104,QILI

INTERFACIAL PARAMETERS

GISS DENSITY OF SITES AT INNER SURFACE STATES
(MOLES/CM2)
BKINT DENSITY OF POSITIVE CHARGE AT INNER SURFACE STATES
(EQU1V./CM2)
GIHP DENSITY OF SITES AT INNER HELMHOLTZ PLANE
(MOLES/CM2)
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GC FRACTION OF HIGH ENERGY ISS SITES (DIMENSIONLESS)
GT FRACTION OF INTERMEDIATE ENERGY SITES ( DIMENSIONLESS)
GV FRACTION OF LOW ENERGY SITES (DIMENSIONLESS)
DL1 DISTANCE BETWEEN 0SS AND 1SS (CM)
DL2 DISTANCE BETWEEN ISS AND IHP (CM)
DL3 DISTANCE BETWEEN IHP AND OHP (CM)

READ 108,GISS,GIHP,BKINT
READ 107,GV,GT,GC,SI
READ 108,DL1,DL2,DL3
IF(MDIM.LT.3) GO TO 9
IF(MDIM.EQ.4) GO TO 11
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EQUILIBRIUM INTERFACIAL PARAMETERS

FRACVQ,FRACTQ,FRACCQ  FRACTIONAL OCCUPATION OF LOW, INTERMED-
IATE, AND HIGH ENERGY SITES AT THE ISS ( DIMENSIONLESS)

FUOV,FUOT,FUOC  FRACTION OF UNOCCUPIED SITES (DIMENSIONLESS)

DPOT1,DPOT2,DPOT3  POTENTIAL DIFFERENCES BETWEEN THE 0SS AND
THE ISS, THE ISS AND THE IHP AND THE IHP AND THE OHP

(V)

SUMQ TOTAL CHARGE SET AT THE INTERFACE (MICRO~C/CM2)
CELECQ,CHOLEQ CONCENTRATIONS OF ELECTRONS AND HCLES AT THE

0SS NORMALIZED TO THE BACKGROUND CHARGE (DIMENSIONLESS)
FRAC3Q,FRAC4Q FRACTIONAL OCCUPATION OF IHP BY SPECIES

3, 4 AND 5 (DIMENSIONLESS)
€3qQ,C4Q CONCENTRATION OF IONIC SPECIES 3 AND 4 AT THE

oHP (MOLES/CM3)

READ 108,FRACVQ, FRACTQ, FRACCQ
READ 109,FRAC3Q,FRAC4Q

READ 109,DPOT3,SUMQ

READ 108,CELECQ,C3Q,C4Q

FUOV = 1.-FRACVQ

FUOT = 1.-FRACTQ
FUOC = 1.-FRACCQ
FUO3 = 1.-FRAC3Q
FUO4 = 1.-FRAC4Q
GO TO 12
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CALCULATION OF PARAMETERS FROM ENERGY VALUES

EGAP SEMICONDUCTOR BAND GAP (V)
EV,ET,EC ISS SITE ENERGIES (V)
EFERML FERMI LEVEL V)

DGADS3 ,DGADS4 FREE ENERGIES OF ADSORPTION TO THE
THP (J/MOLE)
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EREDOX  REDOX REACTION HALF~CELL POTENTIALS (REFERENCED TO
THE NORMAL HYDROGEN ELECTRODE) (V)
VALN,CONDN  SEMICONDUCTOR VALENCE AND CONDUCTION ENERGY SITE
CONCENTRATION (MOLES/CM3)
ANEQ  ELECTRON CONCENTRATION IN ABSENCE OF POTENTIAL GRADIENT
(MOLES/CM3)

READ 108,EGAP,VALN,CONDN

READ 108,EV,ET,EC

READ 109,DGADS3,DGADS4

READ 109 ,PHIOHP,EHMV

READ 109,SUMQ,CELECQ

CINT = SQRT({VALN*CONDN*EXP(-EGAP*FARAD/R/T))
ANEQ = (BKCHG + SQRT(BKCHG**2 + 4.*CINT**2))/2.
EFERMI = EGAP + R*T/FARAD*ALOG(ANEQ/CONDN)
FRACVQ = 1./(1.+EXP((EV-EFERMI)*FARAD/R/T))
FRACTQ = 1./(1.+EXP((ET-EFERMI)*FARAD/R/T))
FRACCQ = 1./(1.+EXP(({EC-EFERMI)*FARAD/R/T))
FRAC3Q = CBULK(3)*EXP(-DGADS3/R/T)/

1 (l.+CBULK(3)*EXP(-DGADS3/R/T))

FRAC4Q = CBULK(4)*EXP(-DGADS4/R/T)/

1  (l.+CBULK(4)*EXP(-DGADS4/R/T))

FUO3 = 1./(l.+CBULK(3)*EXP(-DGADS3/R/T))
FUO4 = 1./(1.+CBULK(4)*EXP(-DGADS4/R/T))
FUQOV = FRACVQ¥*EXP( (EV-EFERMI )*FARAD/R/T)
FUOT = FRACTQ*EXP((ET-EFERMI)*FARAD/R/T)
FUOC = FRACCQ*EXP((EC~EFERMI)*FARAD/R/T)
PHID = PHIOHP*FARAD/R/T

C3Q = CBULK(3)*CTOT*EXP(~Z(3)*PHIOHP*FARAD/R/T)

C4Q = CBULK(4)*CTOT*EXP(~Z(4)*PHIOHP*FARAD/R/T)

TKSL = SQRT(2.*R*T*CTOT/EPSOL*(CBULK(1)*(EXP(-Z(1)*PHID)-1.)
l +CBULK(2)*(EXP(=Z(2)*PHID)=-1.)
2 +CBULK(3 )*(EXP(-Z(3)*PHID)~-1.)
3 +CBULK( 4)*( EXP(~Z(4)*PHID)-1.)))

IF(PHIOHP.LE.O0.) DPOT3 = -TKSL*DL3

IF(PHIOHP.GT.0.) DPOT3 = TKSL*DL3
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CONTINUE

EX3 = EXP(DPOT3*FARAD/R/T)

EPSTR = EPSOL

RAT3 = FRAC3Q/FUO3

RAT4 = FRACAQ/FUO4

FRAC3Q = RAT3/(1.+RAT3+RAT4)

FRAC4Q = RAT4/(1.+RAT3+RAT4)

FUOIHP = 1./(1l.+RAT3+RAT4)

BKMIN = (GVAFRACVQHGT*FRACTQHGC*FRACCQ)*GISS + SUMQ*1.0E-06/FARAD
1 = (Z(3)*FRAC3Q+Z(4)*FRAC4Q)*GIHP

GISS = —(SUMQ*1.0E~06/FARAD - (Z({3)*FRAC3IQ+Z(4)*FRACAQ)*GIHP)
1 /(GV*FRACVQHGT*FRACTQ+GC*FRACCQ)
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DPOT2 = (DPOT3*EPSOL/DL3 - FARADXGIHP*(Z(3)*FRAC3Q + Z(4)*FRAC4Q))

*DL2/EPSTR

DPOT1l = ( FARAD*({GISS*{ GVA*FRACVQ+GT*FRACTQ+GC*FRACCQ) - BKINT)

+ DPOT2*EPSTR*SQRT( BKCHG*EPSOL/EPSC/CTOT) /DL2)*DL1/EPSC

IF(DPOT1.GE.0.) PHIOSS = -1.5
IF(DPOTL.LT.0Q.) PHIOSS = 1.5
PEQ = CINT**2/ANEQ

DO 52 KPOT=1,100

PHIOLD = PHIOSS

FOFPOT = EPSCXDPOT1*%*2/2./R/T/DL1**2/BKCHG - ANEQ/BKCHG*{EXP(
PHIOLD*FARAD/R/T)-1.)~ PEQ/BKCHG*{EXP(-PHIOLD*FARAD/R/T)-1.)
+ PHIOLD*FARAD/R/T

DFDPOT = FARAD/R/T*{1.-ANEQ/BKCHG*EXP(PHIOLD*FARAD/R/T)
+PEQ/BKCHG*EXP(~-PHIOLD*FARAD/R/T))

PHIOSS = PHIOLD - FOFPOT/DFDPOT

IF(ABS( (PHIOSS-PHIOLD)/PHIOSS).LT.1.0E~08) GO TO 54

CONTINUE

PRINT 53,KPOT

FORMAT(* CONVERGENCE NOT OBTAINED FOR PHIOSS IN*,I4,* ITERATIONS*)
PRINT 55,PHIOSS,PHIOLD

FORMAT(* PHIOSS, PHIOLD =*,2(E20.10))

STOP

CONTINUE

CELECQ = ANEQ/BKCHG*EXP(PHIOSS*FARAD/R/T)

CHOLEQ = CINT**2/CELECQ/BKCHG**2

EX1 = EXP(DPOT1*FARAD/R/T)

EX2Z = EXP(DPOT2*FARAD/R/T)

EQUIL(1) = FRACCQ*EX1/FUOC/CELECQ

EQUIL(2) = FUOV/CHOLEQ/FRACVQ/EX1

EQUIL(3) = FRACTQ*FUOV/FRACVQ/FUOT

EQUIL(5) = FRAC4Q*FUOV/FRACVQ/FRAC3Q*EX2
EQUIL(8) = C3Q*FUOTIHP*EX3**(-Z(3))/FRAC3Q/CTOT
EQUIL(9) = C4Q*FUOIHP*EX3**(-Z(4))/FRAC4Q/CTOT

PHIOSS = PHIOSS*FARAD/R/T
PHIOHP = PHIOHP*FARAD/R/T
DPOT1 = DPOT1*FARAD/R/T
DPOT2 = DPOT2*FARAD/R/T
DPOT3 = DPOT3*FARAD/R/T
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9 CONTINUE

CALCULATION OF DIMENSIONLESS GROUPS

SOLUTICN
DEBSOL DEBYE LENGTH (CM)

B3 RATIO OF SPECIES 3 AND 4 DIFFUSIVITIES (DIMENSIONLESS)

SEMICONDUCTOR
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ANI2
TET

DEBSC
DIFFL

DELT
ALM

SFLUX

BD

BE

SQUARE OF INTRINSIC CONCENTRATION

HOMOGENEQUS RECOMBINATION RATE CONSTANT

DEBYE LENGTH

MINORITY CARRIER DIFFUSION LENGTH
RATIO OF DEBYE TO DIFFUSION LENGTH

221

( DIMENSIONLESS)
(DIMENSIONLESS)
(CM)
(CM)
(DIMENSIONLESS)

RATIO OF DEBYE LENGTH TO SOLAR ABSORPTION LENGTH

SOLAR FLUX

INTERFACE

TO SCLUTION

(DIMENSIONLESS)
(DIMENSIONLESS)

RATIO OF ELECTRON AND HOLE DIFFUSIVITIES (DIMENSIONLESS)

RATIO OF CHARACTERISTIC TRANSPORT RATES FOR SEMLCONDUCTOR

( DIMENSIONLESS)

DEL1,DEL3  DISTANCE BETWEEN OSS AND ISS AND BETWEEN IHP AND
OHP ( DIMENSIONLESS)

EPSTR  PERMITTIVITY CHARACTERISTIC OF REGION BETWEEN ISS AND
OHP (C/V-CM)

DEBSTR  DEBYE LENGTH CHARACTERISTIC OF REGION BETWEEN ISS AND
OHP (CM)

GSC,RSC,GSOLN,RSOLN  PARAMETERS RELATING CHARGE ADSORBED ON

INTERFACE TO POTENTIAL CHANGES ACROSS INTERFACE

BKISS

FIXED POSITIVE CHARGE AT ISS

ANI2 = (CINT/BKCHG)**2
EQUIL(4) = EQUIL(3)/EQUIL(1)/EQUIL(2)/ANI2
EQUIL(6) = EQUIL(S)/EQUIL(3)
EQUIL(7) = EQUIL(6)*EQUIL(4)
EQUIL(10) = EQUIL(1)*EQUIL(4)
EQUIL(11) = EQUIL(10)/EQUIL(3)
EQUIL(12) = EQUIL(2)/EQUIL(3)
EQUIL(13) = EQUIL(12)*EQUIL(4)
TET = TKT/BKCHG
DEBSC = SQRT(R*T*EPSC/FARAD**2/BKCHG)
DEBSOL = SQRT(R*T*EPSOL/FARAD**2/CTOT)
IF(MDIM.NE.4) GO TO 13
RDIM(2) = VALN*RDIM(1)/CONDN/EQUIL{2)
RDIM(12) = VALN*RDIM(1)/CONDN/EQUIL(12)
RDIM(13) = VALN*RDIM(1)/CONDN/EQUIL(13)
DO 16 L=1,NR
RMOD(L) = RDIM(L)/SQRT(EQUIL(L))
CONTINUE

RATE(1)
RATE(2)
RATE(3)
RATE(4)
RATE(S)
RATE(6)
RATE(7)
RATE(8)
RATE(9)

RMOD( 1 )*GISS*DEBSC/DIFFE

RMOD( 2)*GISS*DEBSC/DIFFH
RMOD(3)*GISS**2*DERSC/DIFFH/BKCHG
RMOD(4)*GISS**2*DEBSC/DIFFE/BKCHG
RMOD( 5)*GISS*GIHP*DEBSC/DIFFH/BKCHG
RMOD( 6)*GISS*GIHP*DEBSC/DIFFE/BKCHG
RMOD( 7)*GISS*GIHP*DEBRSC/DIFFE/BKCUG
RMOD( 8 )*GIHP*DEBSOL/DIFF(3)/CTOT
RMOD( 9 )*GIHP*DEBSOL/DIFF(4)/CTOT

(DIMENSIONLESS)
(DIMENSIONLESS)
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RATE(10) = RMOD{10)*GISS*DEBSC/DIFFE
RATE(1ll) = RMOD(11)*GISS*DEBSC/DIFFE
RATE(12) = RMOD(12)*GISS*DEBSC/DIFFH
RATE(13) = RMOD(13)*GISS*DEBSC/DIFFH
GO TO l4
CONTINUE

RATE(1l) = RDIM(1)*GISS*DEBSC/DIFFE
RATE(2) = RDIM(2)*GISS*DEBSC/DIFFH
RATE(3) = RDIM(3)*GISS**2*DEBSC/DIFFH/BKCHG

RATE(4) = RDIM(4)*GISS**2*DEBSC/DIFFE/BKCHG

RATE(5) = RDIM(5)*GISS*GIHP*DEBSC/DIFFH/BKCHG
RATE(6) = RDIM(6)*GISS*GIHP*DEBSC/DIFFE/BKCHG
RATE(7) = RDIM(7)*GISS*GIHP*DEBSC/DIFFE/BKCHG

RATE(8) = RDIM(8)*GIHP*DEBSOL/DIFF(3)/CTOT
RATE(9) = RDIM(9)*GIHP*DEBSOL/DIFF(4)/CTOT
RATE(10) = RDIM({10)*GISS*DEBSC/DIFFE
RATE(l1l) = RDIM{11)*GISS*DEBSC/DIFFE
RATE(12) = RDIM(12)*GISS*DEBSC/DIFFH
RATE(13) = RDIM(13)*GISS*DEBSC/DIFFH

B3 = DIFF(3)/DIFF(4)

BE = DIFFE*BKCHG*DEBSOL/DIFF(3)/CTOT/DEBSC
BD = DIFFE/DIFFH

SFLUX = EF*ADS*QINC/BKCHG/STK2

DIFFL = SQRT(DIFFH/STK2)

DELT = DEBSC/DIFFL

ALM = DEBSC*ADS

DEL1 = DL1/DEBSC

DEL3 = DL3/DEBSOL

EPSTR = EPSOL

DEBSTR = DEBSOL

GSC = FARAD®**2*GISS*DEBSC/R/T/EPSC*DEL1
RSC = EPSTR*DEBSTR/EPSC/DL2*DELL

GSOLN = FARAD**2*DEBSOL*GIHP/R/T/EPSOL*DEL3
RSOLN = EPSTR*DEBSTR/EPSOL/DL2*DEL3

BKISS = BKINT/GISS

CONVERSION FACTORS

CL CONVERTS DIMENSIONLESS ELECTRON FLUX TO UNITS OF (MA/CM2)
CPOT CONVERTS DIMENSIONLESS POTENTIAL TO UNITS OF (MV)
CCHG CONVERTS DIMENSIONLESS CHARGE TO UNITS OF (MICRO-C/CM2)

CL = 1000.*FARAD*BKCHG*DIFFE/DEBSC
CPOT = 1000./(FARAD/R/T)

CCHG = 1.0E+06/( FARAD*DEBSC/R/T/EPSC)
QIT = QII/CCHG

e o e e e de e e e e e ek do it dode e o ke dede de o ok e e e dedk e de e e de e e e g ok e e e e e ke e e e e ke e de e ke de e de e e e de e

CONTINUE
IF(MDIM.EQ.1) CL = 1.263E+09
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IF(MDIM.EQ.1) CPOT = 25.85

IF(MDIM.EQ.1) CCHG = 1,621E-02
IF(MDIM.EQ.1) COND = 0.1214

IF(NCOUNT.EQ.O .AND. MOPT.EQ.1) CALL OPTIM1
IF(NCOUNT.EQ.0 .AND. MOPT.EQ.2) CALL OPTIM2
IF(NCOUNT.EQ.0 .AND. MOPT.EQ.3) CALL OPTIM3
READ 105,50,CURRNT

IF(MDIM.GT.1) SO = SO*SFLUX

PRINT INPUT PARAMETERS

PRINT 195
195 FORMAT(1H1//)
PRINT 200
200 FORMAT( 20X,* LIQUID~JUNCTION PHOTOVOLTAIC CELL */)
IF(MODE.EQ.1) PRINT 201
IF(MODE.EQ.2) PRINT 202
IF(MSOL.EQ.0) PRINT 196
IF{MSOL.EQ.1) PRINT 197

196 FORMAT( * MSOL = 0 ILLUMINATION AT SEMICONDUCTOR-ELECTROLYTE I
INTERFACE®)

197 FORMAT( * MSOL = 1 ILLUMINATION AT SEMICONDUCTOR-CURRENT COLLE
1CTOR INTERFACE*)

201 FORMAT( * MODE = 1 CURRENT SET AT BCNJ(J)*)

202 FORMAT( * MODE = 2 POTENTIAL SET AT BCNJ(J)*)
PRINT 203,HS,H,DSOL,DSC

203 FORMAT( * MESH SIZE; HS =*,F6.4,* H =*,F6.4,/,
1  * DEPTH; DSOL =*,F6.2,* DSC =*,F6.2)
IF(S0.GT.0.) GO TO 10
PRINT 205

205 FORMAT( * SEMICONDUCTOR IN THE DARK*)
10 IF(MODE.EQ.2) GO TO 20
IF(CURRNT) 20,15,20
15 PRINT 210
210 FORMAT( * CELL AT OPEN CIRCUIT*)
20 CONTINUE
PRINT 211
211 FORMAT( /,28X,* INPUT PARAMETERS*)
IF( NCOUNT.EQ.0) GO TO 19
LF( MPARAM.EQ.0) GO TO 24
19 IF(MDIM.EQ.1l) GO TO 24
IF(MDIM.NE.4) GO TO 21
PRINT 410
PRINT 415,EV,ET,EC
PRINT 416 ,VALN,CONDN
PRINT 417,EGAP,EFERMI
PRINT 411,DGADS3,DGADS4 ,PHIOHP,PHIOSS
410 FORMAT( * MDIM = 4*17X* INPUT ENERGY LEVELS*/)
411 FORMAT(* FREE ENERGY OF ADSORPTION OF SPECIES 3 AND 4 ONTO THE IHP
1 IN J/MOLE*/* AND PHIOHP AND PHIOSS (DIMENSIONLESS)*
2 /4(E15.4))
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415 FORMAT( * LOW, INTERMEDIATE, AND HIGH ISS SITE ENERGY LEVELS IN V
1*/3(E15.4))
416 FORMAT{ * VALENCE AND CONDUCTION BAND SITE CONCENTRATIONS IN MOLES
1/CM3*/2(E15.4))
417 FORMAT( * BAND GAP AND FERMI LEVEL IN V*/2(El15.4)/)
21 IF(MDIM.LE.2) GO TO 22
IF(MDIM.EQ.3) PRINT 498
IF(MDIM.EQ.4) PRINT 499
PRINT 500,FRACVQ,FRACTQ, FRACCQ,GV,GT,GC,GISS,GIHP,FRAC3Q, FRACAQ,
1  FUOIHP,SUMQ,BKINT,BKMIN
PRINT 502,DPOT1,DPOT2,DPOT3,EX1,EX2,EX3
PRINT 503,CELECQ,CHOLEQ,C3Q,C4Q
498 FORMAT( * MDIM = 3*13X* INPUT EQUILIBRIUM PARAMETERS*/)
499 FORMAT( /23X* EQUILIBRIUM PARAMETERS*/)
500 FORMAT( * FRACTIONAL ISS SITE CONCENTRATIONS (V, T, C)*/3(EL5.4)/
1 * DISTRIBUTION OF SITES (V, T, C)*/3(El5.4)/
2 % TOTAL ISS AND IHP SITE CONCENTRATION (MOLES/CM2)*/2(E15.4)/
3 * COMPUTED FRACTIONAL OCCUPATION OF IHP (3, 4, AND VACANT)*
4 /3(EL5.4)/
5 % TOTAL CHARGE SET AT INTERFACE (MICRO=-C/CM2)*/E15.4/
6 * FIXED POSITIVE CHARGE AT ISS AND MINIMUM FIXED CHARGE (EQUIV/
7CM2)*/2(E15.4)/)
501 FORMAT( * PROGRAM ABORTED; SURFACE CONCENTRATIONS AT IHP < ZERO*/)
502 FORMAT( * INTERFACIAL POTENTIAL DRIVING FORCES (V)*/3(El15.4)/
1 * EXP(DPOT(1l, 2, 3)FARAD/R/T)*/3(El5.4))
503 FORMAT( * 0SS ELECTRON AND HOLE CONCENTRATIONS (DIMENSIONLESS)*/
1 2(E15.4)/
2 * OHP CONCENTRATIONS 3 AND 4 (MOLES/CM3)*/2(El15.4)/)
IF( FRAC4Q.LE.0.) PRINT 501
IF(FRAC4Q.LE.0.) STOP
22 IF(NCOUNT.EQ.0) GO TO 23
IF(MPARAM.EQ.0) GO TO 24
23 CONTINUE
PRINT 299
PRINT 300
PRINT 301,RDIM(L),RDIM(2)
PRINT 302,RDIM(3),RDIM(4),RDIM(5),RDIM(6),RDIM(7)
PRINT 303,RDIM(8),RDIM(9)
PRINT 298,RDIM(10),RDIM(11),RDIM{12),RDIM(13)
IF(MDIM.EQ.4) PRINT 297
IF(MDIM.EQ.4) PRINT 301,RMOD(1),RMOD(2)
IF(MDIM.EQ.4) PRINT 302,RMOD(3),RMOD(4),RMOD(5),RMOD{6),RMOD(7)
IF(MDIM.EQ.4) PRINT 303,RMOD(8),RMOD(9)
IF(MDIM.EQ.4) PRINT 298,RMOD(10),RMOD{11),RMOD(12),RMOD(13)
PRINT 304
PRINT 305,FARAD,R,T
PRINT 306
PRINT 307,CTOT,EPSOL,COND
PRINT 308,(DIFF(I), I=1,4)
PRINT 309
PRINT 310,DIFFE,DIFFH



225

PRINT 311,EPSC,BKCHG
PRINT 312,ADS,EF,QINC
PRINT 313,S5TK2,SPOSN,TKT,CINT
PRINT 314
PRINT 315,GIHP,GISS,BKINT
PRINT 316,DL1,DL2,DL3
PRINT 317
PRINT 318,EPSTR,DEBSTR
PRINT 319,DEBSOL,DEBSC,DIFFL
PRINT 320
PRINT 321,CL,CPOT,CCHG
PRINT 322
297 FORMAT( /* RATE CONSTANTS MODIFIED BY ENERGY DIFFERENCES*)
298 FORMAT( * RATE CONSTANTS 10,11,12 AND 13 IN CM3/MOLE-SEC*
1 /4(El15.4))
299 FORMAT( * MDIM > l*15X* DIMENSIONAL PARAMETERS*)
300 FORMAT( /* HETEROGENEOUS REACTION RATE CONSTANTS*)
301 FORMAT( * RATE CONSTANTS 1 AND 2 IN CM3/MOLE-SEC*/ 2(ELl5.4))
302 FORMAT( * RATE CONSTANTS 3,4,5,6, AND 7 IN CM2/MOLE-SEC*/5(El5.4))
303 FORMAT( * RATE CONSTANTS 8 AND 9 IN 1/SEC*/2(El5.4))
304 FORMAT( /* GENERAL PARAMETERS*)
305 FORMAT( * FARADAYS CONSTANT IN C/EQUIV, IDEAL GAS CONSTANT IN J/MO
1LE-K, AND TEMPERATURE*/* IN DEGREES K*/3(El5.4))
306 FORMAT( /* SOLUTION PARAMETERS*)
307 FORMAT{ * TOTAL ION CONCENTRATION IN MOLES/CM3, PERMITTIVITY IN C/
lv-=CM, AND CONDUCTIVITY*/* IN 1/OHM-CM*/3(E1l5.4))
308 FORMAT( * DIFFUSIVITIES OF ION (L) IN CM2/SEC*/4(EL5.4))
309 FORMAT( /* SEMICONDUCTOR CHARACTERISTICS*)
310 FORMAT( * ELECTRON AND HOLE DIFFUSIVITIES IN CM2/SEC*/2(El5.4))
311 FORMAT( * PERMITTIVITY IN C/V-CM AND BACKGROUND CHARGE IN EQUIV/CM
13*/2(E15.4))
312 FORMAT( * ABSORPTION COEFF. IN 1/CM, PHOTON EFFICIENCY, AND INCIDE
INT FLUX IN*/# MOLES/CM2-SEC*/3(E15.4))
313 FORMAT( * HOMOGENEOUS RECOMB. RATE CONSTANTS IN 1/SEC, DIMENSIONLE
1SS, AND MOLES/CM3%/3(El15.4)/* INTRINSIC CONCENTRATION IN MOLES/CM3
2% /E15.4)
314 FORMAT( /* INTERFACIAL PARAMETERS*)
315 FORMAT{ * DENSITY OF SITES AT IHP AND ISS IN MOLES/CM2*/2(El5.4)/
1 * FIXED POSITIVE CHARGE AT ISS IN EQUIV/CM2*/EL5.4)
316 FORMAT( * DISTANCE BETWEEN 0SS AND ISS, ISS AND IHP, AND IHP AND O
LHP IN CM*/3(EL5.4))
317 FORMAT( /* CALCULATED PARAMETERS*)
318 FORMAT( * PERMITTIVITY (C/V-CM) AND DEBYE LENGTH (CM) CHARACTERIST
1IC OF REGION */* FROM ISS TO IHP*/2(E15.4))
319 FORMAT( * DEBYE LENGTH IN SOLUTION AND SEMICONDUCTOR, AND MINORITY
1 CARRIER DIFFUSION*/* LENGTH IN CM*/3(El15.4))
320 FORMAT( /* CONVERSION FACTORS*)
321 FORMAT( * MULTIPLY DIMENSIONLESS VARIABLE BY FACTOR TO GET CURRENT
1 IN MA/CM2, POTENTIAL*/* IN MV AND CHARGE IN MICRO-C/CM2*/3(El15.4)
2)
322 FORMAT( /25X* DIMENSIONLESS GROUPS*)



226

24 PRINT 240
240 FORMAT( /* SEMICONDUCTOR CHARACTERISTICS*)
IF(MODE.EQ.1) PRINT 215, ALM,DELT,BD,S0,CURRNT
IF(MODE.EQ.2) PRINT 216, ALM,DELT,BD,SO,CURRNT
215 FORMAT( /* ALM =* E10.3,%, DELT =%, E10.3,*, BD =* E10.3,
1 *, S0 =*,E10.3,/,* CURRNT =*,F6.2,% MA/CM2%*)
216 FORMAT( /* ALM =* E10.3,*%, DELT =*,E10.3,*, BD =*,E10.3,
1 *, SO =% E10,3,/,* CURRNT =*,F6.2,% (POTENTIAL SET AT BCNJ(J)
2)*)
IF(MODE.EQ.1) CURRNT = CURRNT/CL
IF{ NCOUNT.EQ.0) GO TO 25
IF( MPARAM.EQ.0) GO TO 35
25 CONTINUE
PRINT 225, SPOSN, TET, ANI2
225 FORMAT( /* SPOSN = * E10.3,*, TET = * E10.3,%, ANI2 = * E10.3)
PRINT 250
250 FORMAT( /* INTERFACIAL CHARACTERISTICS*/)
DO 30 L=1,NR
30 PRINT 255,L,{S(1,L), I=1,NC)
255 FORMAT( * L = *I2% 3(I,L) = * 13(F4.1))
PRINT 260,(L,RATE(L),L,EQUIL(L), L=1,NR)
260 FORMAT( * RATE(*I2%)= *E1(Q,3* EQUIL(*I2*)= *El4,7)
IF(MDIM.EQ.4) PRINT 261,MDIM
IF(MDIM.EQ.3) PRINT 261,MDIM
IF(MDIM.EQ.2) PRINT 262
261 FORMAT( * MDIM =*I2* EQUILIBRIUM CONSTANTS CALCULATED FROM INPUT
1 EQUILIBRIUM PARAMETERS*/)
262 FORMAT( * MDIM = 2 EQUILIBRIUM CONSTANTS ARE INPUT*)
PRINT 265,6V,GT,GC,SI
265 FORMAT(* GV = *E10.3% GT = *E10.3* GC = *E10.3* SI = *E10.3)
PRINT 270,RSC,GSC,RSOLN,GSOLN
270 FORMAT( * RSC = *E10.3* GSC = *E10.3*% RSOLN = *E10.3* GSOLN
1= *E10.3)
PRINT 275, DEL1,DEL3,BKISS
275 FORMAT( * DEL1l = *E1Q.3* DEL3 = *£10.3*% BKISS =*E10.3)
PRINT 280
280 FORMAT{ /* SOLUTION CHARACTERISTICS*/)
PRINT 285,(1,CBULK(I),I,Z(1), I=l,4)
285 FORMAT( * CBULK(*I2*) = *ELQ.3% Z(*12%) = *F3.0)
PRINT 290,BE,B3
290 FORMAT( * BE =*E10.3* B3 = *E10.3)
35 CONTINUE
PRINT 230
230 FORMAT( //* CONVERGENCE CRITERIA *)
RETURN
END

SUBROUTINE BC1(J)
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SUBROUTINE FOR CALCULATION OF EQUATION COEFFICIENTS FOR THE
BOUNDARY CONDITIONS IN THE SOLUTION (OUTSIDE THE DIFFUSE
REGION).

COMMON/BA/ N,NJ,A(7,7),B(7,7),C(7,250),D(7,15),6(7),X(7,7),¥(7,7)
COMMON/SC/ PHI(250)

COMMON/RUN/ EX,H,H2,HD2,EXH,NJJ,INDEX(7,250),KERR,ERRSUB
COMMON/SOL/ CBULK(4),Z(4),CSOL(4,250),F(4),HS,DC(4,250),XP(4)
COMMON/FLUX/ F3(250),F4(250)

COMMON/SMQ/ SMQ,QI,QSL,SMQL

COMMON/CHG/ SQL(250)

POTENTIAL SET TO ZERO

G(1) = PHI(J)
B(1l,1) = -1.0
SQL(J) = 0.

CONCENTRATIONS FOR SPECIES 1 THROUGH 4 SET TO BULK VALUES

DO 5 I=1,4

SQL(J) = SQL(J) + Z(I)*CSOL(I,J)*EXP(~Z(I)*PHI(J))*usS/3.
XP(I) = EXP(-Z(I)*(PHI(J)+PHI(J+1))/2.)

F(I) = —-DC(I,J)*XP(I)

G(I+1) = CSOL(I,J) - CBULK(I)*EXP(Z(I)*PHI(J))

B(I+1,1) = CBULK(I)*Z(I)*EXP(Z(I)*PHI(J))

B(I+l,I+1) = -1,

CONTINUE

CALCULATION OF FLUX FOR SPECIES 3

G(6) = F3(J) + DC(3,I)*XP(3)
B(6,1) = Z{3)*DC(3,J)*XP(3)*0.5

D(6,1) = Z(3)*DC(3,J)*XP(3)*0.5
B(6,4) = XP(3)

D(6,4) = -XP(3)

B(6,6) = -1.0

CALCULATION OF FLUX FOR SPECIES 4

G(7) = F4(J) + DC(4,J)*XP(4)

B(7,1) = Z(4)*DC(4,J)*XP(4)*0.5
D(7,1) = Z(4)*DC(4,J)*XP(4)*0.5
B(7,5) = XP(4)

D(7,5) = -XP(4)

B(7,7) = -1.0

RETURN

END
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SUBROUTINE SOLN(J)

SUBROUTINE FOR CALCULATION OF COEFFICIENTS FOR EQUATIONS
GOVERNING THE SOLUTION (POISSON“S EQUATION AND MATERIAL
BALANCES) .

DIMENSION FM(4),XM(4)

COMMON/BA/ N,NJ,A(7,7),B(7,7),C(7,250),D(7,15),G(7),X(7,7),¥(7,7)
COMMON/SC/ PHI(250)

COMMON/RUN/ EX,H,H2,HD2,EXH,NJJ, INDEX(7,250),KERR,ERRSUB
COMMON/SOL/ CBULK(4),Z(4),CSOL(4,250),F(4),HS,DC(4,250),XP(4)
COMMON/FLUX/ F3(250),F4(250)

COMMON/SMQ/ SMQ,QI,QSL,SMQL

COMMON/CHG/ SQL{250)

PCISSON"S EQUATION

G(l) = PHI(J+1l) - 2.*PHI(J) + PHI(J-1)

A(1,1) = -1,

B(L,1) = 2.

D(L,1) = -1.

BIG = ABS{2.*PHI(J))

SQL(J) = 0.
DO 10 I=1,4
GCON = (HS**2)*Z(I)*CSOL(I,J)*EXP(~-Z(I)*PHI(J))
SQL(J) = SQL{J) + GCON/HS/3.
G(1l) = G(1) + GCON
IF(ABS(GCON) .GT.BIG) BIG = ABS(GCON)
B(1,1) = B(1,1) + (HS**2)*CSOL(I,J)*EXP(=Z(I)*PHI(J))*Z(I1)**2
B(l,I+1) = —(HS#**2)*Z{ I Y*EXP(~Z( L)*PHI(J))
XM(I) = XP(I)
XP(L) = EXP(~Z(1)*((PHI(J)+PHI(J+1))/2.

1 - (PHI(J+1) = 2.*PHI(J) + PHI(J-1))/8.))

10

IF(I.GE.3) GO TO 10
FM(I) = F(I)
F(I) = -DC(I,J)*XP(I)

CONTINUITY OF FLUX FOR SPECIES 1 AN ! )

G(I+1) = FM(I) - F(I)

ACT+1,1) = Z(I)*FM(I)*0.750 + Z(L)* E;
B(I+1,1) = Z(I)*FM(1)*0.375 - Z(I)* er -
D(I+l,1) = ~Z(I)*F(I)*0.375

A(L+1,I+1) = =XM(I) 71\
B(I+1,I+1) = XP(I) - A(I+1,T+l)

D{I+1,I+1) = =XP(I)

CONTINUE

CONTINUITY OF FLUX FOR SPECIES 3

G(&) = F3(J~-1) - F3(J)
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A(4,6) = =1.0
B(4,6) = 1.0

CONTINUITY OF FLUX FOR SPECIES 4

G(5) = F4(J-1) = F4(J)
A(5,7) = -1.0
B(5,7) = 1.0

CALCULATION OF FLUX FOR SPECIES 3

G(6) = F3(J) + DC(3,J)*XP(3)
A(6,1) = =Z(3)*DC(3,J)*XP(3)*0.125
B(6,1) = Z(3)*DC(3,J)*XP(3)*0.750
D(6,1) = Z(3)*DC(3,J)*XP(3)*0.375
B(6,4) = XP(3)

D(6,4) = -XP(3)

B(6,6) = -1.0

CALCULATION OF FLUX FOR SPECIES 4

G(7) = F4(J) + DC(4,J)*XP(4)

A(7,1) = -Z(4)*DC(4,J)*XP(4)*0.125
B(7,1) = Z(4)*DC(4,J)*XP(4)*0.750
D(7,1) = Z(4)*DC(4,J)*XP(4)*0.375
B(7,5) = XP(4)

D(7,5) = -XP(4)

B(7,7) = -1.0

LF(ABS(G(1)) .LE.BIG*ERRSUB) G(1) = O.
RETURN

END

SUBROUTINE INTRFC(J)

SUBROUTINE FOR CALCULATION OF COEFFICIENTS FOR EQUATIONS
GOVERNING THE SEMICONDUCTOR-SOLUTION INTERFACE. THE EQUATIONS

GOVERNING THE INNER HELMHOLTZ PLANE, THE INNER SURFACE STATES,

AND THE OQUTER SURFACE STATES ARE WRITTEN HERE.

DIMENSION IE(28)
COMMON/BA/ N,NJ,A(7,7),B(7,7),6(7,250),D(7,15),6(7),%(7,7),¥(7,7)
COMMON/LI/ AA(28,28),BB(28,28),CC(28,1),DD(28,28),GG(28)
COMMON/LI2/ AM(28,28),BM(28,28),DM(28,28),GM(28)

COMMON/SC/ PHI(250),P(250),AN(250),DFN(250) ,DFP(250),FN(250),
1 FP(250),RHO(250),D2(250)

COMMON/RUN/ EX,H,H2,HD2,EXH,NJJ,INDEX(7,250) ,KERR,ERRSUB

COMMON/IN/ ALM,DELT,BD,SO,CURRNT,QII,SPOSN,TET,ANI2,DSC,DSOL,MSOL
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COMMON/IN2/ BE,B3,RSC,GSC,RSOLN,GSOLN,GV,GT,GC,SI,DELL,DEL3
COMMON/SOL/ CBULK(4),Z(4),CSOL(4,250),F(4),HS,DC(4,250),XP(4)
COMMON/FLUX/ F3(250),F4(250)

COMMON/IFC/ RATE(13),EQUIL(13),5(13,13),CONC(13),RXN(13),RXS(13)
1 ,CIF(3)

COMMON/IFC2/ PHISS,PHISC,PHIHP,BKISS

COMMON/CHG/ SQL(250)

COMMON/SMQ/ SMQ,QI,QSL,SMQL

ERRSUB = 1.0E-09

NR = 13

NC = 13

NP = 28

NE = N+1

J = J+1

EXDIF1 = EXP((PHI{J)-PHISC)/2.)

EXDIF2 = EXP((PHISS-PHIHP)/2.)

EXDIF3 = EXP((PHIHP-PHI(J-1))/2.)

CONC(1) = AN(J)*EXP(PHI(J))

CONC(2) = P(J)*EXP(-PHI(J))
CONC(3) = CIF(1)
CONC({5) = CIF(2)
CONC(7) = CIF(3)
CONC(9) = CIF(4)

CONC(10) = CIF(5)
CONC(12) = CSOL(3,J-1)*EXP(-Z(3)*PHI(J-1))
CONC(13) = CSOL(4,J-1)*EXP(-Z(4)*PHI(J-1))
DO 50 L=1,NR
RLB = RATE(L)
RLF = RLB*EQUIL(L)
DO 25 I=1,NC
IF(S(IL,L)) 5,25,15
IF(CONC(1).GT.0.) GO TO 10
RLB = O.
GO TO 25
RLB = RLB*CONC(I)**(-S(I,L))
GO TO 25
IF(CONC(1).GT.0.) GO TO 20
RLF = 0,
GO TO 25
RLF = RLF*CONC(I)**(S(I,L))
CONTINUE
IF(L.GT.1l) GO TO 27
RLB = RLB*EXDIF1
RLF = RLF/EXDIFl
GO TO 45
IF(L.GT.2) GO TO 30
RLB = RLB/EXDIF1
RLF = RLF*EXDIF1
GO TO 45
IF(L.LE.4) GO TO 45
IF(L.GT.7) GO TO 35
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35

37

38

45
50

60

RLB = RLEB*EXDIF2
RLF = RLF/EXDIF2
GO TO 45
IF(L.EQ.8) I = 3
IF(L.EQ.9) I = &
IF(L.GT.9) GO TO 37
RLB = RLB*EXDIF3**(-Z(I))
RLF = RLF/EXDIF3**(-2(1))
GO TO 45
IF(L.GT.11) GO TO 38
RLB = RLB*EXDIFl
RLF = RLF/EXDIFl
GO TO 45
RLB = RLB/EXDIF1
RLF = RLF*EXDIF1
RXS(L) = RLF + RLB
CONTINUE
IF(MSOL.EQ.0) EX = SO*EXP(-ALM*H/4.)
IF(MSOL.EQ.1) EX = SO*EXP(-~ALM*H*( FLOAT{NJ)-FLOAT(J)+0.25))
ANQ = (3.%AN(J) + AN(J+1))/4.
PQ = (3.*P(J) + P(J+1))/4.
EXJ = EXP(~(3.*PHI(J) + PHI(J+1))/4.)
DEN = ANQ/EXJ + SPOSN*PQ*EXJ + TET
HD2 = HD2/2.
REC = (ANQ*PQ — ANI2)/DEN
DO 60 I=1,NP
IE(I)=0
GG(I) = 0.
DO 60 K=1,NP
AA(I,K) = 0.
BB(I,K) = 0.
DD(I,K) = O.
CONTINUE
FLJ = P(J)*EXP(-PHI(J))
FLIPl = P(J+1)*EXP(-PHI(J+1))
FLJPH = SQRT(FLJ*FLJP1)
GLJ = AN(J)*EXP(PHI(J))
GLJPL = AN(J+1)*EXP(PHI(J+1))
GLJPH = SQRT(GLJ*GLJP1)
BANQ = (GLJPH-GLJ)/ALOG(GLJPH/GLJ)
BPQ = ( FLJPH-FLJ)/ALOG(FLJPH/FLJ)
QI = (PHI(J)-PHISC)/DELL

SMQ=H*(1.-( GLJP1-GLJ)/ALOG(GLJP1/GLJ )+ FLIP1-FLJ) /ALOG(FLJPL/FLJ))

POISSON"S EQUATION EVALUATED AT QUARTER-MESH POINT BETWEEN 0SS

AND ISS

GG(1l) = RHO(J+1)/4. + 3.%RHO(J)/4. = 2.%((PHI{J+1)-PHI(J))/H-QI)/H

BB(l,l) = -2./H2 - 2./H/DELl1
DD(1,1) = 2./H2
BB(1l,6) = =3./4.

231
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DD(1,6) = =1./4.
BB(1,13) = 2./H/DEL1

CONTINUITY OF ELECTICAL CURRENT

GG(2) = (FP(J)-FP(J+1))/BD = FN(J)+FN(J+1)
BB(2,4) = -1./BD $ DD(2,4) = 1./BD
BB(2,5) = 1. $ DD(2,5) = ~-1.

MATERIAL BALANCE OF HOLES AT QUARTER-MESH POINT BETWEEN 0SS AND
ISS

EPS = DEN*(EX-( FP(J+1)-FP(J))/HD2)/ANI2
IF(ABS(EPS).GT.0.2) GO TO 2100

REM = ALOG(1+EPS)

GG(3) = ALOG(ANQ*PQ/ANI2) - REM

IE(3) = 1

BB(3,1) = 3.*EPS/(1l.+EPS)/DEN*( ANQ/EXJ-SPOSN*PQ*EXJ)/4.
DD(3,1) = EPS/(1.+EPS)/DEN*( ANQ/EXJ~SPOSN*PQ*EXJ) /4.
BB(3,2) = -3./ANQ/4. + 3.%EPS/(1.+EPS)/DEN/EXJ/4.
DD(3,2) = -1./ANQ/4. + EPS/(1.+EPS)/DEN/EXJ/4.

BB(3,3) = -3./PQ/4. + 3.*EPS/(1.+EPS)/DEN*SPOSNX*EXJ/4.
DD(3,3) = -1./PQ/4. + EPS/(l.+EPS)/DEN*SPOSN*EXJ /4.
BB(3,4) = DEN/(l.+EPS)/ANI2/HD2

DD(3,4) = -DEN/(1.+EPS)/ANI2/HD2

GO TO 2101

GG(3) = HD2*(EX-REC) + FP(J) - FP(J+1)

BB(3,1) = =3.*HD2*REC*( ANQ/EXJ~SPOSN*PQ*EXJ)/(DEN*4.)
DD(3,l) = -HD2*REC*( ANQ/EXJ - SPOSN*PQ*EXJ)/(DEN*4.)

BB(3,2) = 3.*HD2*(PQ - REC/EXJ)/(DEN*4.)
DD(3,2) = BB(3,2)/3.

BB(3,3) = 3.*HD2*(ANQ - REC*SPOSN*EXJ)/(DEN*4.)
DD(3,3) = HD2*(ANQ - REC*SPOSN*EXJ)/(DEN*4.)
BB(3,4) = ~1. § DD(3,4) = 1.

CONTINUE

RXN(1) TRANSFER OF CONDUCTION-BAND ELECTRONS TO HIGH-ENERGY
ISS SITES

EPS = RXN(1)/CONC(7)/EXDIF1/RATE(1l)

IF( ABS(EPS).GT.0.01) GO TO 2015

REM = ALOG(1l.+EPS)

IF( ABS(REM).LT.1.0E~09) REM = EPS*(l.-EPS*(.5-EPS*(1./3.-EPS/4.)))
GG(4) = ALOG(EQUIL({1)*CONC(L1)*CONC(8)/CONC(7)/EXDIF1**2)
1 -REM

1IE(4) = 1

BB(4,1) = -1./(1.4+EPS)*EPS/2.

BB(4,2) = =-1./AN(J)

BB(4,10) = 1./CONC(7)+1./CONC(8)-1./(1.+EPS)*EPS/CONC(7)
BB(4,13) = -1.,041./(1.+EPS)*EPS/2.

BB(4,17) = 1./(1.+EPS)/CONC(7)/EXDIF1/RATE(1)
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GO TO 2014
2015 GG(4) = RXN(1l) - RATE(1)*(EQUIL(1)*CONC(1)*CONC(8)/EXDIFl
1 —CONC{ 7 Y*EXDIF1)
BB(4,1) = =RXS(1)/2. + RATE(L)*EQUIL(1)*CONC(8)*CONC(1)/EXDIFl
BB(4,2) = RATE(1)*EQUIL(1)*CONC(8)/EXDIFL*EXP(PHI(J))
BB(4,10) = -RATE(L)*(EQUIL(1)*CONC(1)/EXDIF1 + EXDIFl)
BB(4,13) = RXS(1)/2.
BB(4,17) = -1.0
2014 CONTINUE

c
C POTENTIAL SET TO ZERO
c

GG(5) = PHI(J) § BB(5,1) = ~-1.0
c
c . CALCULATION OF CHARGE DENSITY
c

EXG = EXP(~PHI(J))
EPS = RHO(J) + P(J)*EXG
IF( ABS(EPS).GT.0.2) GO TO 2310
REM = ALOG(1.+EPS)
IF( ABS(REM) .LT.1.0E-09) REM = EPS*(1.-EPS*(.5-EPS*(l./3.-EPS/4.)))
GG(6) = PHI(J) + ALOG(AN(J)) ~ REM
IE(6) = 1
BB(6,1) = =1. = P(J)*EXG/(l.+EPS)
BB(6,2) = =1./AN(J)
BB(6,3) = l./(Ll.+EPS)*EXG
BB(6,6) = 1./(1.+EPS)
GO TO 2311
2310 GG(6) = 1.-AN(J)/EXG+P(J)*EXG + RHO(J)
BB(6,1) = P(J)*EXG+AN(J)/EXG
BB(6,2) = 1.0/EXG
BB(6,3) = -EXG
BB(6,6) = =1.0
2311 CONTINUE

C
C POISSON”S EQUATION EVALUATED AT IHP
c
GG(7) = RSOLNA(PHISS-PHIHP) - PHIHP+PHI(J-1)
1 +GSOLN*{CONC( 9)*Z(3) + CONC(10)*Z(4))
AA(7,1) = -1.
BB(7,7) = 1.+RSOLN
BB(7,11) = -GSOLN*Z(3)
BB(7,12) = -GSOLN*Z(4)
BB(7,27) = =-RSOLN
C
C CONTINUITY OF HOLE FLUX
c

GG(8) = FP(J)/H + RXN(2) + RXN(1l2) + RXN(13)
BB(8,4) = -1./4
BB(8,18) = -1.0
BB(8,25) = -1.0
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BB(8,26) = -1.0
MATERITAL BALANCE FOR INTERMEDIATE ENERGY LEVEL ISS ELECTRONS

GG(9) = (~-RXN(12) + RXN(3))/BD + RXN(4) + RXN(10) - RXN(6)

BB(9,14) = 1.0
BB(9,19) = -1.0/BD
BB(9,20) = -1.0
BB(9,23) = -1.0
BB(9,25) = 1.0/BD

MATERIAL BALANCE FOR HIGH ENERGY LEVEL ISS ELECTRONS

GG(10) = =RXN(13)/BD + RXN(1l) + SI*S0O - RXN(4) = RXN(7)

BB(10,17) = =1.0
BB(10,20) = 1.0
BB(10,22) = 1.0
BB(10,26) = 1.0/BD

MATERIAL BALANCE FOR ADSORBED SPECIES 3 AT IHP

GG(11) = RXN(8) + S(9,5)*BE*(RXN(5)/BD + RXN({6) + RXN(7))
BB(11l,14) = -5(9,5)*BE

BB(1ll,15) = =1.0

BB(11,21) = -5(9,5)*BE/BD

BB(11,22) = =S(9,5)*BE

MATERIAL BALANCE FOR ADSORBED SPECIES &4 AT IHP

GG(12) = RXN(9) - B3I*BE*(RXN(S5)/BD + RXN(6) + RXN(7))
BB(12,14) = B3*BE-

BB(12,16) = -1.0

BB(12,21) = B3*BE/BD

BB(12,22) = B3*BE

CONTINUITY OF ELECTRON FLUX

GG(13) = FN(J)/H + RXN(1l) + RXN(10) + RXN(1ll)
BB(13,5) = -1./H
BB(13,17) = -1.0
BBR(13,23) = -1.0
BB(13,24) = -1.0

RXN(6) CHARGE-TRANSFER WITH INTERMEDIATE ENERGY ISS ELECTRONS

EPS = RXN(6)/CONC(10)/CONC(6)/EXDIF2/RATE(6)

IF(ABS(EPS).GT.0.2) GO TO 2013

REM = ALOG(1.+EPS)

LF(ABS(REM) .LT.1.0E-09) REM=EPS*(1.-EPS*(.5-EPS*(1./3.-EPS/4.)))

GG(14) = ALOG(EQUIL(6)*CONGC(5)*S(9,6)*CONC(9)/CONC(10)/CONC(6)/
EXDIF2#**2) — REM
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IE(14) = 1

BB(14,27) = 1.0-1./(1.+EPS)*EPS/2.

BB(14,7) = -1.0+1./(1.+EPS)*EPS/2.

BB(14,9) = -1./CONC(5)-1./CONC(6)+L./(1.+EPS)*EPS/CONC(6)
BB(14,11) = -1./CONC(9)

BB(14,12) = 1./CONC(10)-1./(1.+EPS)*EPS/CONC(10)

BB(14,14) = 1./(1.+EPS)/CONC(10)/CONC(6)/EXDIF2/RATE(6)

GO TO 2012

GG(14) = RXN(6) = RATE(6)*(EQUIL(6)*CONC(5)*S(9,6)*CONC(9)/EXDIF2

1 ~ CONC(10)*CONC(6)*EXDIF2)

BB(14,7) = RXS(6)/2.
BB(14,9) = RATE(6)*{EQUIL(6)*S(9,6)*CONC(9)/EXDIF2 +

1  CONC(10)*EXDIF2)

2012

2001

2000

BB(14,11) = RATE(6)*EQUIL(6)*S(9,6)*CONC(5)/EXDIF2
BB(14,12) = -RATE(6)*CONC(6)*EXDIF2

BB(14,14) = =1.0

BB(14,27) = -RXS(6)/2.

CONTINUE

RXN(8) ADSORPTION OF SPECIES 3 TO IHP

EPS = RXN(8)*EXDIF3**(Z(3))/RATE(8)/CONC(11)/CONC(12)
IF(ABS(EPS).GT.0.2) GO TO 2001 $ REM = ALOG(l.0+EPS)
IF(ABS(REM).LT.1.0E-9) REM = EPS*(1.-EPS*(.5-EPS*(1./3.-EPS/4.)))
GG(15)= ALOG(EQUIL(B8)*CONC(9)*EXDIF3*#(2.*Z(3))/CONC(11)/CONC(12))
1 -REM

IE(15) = 1

AA(15,1) = 1.0/(1.0+EPS)*EPS*Z(3)/2.0

BB(15,7) = =Z(3) + 1.0/(1.0+EPS)*EPS*Z(3)/2.0

BB(15,11) = -1.0/CONC(9)

BB(15,28) = 1.0/CONC(11)=1.0/(1.0+EPS)*EPS/CONC(11)

AA(15,4) = 1.0/CSOL(3,J-1)~1.0/(1.0+EPS)*EPS/CSOL({3,J-1)
BB(15,15) = 1.0/(1.0+EPS)*EXDIF3**(Z(3))/RATE(8)/CONC(11)/CONC(12)
GO TO 2000

GG(15) = RXN(8) = RATE(8)*(EQUIL(8)*CONC(9)/EXDIF3**(-Z(3))

1 - CONC(11)*CONC(12)*EXDIF3**(-Z(3)))

AA(15,1) = -Z(3)*(RXS(8)/2. ~ RATE(8)*CONC(11)*CONC(12)*EXDIF3*#
1 (-2(3)))

AA(15,4) = -RATE(8)*CONC(11)*EXP(-2(3)*PHI(J-1))*EXDIF3**(-Z(3))
BB(15,7) = Z(3)*RXS(8)/2.

BB(15,11) = RATE(8)*EQUIL(8)/EXDIF3**(-2Z(3))

BB(15,15) = -1.0

BB(15,28) = ~RATE(8)*CONC(12)*EXDIF3**(~Z(3))

CONTINUE

RXN(9) ADSORPTION OF SPECIES 4 TO IHP

EPS = RXN(9)*EXDIF3#**(Z(4))/RATE(9)/CONC(11)/CONC(13)
IF(ABS(EPS).GT.0.2) GO TO 2007

REM = ALOG(l.0+EPS)

IF(ABS(REM).LT.1.0E-09) REM = EPS*(1.-EPS*(.5-EPS*(1./3.-EPS/4.)))
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GG( 16)=ALOG( EQUIL(9)*CONC( L0)*EXDIF3**(2,%2(4))/CONC(11)/CONC(13))
-REM

IE(1l6) = 1

AA(16,1) = 1.0/(1.04EPS)*EPS*Z(4)/2.0

BB(16,7) = =Z(4) + 1.0/{1.0+EPS)*EPS*Z(4)/2.0

BB(16,28) = 1.0/CONC(11)-1.0/(1.0+EPS)*EPS/CONC(11)

BB(16,12) = -1.0/CONC(10)

BB(16,16) = 1.0/(1.0+EPS)*EXDIF3**(Z(4))/RATE(9)/CONC(11)/CONC(13)

AA(16,5) = 1.0/CSOL(4,J=-1)=1.0/(1.0+EPS)*EPS/CSOL(4,J-1)

GO TO 2006

2007 GG(16) = RXN(9) = RATE(9)*(EQUIL(9)*CONC(10) /EXDIF3**(-Z(4))

2006

2021

1

1

1

- CONC(11)*CONC(13)*EXDIF3**(-2(4)))

AA(16,1) = =Z(4)*(RXS(9)/2. - RATE(9)*CONC(11)*CONC(13)*EXDIF3#*
(=2(4)))

AA(16,5) = ~RATE(9)*CONC(11)*EXP(=Z(4)*PHI(J~1))*EXDIF3**(~2(4))

BB(16,7) = Z(4)*RXS(9)/2.

BB(16,12) = RATE(9)*EQUIL(9)/EXDLF3**(~2(4))

BB(16,16) = -1.0

BB(16,28) = -RATE(9)*CONC(13)*EXDIF3**(~2(4))

CONTINUE

MATERIAL BALANCE FOR LOW ENERGY IS5 ELECTRONS

GG(1l7) = RYXN(2) + SI*SO*BD + RXN(3) + RXN(5) = RXN(11)*BD

BB(17,18) = -1.0
BB(17,19) = -1.0
BB(17,21) = -1.0
BB(17,24) = BD

RXN(2) TRANSFER OF LOW-ENERGY ELECTRONS FROM THE ISS TO THE
VALENCE BAND

EPS = RXN(2)/CONC(4)*EXDIF1/RATE(2)

IF{ ABS(EPS).GT.0.2) GO TO 2021

REM = ALOG(1l.+EPS)

IF(ABS(REM).LT.1.0E-09) REM = EPS*(1.-EPS*(.5-EPS*(1l./3.-EPS/4.)))
GG(18) = ALOG({EQUIL(2)*CONC(2)*CONC(3)/CONC(4)*EXDIFL%**2)

-REM
IE(18) = 1
BB(18,1) = 1./(1.+EPS)*EPS/2.
BB(18,3) = -1./P(J)
BB(18,8) = —-1./CONC(3)-1./CONC(4)+1./{1.+EPS)*EPS/CONC(4)

BB(18,13) = 1.0-1./(1.+EPS)*EPS/2.

BB(18,18) = 1./(1.+EPS)/CONC(4)*EXDIF1/RATE(2)

GO TO 2020

LF(EPS.LT.0.8) GO TO 2026

REM = ALOG(1.0+1.0/EPS)

IF(EPS.GT.1l.E9) REM = (1.=-1./EPS*{.5-1./EPS*(1./3.-.25/EPS)))/EPS
GG(18) = ALOG{EQUIL(2)*CONC(2)*CONC(3)*RATE(2)*EXDIF1/RXN(2))~REM
IECL8) = 2

BB(18,1) = 0.5-0.5/(1.0+EPS)
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BB(18,3) = =1.0/P(J)

BB(18,8) = ~-1.0/CONC(3)=~1.0/(1.0+EPS)/CONC(4)

BB(18,13) = 0.5+0.5/(1.0+EPS)

BB(18,18) = 1.0/RXN(2)-1.0/RXN(2)/(1.0+EPS)

GO TO 2020

GG(18) = RXN(2) = RATE(2)*(EQUIL(2)*CONC(2)*CONC(3)*EXDIFl
1 = CONC(4)/EXDIF1)

BB(18,1) = RXS(2)/2. - RATE(2)*EQUIL(2)*CONC(2)*CONC(3)*EXDIFl
BB(18,3) = RATE(2)*EQUIL(2)*CONC(3)*EXP(=-PHI(J))*EXDIF1
BB(18,8) = RATE(2)*(EQUIL(2)*CONC(2)*EXDIFl + 1.0/EXDIF1)
BB(18,13) = -RXS(2)/2.

BB(18,18) = =1.0

CONTINUE

RXN(3) TRANSFER OF ELECTRONS FROM LOW TO INTERMEDIATE ENERGY
ISS SITES

EPS = RXN(3)/RATE(3)/CONC(5)/CONC(4)

IF(ABS(EPS).GT.0.2) GO TO 2003 § REM = ALOG(1l.0+EPS)

LF( ABS(REM) .LT.1.0E-9) REM= EPS*{1.0-EPS*(0.5-EPS*(1./3.-EPS/4.)))
GG(19) = ALOG(EQUIL(3)*CONC(3)*CONC(6)/CONC(5)/CONC(4))-REM
IE(19) = 1

BB(19,8) = -1.0/CONC(3)~1.0/CONC(4)+1.0/(1.0+EPS)*EPS/CONC(4)
BB{19,9) = 1.0/CONC(5)+1.0/CONC(6)-1.0/{1,04+EPS)*EPS/CONC(5)
BB(19,19) = 1.0/(1.0+EPS)/RATE(3)/CONC(5)/CONC(4)

GO TO 2002

GG(19) = RXN(3) - RATE(3)*(EQUIL(3)*CONC(3)*CONC(6)

1 = CONC(S)*CONC(4))

BB(19,8) = RAIE(B)*(EQUIL(3)*CONC(6) + CONC(5))

BB(19,9) = -RATE(3)*(EQUIL(3)*CONC(3) + CONC(4))

BB(19,19) = -1.0

CONTINUE

RXN(4) TRANSFER OF ELECTRONS FROM HIGH TO INTERMEDIATE ENERGY
1SS SITES

EPS = RXN(4)/RATE(4)/CONC(5)/CONC(8)

IF(ABS(EPS).GT.0.2) GO TO 2005 $ REM = ALOG(l.0+EPS)

IF( ABS(REM) .LT.1.0E~09) REM=EPS*(1.0=-EPS*(0.5-EPS*(1./3.~EPS/4.)))
GG(20) = ALOG(EQUIL(4)*CONC(7)*CONC(6)/CONC(5)/CONC(8)) - REM
IE(20) = 1

BB(20,9) = 1.0/CONC(5)+1.0/CONC(6)=1.0/(1.0+EPS)*EPS/CONC(5)
BB(20,10) = -1.0/CONC(7)-1.0/CONC(8)+1.0/(1.0+EPS)*EPS/CONC(7)
BB(20,20) = 1.0/(1l.0+EPS)/RATE(4)/CONC(5)/CONC(8)

GO TO 2004

2005 GG(20) = RXN(4) — RATE(4)*(EQUIL(4)*CONC(7)*CONC(6)

1 = CONC(5)*CONC(8))

BB(20,9) = -RATE(4)*(EQUIL(4)*CONC(7) + CONC(8))
BB(20,10) = RATE(4)*(EQUIL(4)*CONC(6) + CONC(5))
BB(20,20) = -1.0

2004 CONTINUE
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RXN(S) CHARGE-TRANSFER WITH LOW-ENERGY 1SS ELECTRONS

EPS = RXN(5)/CONC(10)/CONC(4)/EXDIF2/RATE(S)
IF( ABS(EPS).GT.0.2) GO TO 2009
REM = ALOG(1l.+EPS)
IF( ABS(REM).LT.1.0E~09) REM = EPS*({1.-EPS*(.5-EPS*(1./3.-EPS/4.)))
GG(21) = ALOG(EQUIL(S5)*CONC(3)*S(9,5)*CONC(9)/CONC(10)/CONC(4)/
1  EXDIF2%*2) - REM
IE(21) = 1
BB(21,27) = 1.0-1./(1.+EPS)*EPS/2.
BB(21,7) = -1.0+1./(1l.+EPS)*EPS/2.
BB(21,8) = -1./CONC(3)=1./CONC(4)+1./(1.+EPS)*EPS/CONC(4)
BB(21,11) = -1./CONC(9)
BB(21,12) = 1./CONC(10)-1./(1.+EPS)*EPS/CONC(10)
BB(21,21) = 1./(1.+EPS)/CONC{10)/CONC(4)/EXDIF2/RATE(S5)
GO TO 2008
GG(21) = RXN(5) - RATE(S5)*(EQUIL(5)*CONC(3)*S(9,5)*CONC(9)/EXDIF2
1 - CONC(l0)*CONC(4)*EXDIF2)
BB(21,27) = -RXS(5)/2.
BB(21,7) = RXS(6)/2.
BB(21,8) = RATE(S5)*(EQUIL(5)*S(9,5)*CONC(9)/EXDIF2 +
1  CONC(lO)*EXDLF2)
BB(21,11) = RATE(S5)*EQUIL(5)*S(9,5)*CONC(3)/EXDIF2
BB(21,12) = -RATE(5)*CONC(4)*EXDIF2
BB(21,21) = -1.0
CONTINUE

RXN(7) CHARGE-TRANSFER WITH HIGH-ENERGY ISS ELECTRONS

EPS = RXN(7)/CONC(10)/CONC(8)/EXDIF2/RATE(7)
IF(ABS(EPS).GT.0.2) GO TO 2011
REM = ALOG{1l.+EPS)
[F( ABS(REM).LT.1.0E-09) REM = EPS*(1.-EPS*(.5~EPS*(1./3.~-EPS/4.)))
GG(22) = ALOG(EQUIL(7)*CONC(7)*S(9,7)*CONC(9)/CONC(10)/CONC(8)/
1  EXDIF2**2) - REM
IE(22) = 1
BB(22,27) = 1.0-1./(1.+EPS)*EPS/2.
BB(22,7) = =1.0+1./(1.+EPS)*EPS/2.
BB(22,10) = -1./CONC(7)-1./CONC(8)+1./(1.+EPS)*EPS/CONC(8)
BB(22,11) = -1./CONC(9)
BB(22,12) = 1./CONC(10)~1./(1l.+EPS)*EPS/CONC(10)
BB(22,22) = 1./(1.+EPS)/CONC{10)/CONC(8)/EXDIF2/RATE(7)
GO TO 2010
GG(22) = RXN(7) - RATE{7)*(EQUIL(7)*CONC{7)*S(9%,7)*CONC(9)/EXDIF2
1 - CONC({LQ)*CONC(8)*EXDIF2)
BB{22,27) = —-RXS(7)/2.
BB(22,7) = RXS(7)/2.
BB(22,10) = RATE(7)*(EQUIL{7)*S(9,7)*CONC(9)/EXDIF2 +
1  CONC(lO)*EXDIF2)
BB{22,11) = RATE(7)*EQUIL(7)*5(9,7)*CONC(7)/EXDIF2
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8B(22,12) = -RATE(7)*CONC(8)*EXDIF2
BB(22,22) = ~1.0
CONTINUE

RXN(10) TRANSFER OF CONDUCTION-BAND ELECTRONS TO INTERMEDIATE
ENERGY ISS SITES

EPS = RXN(10)/CONC(S)/EXDIFL/RATE(10)

IF(ABS(EPS).GT.0.2) GO TO 2017

REM = ALOG(1.+EPS)

IF( ABS{REM) .LT.1.0E-09) REM = EPS*(1l.-EPS*(.5-EPS*(1./3.-EPS/4.)))
GG(23) = ALOG(EQUIL(10)*CONC(1)*CONC(6)/CONC(S)/EXDIF1**2)
1 =-REM

IE(23) = 1

BB(23,1) = -1./(1.+EPS)*EPS/2.

BB(23,2) = —-1./AN(J)

BB(23,9) = 1./CONC(5)+L./CONC(6)-1./(1.+EPS)*EPS/CONC(5)

BB(23,13) = -1.0+1./(1.+EPS)*EPS/2.

BB(23,23) = 1./(1.4+EPS)/CONC(5)/EXDIF1/RATE(10)

GO TO 2016

GG(23) = RXN(10) ~ RATE(10)*(EQUIL(10)*CONC(1)*CONC(6)/EXDIF1
1 = CONC(5)*EXDIF1)

BB(23,1) = -RXS(10)/2. + RATE(LO)*EQUIL(10)*CONC(1)*CONC(6)/EXDIF1
BB(23,2) = RATE(10)*EQUIL(10)*CONC(6)/EXDIFL*EXP(PHI(J))
BB(23,9) = —-RATE(LO)*(EQUIL(10)*CONC(1)/EXDIFl + EXDIFL)
BB(23,13) = RXS(10)/2.

BB(23,23) = -1.0

CONTINUE

RXN(11l) TRANSFER OF CONDUCTION-BAND ELECTRONS TO LOW-ENERGY
I35 SITES

EPS = RXN(11)/CONC(3)/EXDIF1/RATE(1ll)

IF(ABS(EPS).GT.0.2) GO TO 2019

REM = ALOG(1.+EPS)

IF(ABS(REM) .LT.1.0E-09) REM=EPS*(1.~EPS*(.S5-EPS*(1./3.-EPS/4.)))
GG(24) = ALOG(EQUIL(11l)*CONC(1)*CONC(4)/CONC(3)/EXDIF1**2)
1 ~REM

IE(24) = 1

BB(24,1) = -1./(l.+EPS)*EPS/2.

BB(24,2) = -1./AN(J)

BB(24,8) = 1./CONC(3)+1./CONC(4)=1./(1.+EPS)*EPS/CONC(3)
BB(24,13) = -1.0+1./(1.4+EPS)*EPS/2.

BB{24,24) = 1./(1.+EPS)/CONC(3)/EXDIF1/RATE(11l)

GO TO 2018

2019 GG{24) = RXN(1l) - RATE(L1)*{EQUIL(Ll1)*CONC(1)*CONC(4)/EXDIF1

1 - CONC(3)*EXDIFL)

BB(24,1) = -RXS(11)/2. + RATE(11)*EQUIL(L11)*CONC(1)*CONC(4)/EXDIFL
BB(24,2) = RATE(11)*EQUIL(11)*CONC(4)/EXDIFL*EXP(PHI(J))

BB(24,8) = -RATE(11)*(EQUIL(11)*CONC(1)/EXDIFl + EXDIF1)

BB(24,13) = RXS(11)/2.
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BB(24,24) = -1.0
CONTINUE

RXN(12) TRANSFER OF INTERMEDIATE-ENERGY ELECTRONS FROM THE
ISS TO THE VALENCE BAND

EPS = RXN(12)/CONC(6)*EXDIF1/RATE(12)

IF(ABS(EPS).GT.0.2) GO TO 2023

REM = ALOG(l.+EPS)

IF( ABS(REM).LT.1.0E~09) REM = EPS*(l.-EPS*(.5-EPS*(1./3.-EPS/4.)))
GG(25) = ALOG({EQUIL(12)*CONC(2)*CONC(5)/CONC(6)*EXDIF1%*2)

-REM

IE(25) = 1

BB(25,1) = 1./(l.+EPS)*EPS/2.

BB(25,3) = =1./P(J)

BB(25,9) = -1./CONC(5)~1./CONC(6)+1./(1.+EPS)*EPS/CONC(5)

BB(25,13) = 1.0-1./(1.+EPS)*EPS/2.

BB(25,25) = 1./(1.+EPS)/CONC(6)*EXDIF1/RATE(12)

GO TO 2022

IF(EPS.LT.0.8) GO TO 2027

REM = ALOG(l.0+1.G/EPS)

IF(EPS.GT.1.E9) REM = (1.-1./EPS*(.5-1./EPS*(1./3.~.25/EPS)))/EPS
GG(25)=ALOG(EQUIL(12)*CONC{2)*CONC(5)*RATE(12)*EXDIFL/RXN(12))-REM
IE(25) = 2

BB(25,1) = 0.5-0.5/(1.04EPS)

BB(25,3) = ~1.0/P(J)

BB(25,9) = -1.0/CONC(5)-1.0/(1. 0+EPS)/CONC(6)

BB(25,13) = 0.5+0.5/(1.04EPS)

BB(25,25) = 1.0/RXN(12)-1. O/RXN(12)/(1 0+EPS)

GO TO 2022

2027 GG(25) = RXN(12) - RATE(12)*(EQUIL(12)*CONC(2)*CONC(5)*EXDIF1

2022

1

1

~ CONC(6)/EXDIF1)
BB(25,1) = RXS(12)/2. = RATE(12)*EQUIL(12)*CONC(2)*CONC(5)*EXDIF1
BB(25,3) = RATE(12)*EQUIL{12)*CONC(5)*EXDIFL*EXP(-PHI(J))
BB(25,9) = RATE(12)*(EQUIL(12)*CONC(2)*EXDIF1 + 1.0/EXDIF1)
BB(25,13) = -RXS(12)/2.
8B(25,25) = -1.0
CONTINUE

RXN(13) TRANSFER OF HIGH-ENERGY ELECTRONS FROM THE 1SS TO THE
VALENCE BAND

EPS = RXN(13)/CONC(8)*EXDIF1/RATE(13)
IF(ABS(EPS).GT.0.2) GO TO 2025
REM = ALOG(l.+EPS)
IF( ABS(REM) .LT.1.0E~09) REM = EPS*(1,~EPS*( .5~EPS*(1./3.-EPS/4.)))
GG(26) = ALOG(EQUIL(13)*CONC(2)*CONC(7)/CONC(B)*EXDIF1**2)
-REM
IE(26) = 1
BB(26,1) = 1./(l.+EPS)*EPS/2.
BB(26,3) = =1./P(J)
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BB(26,10) = -1./CONC(7)-1./CONC(8)+1./(1.+EPS)*EPS/CONC(7)
BB(26,13) = 1.0-1./(1.+EPS)*EPS/2.

BB(26,26) = 1./(1.+EPS)/CONC(8)*EXDIF1/RATE(13)

GO TO 2024

IF(EPS.LT.0.8) GO TO 2028

REM = ALOG(1.0+1.0/EPS)

IF(EPS.GT.1.E9) REM = (l.-~1./EPS*(.5-1./EPS*(1./3.-.25/EPS)))/EPS
GG(26)=ALOG(EQUIL(13)*CONC(2)*CONC(7)*RATE(13)*EXDIF1/RXN(13))-REM
IE(26) = 2

BB(26,1) = 0.5=0.5/(1.0+EPS)

BB(26,3) = -1.0/P(J)

BB(26,10) = -1.0/CONC(7)~1.0/(1.0+EPS)/CONC(8)

BB(26,13) = 0.5+0.5/(1.0+EPS)

BB(26,26) = 1.0/RXN(13)-1.0/RXN(13)/(1.04EPS)

GO TO 2024

GG(26) = RXN(13) - RATE(13)*(EQUIL(13)*CONC(2)*CONC(7)*EXDIF1

1 - CONC(8)/EXDIFl)

BB(26,1) = R¥S(13)/2. = RATE(13)*EQUIL(13)*CONC(2)*CONC(7)*EXDIF1
BB(26,3) = RATE(13)*EQUIL(13)*CONC(7)*EXDIFI*EXP(~PHI(J))
BB(26,10) = RATE(13)*(EQUIL(13)*CONC(2)*EXDIFLl + 1.0/EXDIF1)
BB(26,13) = -RXS(13)/2.

BB(26,26) = -1.0

CONTINUE

POISSON"S EQUATION EVALUATED AT 1SS

GG(27) = PHI(J)-PHISC = RSC*( PHISS-PHIHP) =~ GSC*(CONC(3)+CONC(5)
1 +CONC(7)-BKISS)

BB(27,1) = -1.

BB(27,7) = =-RSC

BB(27,8) = GSC

BB(27,9) = GSC

BB(27,10) = GSC

BB(27,13) = 1.

BB(27,27) = RSC

CALCULATION OF VACANT IHP SITES

GG(28) = 1.0 - CONC(ll) = CIF(4) = CIF(5)
BB(28,11) = 1.0
BB(28,12) = 1.0
BB(28,28) = 1.0

BIG = ABS(2.*PHI(J+1)/H/H)

IF(ABS(RHO(J+1)/4.) .GT.BIG) BIG = ABS(RHO(J+1)/4.)
IF(ABS(RHO(J)*3./4.).GT.BIG) BIG = ABS(RHO(J)*3./4.)
IF(ABS(QI/H*2.).GT.BIG) BIG = ABS(QI/H*2.)
IF(ABS(GG(1)).LE.BIG*ERRSUB) GG(1) = O.

BIG = ABS(FP(J)/H)
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IF(ABS(RXN(2)).GT.BIG) BIG = ABS(RXN(2))
IF(ABS(RXN(12)).GT.BIG) BIG = ABS(RXN(12))
IFCABS(RXN(13)).GT.BIG) BIG = ABS(RXN(13))
IF(ABS(GG(8)).LE.BIG*ERRSUB) GG(8) = 0.

BIG = ABS((-RXN(12)+RXN(3))/BD)
IF(ABS(RXN(4)).GT.BIG) BIG = ABS(RXN{4))
IF(ABS(RXN(10)).GT.BIG) BIG = ABS(RXN(10))
IF(ABS(RXN(6)).GT.BIG) BIG = ABS(RXN(6))
IF(ABS(GG(9)).LE.BIG*ERRSUB) GG(9) = 0.

BIG = ABS(RXN(13)/BD)
IF(ABS(RXN(1)).GT.BIG) BIG = ABS(RXN(1l))
IF(ABS(SI*S0).GT.BIG) BIG = ABS(SI*S0)
IF(ABS(RXN(4)).GT.BIG) BIG = ABS(RXN(4))
IF{ABS(RXN(7)).GT.BIG) BIG = ABS(RXN(7))
IF(ABS(GG(10)).LE.BIG*ERRSUB) GG(10) = 0.

BIG = ABS(BE*(RXN(S5)/BDH+RXN(6)+RXN(7)))
IF(ABS(RXN(8)).GT.BIG) BIG = ABS(RXN(8))
IF(ABS(GG(11)).LE.BIG*ERRSUB) GG(11l) = 0.

BIG = ABS(B3*BE*( RXN(5)/BDH+RXN(6)+RXN(7)))
IF(ABS(RXN(9)).GT.BIG) BIG = ABS(RXN(9))
IFCABS(GG(12)).LE.BIG*ERRSUB) GG(12) = 0.

BIG = ABS(FN(J)/H)

IF(ABS(RXN(1)).GT.BIG) BIG = ABS(RXN(1l))
IF(ABS(RXN(10)).GT.BIG) BIG = ABS{RXN(10))
IF(ABS(RXN(11)).GT.BIG) BIG = ABS(RXN(1ll})
IF(ABS(GG(13)).LE.BIG*ERRSUB) GG(13) = 0.

BIG = ABS(SI*SO*BD) -
IF(ABS(RXN(2)).GT.BIG) BIG = ABS(RXN(2))
IF(ABS(RXN(3)).GT.BIG) BIG = ABS(RXN(3))
IF(ABS(RXN(5)) .GT.BIG) BIG = ABS(RXN(5))
IF(ABS(RXN(11)*BD).GT.BIG) BIG = ABS(RXN(11l)*BD)
IF(ABS(GG(17)).LE.BIG*ERRSUB) GG(17) = 0.

HDZ = (H*DELT }**2

J o= J=1

DO 1 I=l,NP

GM(I) = 0.
DO 1 K=1,NP
AM(I,K) = O.
BM(I,K) = O.
DM(I,K) = O.

CONTINUE

QSL = (PHIHP-PHI(J))/DEL3

POISSON™S EQUATION EVALUATED AT QUARTER-MESH POINT BETWEEN IHP
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AND OHP

GM(1) = HS*QSL-PHI(J)+PHI(J-1)

AM(1,1) = -1,

BM(1,1) = 1. + HS/DEL3

BIG = ABS(HS*QSL)

IF( ABS(PHI(J)).GT.BIG) BIG = ABS(PHI(J))

HS2 = HS**2

SQL(J) = O.
DO 62 I=1,4
SQL(J) = SQL(J) + HS*Z(I)*CSOL(I,J)*EXP(-Z{I)*PHI(J))/3.
EXJ = EXP(=Z(I)*(3.*PHI(J)+PHI(J-1))/4.)
CQ = (3.*CSOL(I,J) + CSOL(I,J-1))/4.
GM(1) = GM(1l) + Z(I)*CQ*EXJ*(HS2)/2.0
IF(ABS(Z(I)*CQ*EXJ*HS2/2.).GT.BIG) BIG= ABS(Z(I)*CQ*EXJ*HS2/2.)
AM(1,1) = AM(1,1) + (Z2(I)**2)*CQ*EXJ/8.%(HS2)
BM(1,1) = BM(1,1) + (Z(I)**2)*CQ*EXJ/8.%3,*(HS2)
AM(1,I+1) = =Z(I)*EXJ/8.%(HS2)
BM(1,I+1) = -Z(I)*EXJ/8.%3.*%(HS2)
CONTINUE

DM(1,7) = -HS/DEL3

FLUX OF SPECIES 1 SET EQUAL TGO ZERO

GM(2) = F(1)

AM(2,1) = Z(1)*F(1)*0.750
BM(2,1) = Z(1)*F(1)*0.375
AM(2,2) = -XP(1)

BM(2,2) = XP(1)

FLUX OF SPECIES 2 SET EQUAL TO ZERO

GM(3) = F(2)

AM(3,1) = Z(2)*F(2)*0.750
BM(3,1) = Z(2)*F(2)*0.375
AM(3,3) = -XP(2)

BM(3,3) = XP(2)

FLUX OF SPECIES 3 SET EQUAL TO THE RATE OF ADSORPTION TO IHP
GM(4) = F3(J)/HS + RXN(8)
BM(4,6) = -1.0/HS
DM(4,15) = -1.0

FLUX OF SPECIES 4 SET EQUAL TO THE RATE OF ADSORPTION TO IHP
GM(5) = F4(J)/HS + RXN(9)
BM(5,7) = -1.0/HS
DM(5,16) = ~1.0

CONTINUITY OF FLUX FOR SPECIES 3
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GM(6) = F3(J-1) - F3(J)
AM(6,6) = ~1.0
BM(6,6) = 1.0

CONTINUITY OF FLUX FOR SPECIES 4

GM(7) = F4(J-1) - F4(J)
AM(7,7) = -1.0
BM(7,7) = 1.0

IF(ABS(GM(1)).LE.BIG*ERRSUB) GM(1) = O.

IF(KERR.EQ.0) GO TO 1000
PRINT 205, (I,I=1,NP)
PRINT 205, (IE(I),I=1,NP)
FORMAT (2812)
PRINT 204,NP,N
PRINT 202,(I,I=1,10)
PRINT 201,(GG(I),I=1,NP)
PRINT 203
PRINT 201,(GM(I),I=1,N)
PRINT 203
PRINT 206,PHI(J),(CSOL(I,J),I=1,4),DC(4,J)
FORMAT( 2X,6(E12.4))
FORMAT( 10E8.1)
FORMAT( 10(3X,I13,2X))
FORMAT( /)
FORMAT( /,18X,* GG(I), I = 1,% I3,* / GM(I),
CONTINUE
CALL LOCINV(NE,NP)
DO 65 I=1,N
G(I) = GM(1)
DO 65 K=1,N
ACI,K) = AM(I,K)
B(I,K) = BM(I,K)
D(I,K) = DM(I,K)
CONTINUE

I =1,*%12,/)

IF(KERR.GT.Q) PRINT 200,J,G(1),G{(2),G(3),G(4),6(5),G(6),6(7)

FORMAT( * J=* I3,* G =* 7(E10.2))
CALL BAND(J)
J = J+1
DO 70 I=1,N
G(I) = GG(I)
DO 70 K=1,N
ACT,K) = AA(IL,K)
B(I,K) = BB(I,K)
D(I,K} = DD(I,K)
CONTINUE
IF(MSOL.EQ.0) EX = SO
ERRSUB = 1.0E-09
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RETURN
END

SUBROUTINE SC(J)

SUBROUTINE FOR CALCULATION OF COEFFICIENTS FOR EQUATIONS
GOVERNING THE SEMICONDUCTOR (POLSSON”S EQUATION AND MATERIAL
BALANCES) .

COMMON/BA/ N,NJ,A(7,7),B(7,7),C(7,250),D(7,15),G6(7),X(7,7),Y(7,7)
COMMON/SC/ PHI(250),P(250),AN(250),DFN(250),DFP(250),FN(250),
1  FP(250),RR0(250),D2(250)

COMMON/RUN/ EX,H,H2,HD2,EXH,NJJ,INDEX(7,250),KERR,ERRSUB
COMMON/IN/ ALM,DELT,BD,SO,CURRNT,QII,SPOSN,TET,ANI2,DSC,DSOL,MSOL
COMMON/SMQ/ SMQ

FLJ = P(J)*EXP(-PHI(J))

FLJPl = P{J+1)*EXP(~-PHI(J+1))

FLIM1 = P(J=1)*EXP(-PHI(J-1))

GLJ = AN(J)*EXP(PHI(J))

GLJP1 = AN(J+1)*EXP(PHI(J+1))

GLJML = AN(J~1)*EXP(PHI(J-1))

SQuH*(1.-(GLIJP1~-GLJ) /ALOG(GLJP1/GLJ)+( FLIP1=-FLJ)/ALOG{FLJP1/FLJ))
SMQ = SMQ + SQ

IF(MSOL.EQ.0) EX = EX*EXH

IF(MSOL.EQ.1l) EX = SO*EXP(-ALM*H®*( FLOAT(NJ)=FLOAT(J)))
XM=EXP(=~.5%( PHI( J)+PHI{J-1) )+(PHI(J+1)~2.*PHI(J)+PHI(J-1))/8.)
EXJ = EXP(~PHI(J))

DEN = AN(J)/EXJ+SPOSN*P(.J)*EXJ+TET

CALCULATION OF CHARGE DENSITY

EPS=RHO(J) + P(J)*EXJ
IF(ABS(EPS).GT.0.2) GO TO 10
INDEX(1,J) = 1

REM=ALOG( 1.+EPS)

IF( ABS(REM) .LT.1.0E-09) REM=EPS*(1l.-EPS*( .5-EPS*(1./3.~EPS/4.)))
G(l) = PHI(J) + ALOG(AN(J)) - REM
B(1,1) = =1, = P(J)*EXJ/(1.+EPS)
B(1,2) = -1./AN(J)

B(1,3) = 1./(1.+EPS)*EXJ

B(1,6) = 1./(1.+EPS)

GO TO 11

G(1l) = 1.=AN(J)/EXJ+P(J)*EXJ + RHO(J)
B(l,1) = P(J)*EXJH+AN(J)/EXJ

B(1,2) = 1.0/EXJ

B(L,3) = -EXJ

B(1,6) = -1.0

CONTINUE
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CONTINUITY OF ELECTRICAL CURRENT

G{2) = (FP(J)-FP(J+1))/BD~FN(J)+FN(J+1)

B(2,5) = 1.0
D(2,5) = -1.0

B(2,4) = -1.0/BD
D(2,4) = 1.0/BD

MATERIAL BALANCE FOR HOLES

EPS=DEN*( EX—( FP(J+1)-FP(J))/HD2) /ANI2
IF(ABS(EPS).GT.0.2) GO TO 20

INDEX(3,J) = 1

REM=ALOG( 14EPS)

G(3) = ALOG(AN(J)*P(J)/ANI2) - REM

B(3,1) = EPS/(l.+EPS)/DEN*( AN(J)/EXJ-SPOSN*P(J)*EXJ)
B(3,2) = -1./AN(J) + EPS/(1l.+EPS)/DEN/EXJ

B(3,3) = =1./P(J) + EPS/(1.+EPS)/DEN*SPOSN*EXJ
B(3,4) = DEN/(l1.+EPS)/ANI2/HD2

D(3,4) = -DEN/(1.+EPS)/ANI2/HD2

GO TO 21

REC = (AN(J)*P(J)-ANI2)/DEN

G(3) = HD2*(EX-REC)+FP(J)~FP(J+1)

B(3,4) = -1.0

D(3,4) = 1.0

B(3,1) = ~HD2*REC*(AN(J)/EXJ-SPOSN*P(J)*EX.J)/DEN
B(3,2) = HD2*(P(J)~REC/EXJ)/DEN

B(3,3) = HD2* (AN(J)-REC*SPOSN*EXJ) /DEN
CONTINUE

CALCULATION OF HOLE FLUX

G(4) = FP(J)+DFP(J)*XM
B(4,4) = -1.0

B(4,3) = -XM

A(4,3) = XM

B(4,1) = DFP(J)*XM*0.75
D(4,1) = ~DFP(J)*XM*0.125
A(4,1) = DFP(J)*XM*0.375

CALCULATION OF ELECTRON FLUX

G(5) = FN(J)+DFN(J) /XM

B(5,5) = -1.0

B(5,2) = -1.0/XM

A(5,2) = 1.0/XM

B(5,1) = -DFN(J)/XM*0.75
D(5,1) = DFN(J)/XM*0.125
A(5,1) = =DFN(J)/XM*0.375
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POISSON"S EQUATION

G(6) = H2¥RHO(J) ~ PHI(J-1) + 2.*PHI(J) ~ PHI(J+1)
A(6,1) = 1.0

B(6,1) = -2.0

D(6,1) = 1.0

B(6,6) = -H2

DUMMY EQUATION
G(7) = D2(J) $§ B(7,7) = -1.0

BIG = ABS(H2*(RHO(J)))
IF(ABS(2.*PHI(J)).GT.BIG) BIG = ABS(2.*PHI(J))
IF(ABS(G(6)).LE.BIG*ERRSUB) G(6) = O.

RETURN
END

SUBROUTINE BCNJ(J)

SUBROUTINE FOR CALCULATION OF EQUATION COEFFICIENTS FOR

BOUNDARY CONDITIONS AT THE SEMICONDUCTOR-CURRENT COLLECTOR
INTERFACE.

COMMON/BA/ N,NJ,A(7,7),B(7,7),C(7,250),D(7,15),G6(7),X(7,7),¥(7,7)

COMMON/SC/ PHI(250),P(250),AN(250),DFN(250) ,DFP(250),FN(250),
FP(250),RH0(250),D2(250)

COMMON/RUN/ EX,H,H2,HD2,EXH,NJJ,INDEX(7,250),KERR,ERRSUB

COMMON/IN/ ALM,DELT,BD,SO,CURRNT,QII,SPOSN,TET,ANI2,DSC,DSOL,MSOL

COMMON/M/ MODE

IF(MSOL.EQ.Q0) EX = EX*EXP(-0.75%ALM*H)

IF(MSOL.EQ.1) EX = SO*EXP(-ALM*H/4)

XM=EXP(—-.5%( PHI(J)+PHI(J~1)))

FPP = 0.

HD2 = HD2/2.

ANQ = (3.*AN(J) + AN(J-1))/4.

PQ = (3.%P(J) + P(J=1))/4.

EXJ = EXP(=(3.*PHI(J) + PHI(J-1))/4.)

DEN = ANQ/EXJ + PQYEXJ*SPOSN + TET

CALCULATION OF CHARGE DENSITY

EPS=RHO(J) + P(J)*EXJ

IF(ABS(EPS).CT.0.2) GO TO 5

INDEX(1,J) = 1

REM=ALOG( 1 .+EPS)

IF( ABS(REM) .LT.1.0E~09) REMEPS*(l.-EPS*(.5-EPS*(1./3.-EPS/4.)))
G(l) = PHI(J) + ALOG(AN(J)) - REM
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B(1,1) = =1, = P(J)*EXJ/(1l.+EPS)
B(1,2) = =-1./AN(J)

B(1,3) = 1./(1.+EPS)*EXJ

B(1,6) = 1./(1.+EPS)

GO TO 6

G(1l) = 1.-AN(J)/EXJ+P(J)*EXJ + RHO(J)
B(1,1) = P(J)*EXJ+AN(J)/EXJ

B(1,2) = 1.0/EXJ

B(1,3) = -EXJ

B(1.6) - -100

CONTINUE
IF(MODE.NE.1) GO TO 10

MODE=1

CURRENT SET

G(2) = CURRNT*H - FP(J)/BD + FN(J)
B(2,4) = 1./BD $ B(2,5) = -1.0

CORTINU

MODE=2

E

POTENTIAL AT CURRENT COLLECTOR SET

IF(MODE.NE.2) GO TO 20
G(2) = PHI(J) - CURRNT § B(2,1) = -1.0
CONTINUE

MATERIAL BALANCE FOR HOLES EVALUATED AT QUARTER-MESH POINT

EPS=DEN*( EX~( FPP-FP(J))/HD2)/ANI2
IF( ABS(EPS).GT.0.2) GO TO 7
INDEX(3,J) = 1

REM=ALOG( 1+EPS)

ALOG( ANQ*PQ/ANI2) - REM

G(3) =
A(3,1)
B(3,1)
A(3,2)
B(3,2)
A(3,3)
B(3,3)
B(3,4)
GO TO 8

EPS/(1.+EPS)/DEN*( ANQ/EXJ-SPOSN*PQ*EXJ) /4.
3.%EPS/(1.+EPS)/DEN*( ANQ/EXJ-SPOSN*PQ*EXJ) /4.
-1./ANQ/4. + EPS/(1.+EPS)/DEN/EXJ/4.
-3./ANQ/4. + 3.%EPS/(1.+EPS)/DEN/EXJ/4.
~1./PQ/4. + EPS/(1.+EPS)/DEN*SPOSN*EXJ/4.
=3./PQ/4. + 3.*EPS/(1.+EPS)/DEN*SPOSN*EXJ/4.
DEN/(1.+EPS)/ANI2/HD2

REC = (ANQ*PQ - ANI2)/DEN
HD2*( EX~REC) + FP(J) - FPP

G(3) =
A(3,1)
B(3,1)
A(3,2)
B(3,2)
A(3,3)
B(3,3)
B(3,4)
CONTINU

E

~HD2*REC* ( ANQ/EXJ-SPOSN*PQ*EXJ) /DEN/4.
~HD2*REC*( ANQ/EXJ-SPOSN*PQ*EXJ)/DEN/4 . *3.
HD2*(PQ—-REC/EXJ) /DEN/4.

A(3,2)*3.

HD2*( ANQ-REC*SPOSN*EXJ) /DEN/4.

HD2*( ANQ-REC*SPOSN*EXJ)/DEN/4.*3.

_1_

HD2 = (H*DELT)**2
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CALCULATION OF HOLE FLUX

G(4) = FP(J)HDFP(J)*XM

A(4,1) = DFP(J)*XM*0.5
B(4,1) = DFP(J)*XM*0.5
A(4,3) = XM

B(4,3) = -XM

B(4,4) = =1.0

CALCULATICN OF ELECTRON FLUX

G(5) = FN(J)+DFN(J)/XM

B(5,1) = =DFN(J)/XM*0.5 $ A(5,1) = B(5,1)
B(5,2) = ~1.0/XM

A(5,2) = 1.0/XM

B(5,5) = =1.0

POISSON"S EQUATION EVALUATED AT QUARTER-MESH POINT

G{6) = RRO(J-1)/4. + 3.*RHO(J)/4. - 2.*(QII-(PHI(J)-PHI(J-1))/H)/H

A(6,1) = 2.0/H2
B(6,1) = -2.0/H2
A(6,6) = =1./4.
B(6,6) = =3./4.

DUMMY EQUATION

G(7) = D2(J) $ B(7,7) = -1.0

BIG = ABS(3.*RHO(J)/4.)

IF( ABS(2./H2*PHI(J)).GT.BIG) BIG = ABS(2./H2*PHI(J))
IF( ABS(G(6)).LE.BIG¥ERRSUB) G(6) = O.

RETURN
END

SUBROUTINE LOCINV(NE,NP)
SUBROUTINE FOR INVERSION OF (NP) EQUATIONS INVOLVING (NP-NE)
LOCAL VARIABLES (THAT AFPEAR AT ONLY ONE POINT) TO (NE)

EQUATIONS. VALUES FOR A LOCAL VARIABLE (I) AT LOCATION (LOC)
CAN BE OBTAINED FROM

CC(I1,L0C) = GG(I,LOC) - AA(I,K)*C(K,J-1) - BB(I,K)*C(X,J)
WHERE SUMMATION OVER SUBSCRIPT K=1,N IS IMPLIED.

DIMENSION ID(28)
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COMMON/BA/ N,NJ
COMMON/LI/ AA(28,28),BB(28,28),CC(28,1),DD(28,28),GG(28)
COMMON/LI2/ AM(28,28),BM(28,28),DM(28,28),GM(28)
FORMAT({ * DETERM=0 IN SUBROUTINE LOCINV*)
DO 10 I=NE,NP
ID(I) = 0
DC 80 NN=NE,NP
BMAX = 1.01
DO 40 I=NE,NP
IF(ID(I).NE.0) GO TO 40
BNEXT = 0.
BTRY = 0.
DO 30 J=NE,NP
IF(ID(J).NE.O) GO TO 30
IF(ABS(BB(I,J)).LE.BNEXT) GO TO 30
BNEXT = ABS(BB(I,J))
IF{BNEXT.LE.BTRY) GO TO 30
BNEXT = BTRY
BTRY = ABS(BB(I,J))
JC = J
CONTINUE
IF( BNEXT.GE.BMAX*BTRY) GO TO 40
BMAX = BNEXT/BTRY
IROW = I
JCOL = JC
CONTINUE
IF(ID(JC).EQ.0) GO TO 42
DETERM = O.
PRINT 100
RETURN
ID(JCOL) = 1
IF(JCOL.EQ.IROW) GO TO 60
DO 55 J=1 ,NP
SAVE = BB(IROW,J)
BB(IROW,J) = BB(JCOL,J)
BB(JCOL,J) = SAVE
IF(J.GT.N) GO TO 55
SAVE = AA(IROW,J)
AA(IROW,J) = AA(JCOL,J)
AA(JCOL,J) = SAVE
SAVE = DD(IROW,J)
DD(IROW,J) = DD(JCOL,J)
DD(JCOL,J) = SAVE
CONTINUE
SAVE = GG(IROW)
GG(IROW) = GG(JCOL)
GG(JCOL) = SAVE
F = 1./BB(JCOL,JCOL)
DO 70 J=1 ,NP
BB(JCOL,J) = BB(JCOL,J)*F
IF(J.GT.N) GO TO 70
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AA(JCOL,J) = AA(JCOL,J)*F

DD{JCOL,J) = DD(JCOL,J)*F

CONTINUE

GG(JCOL) = GG(JCOL)*F

DO 80 I=1 ,NP

IF(I-JCOL) 75,80,75

F = BB(I,JCOL)

FM = DM(I,JCOL)

GG(I) = GG(I) - F*GG(JCOL)

IF(I.LE.N) GM(I) = GM(I) - FM*GG(JCOL)
DO 80 J=1 ,NP
BB(I1,J) = BB(1,J) - F*BB(JCOL,J)
IF(J.EQ.JCOL) BB(I,J) = 0.0
IF(1.LE.N) DM(I,J) = DM(I,J) - FM*BB(JCOL,J)
IF(I.LE.N .AND. J.EQ.JCOL) DM(I,J) = 0.0
IF(J.GT.N) GO TO 80
AA(T,J) = AA(I,J) - F*AA(JCOL,J)
DD(I,J) = DD(I,J) - F*DD(JCOL,J)
IF(I.GT.N) GO TO 80
BM(I,J) = BM(I,J) - FM*AA(JCOL,J)

CONTINUE
RETURN
END

SUBROUTINE BAND(J)

DIMENSION E(7,8,250)
COMMON/BA/ N,NJ,A(7,7),8(7,7),C(7,250),D(7,15),6(7),X(7,7),Y(7,7)
FORMAT (15H DETERM=0 AT J=,I4)
IF (J-2) 1,6,8

NPL = N+ 1

DO 2 I=1,N

D(I,2%N+1) = G(I)

DO 2 L=1,N

LPN = L + N

D(I,LPN) = X(I,L)

CALL MATINV(N,2*N+1,DETERM)

IF (DETERM) 4,3,4

PRINT 101, J

DO 5 Kel,N

E(K,NP1,1) = D(K,2%N+1)

DO 5 L=1,N

E(K,L,1) = = D(K,L)

LPN = L + N

X(K,L) = = D(K,LPN)

RETURN

DO 7 I=1,N

DO 7 K=1,N

DO 7 L=1,N

D(I,K) = D(I,K) + A(I,L)*X(L,K)
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IF (J-NJ) 11,9,9

DO 10 I=1,N

DO 10 L=l,N

G(I) = G(I) = Y(I,L)*E(L,NP1,J-2)
DO 10 M=1,N

ACI,L) = A(L,L) + Y(I,M)*E(M,L,J-2)
DO 12 I=1,N

D(I,NP1) = - G(I)

DO 12 L=1,N

D(I,NPLl) = D(I,NPl) + A(I,L)*E(L,NP1,J-1)
DO 12 K=1,N

B(I,K) = B(I,K) + A(I,L)*E(L,K,J-1)

CALL MATINV(N,NP1,DETERM)

IF (DETERM) 14,13,14

PRINT 101, J

DO 15 K=1,N

DO 15 M=l,NP1

E(K,M,J) = - D(K,M)

IF (J-NJ) 20,16,16

DO 17 K=1,N

c(K,J) = E(K,NP1,J)

DO 18 JJ=2,NJ

M=N -J]+1

DO 18 K=1,N

C(K,M) = E(K,NP1,M)

DO 18 Lel,N

C(K,M) = C(K,M) + E(K,L,M)*C(L,M+1)
DO 19 L=1,N

DO 19 K=1,N

C(K,1) = C(K,1) + X(K,L)*C(L,3)
RETURN

END

SUBROUTINE MATINV(N,M,DETERM)

DIMENSION ID(7)

COMMON/BA/ K,NJ,A(7,7),B(7,7),C(7,250),D(7,15)
DETERM=1.01 §$ DO 1 I=1,N

ID(I)=0 $ DO 18 NN=1,N $ BMAX=1.1 $ DO 6 I=1,N
IF(ID(I).NE.Q) GOTC 6 $ BNEXT=0.0 $ BTRY=0.0 $ DO 5 J=1,N
IF(ID(J).NE.O) GOTO 5 § IF(ABS(B(I,J)).LE.BNEXT) GOTO 5
BNEXT=ABS(B(I,J)) $§ IF(BNEXT.LE.BTRY) GOTO 5 $ BNEXT=BTRY
BTRY=ABS(B(I,J)) $ JC=J

CONTINUE $§ IF(BNEXT.GE.BMAX*BTRY) GOTO 6

BMAX=BNEXT/BTRY § IROW=I § JCOL=JC

CONTINUE § IF(ID(JC).EQ.0) GOTO 8 § DETERM=0.0 $ RETURN
ID(JCOL)=1 § IF(JCOL.EQ.IROW) GOTO 12 § DO 10 J=1,N
SAVE=B( IROW,J) $ B(IROW,J)=B(JCOL,J)

B(JCOL,J)=SAVE § DO 11 K=1,M $ SAVE=D(IROW,K)
D{IROW,K)=D(JCOL,K)
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D(JCOL,K)=SAVE

F=1.0/B(JCOL,JCOL) $ DO 13 J=1,N

B(JCOL,J)=B(JCOL,J)*F § DO 14 K=1,6M

D(JCOL,K)=D( JCOL,K)*F $ DO 18 I=1,N § IF(I.EQ.JCOL) GO TO 18
F=B(I1,JCOL) $ DO 16 J=1,N

B(I,J)=B(I,J)~F*8(JCOL,J) $ DO 17 K=1,M
D(I,K)=D{I,K)=F*D(JCOL,K)

CONTINUE § RETURN § END

SUBROUTINE OPTIML

SUBROUTINE FOR DETERMINATION OF CELL DESIGN EFFECTS. THE CELL
INCLUDES A TRANSLUSCENT PLATE WITE THICKNESS "XGLASS"” (CM)

AND MEAN ABSORPTION COEFFICIENT "AGLASS™ (1/CM), A SOLUTION
DEPTH OF "XSOLN" (CM) WITH MEAN ABSORPTION COEFFICIENT “"ASOLN"
(1/CM), AND A WIRE GRID COUNTERELECTRODE WITH ELEMENT RADIUS
"RCE” (CM) AND A SPACING "SPAC" (CM).

THE SEMICONDUCTOR IS ILLUMINATED FROM THE ELECTROLYTE SIDE.
THE REFLECTIVITIES OF THE AIR/GLASS INTERFACE "RHOAG,"

THE GLASS/ELECTROLYTE INTERFACE “RHOGS," AND THE

ELECTROLYTE/SEMICONDUCTOR INTERFACE "RHOSSC" ARE INCLUDED.
THE EFFECTIVE SOLAR FLUX, THE RATIO OF COUNTERELECTRODE TO

SEMICONDUCTOR AREA, AND THE ELECTROLYTIC RESISTANCE ARE
CALCULATED.

COMMON/IN/ ALM,DELT,BD,SO,CURRNT,QII,SPOSN,TET,ANI2,DSC,DSOL,MSOL
COMMON/IN2/ BE,B3,RSC,GSC,RSOLN,GSOLN,GV,GT,GC,SI,DELL,DEL3
COMMON/CONV/ CL,CPOT,CCHG, COND

COMMON/CE/ DIST

COMMON/OPT/ MOPT,SFLUX,ACE,RESIR

FORMAT( 4(E10.3))

FORMAT( 5(E10.3))

READ 100,RCE,SPAC,XGLASS,XSOLN

READ 105,AGLASS,ASOLN, RHOAG, RHOGS ,RHOSSC

MODIFICATION OF SOLAR FLUX

SFLUXO = SFLUX

SFLUX = SFLUX*(1.-RHOAG)*EXP(-AGLASS*XGLASS)*(1.-RHOGS)
*EXP(~ASOLN*XSOLN)*(1.-2.*RCE/SPAC)*(1.-RHOSSC)

QRATIO = SFLUX/SFLUXO

CERAT = SPAC/RCE/2.

CALCULATION OF THE RATIO OF COUNTERELECTRODE TO SEMLICONDUCTOR
AREA

PL = 3.141592654
ACE = SPAC/2./PI/RCE
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CALCULATION OF POTENTIAL DROP IN SOLUTION

PG = XSOLN
Y = DIST
X = SPAC/2.
NCOUNT = 0O
5 NCOUNT = NCOUNT + 1
B = DIST + RCE

A = SPAC/2.

TERML = COSH(PI/SPAC*(Y+B)) - COS(PI/SPAC*(X+A))
TERM2 = COSH(PI/SPAC*(Y-B)) - COS(PI/SPAC*(X+A))
TERM3 = COSH(PI/SPAC*({Y+B)) - COS(PI/SPAC*(X-A))
TERM4 = COSH(PL/SPAC*(Y-B)) - COS(PI/SPAC*({X-A))

RESPT
SUM = 0.
DO 10 N=1,100
FN = FLOAT(N)
REMAIN = 0.25/PI/COND*EXP(-FN*PI*PG/SPAC)/FN
1 *SINH(FN*PI1*B/SPAC)*SINH({ FN*PI*Y/SPAC)*COS( FN*PI*A/SPAC)
2 *COS( FN*PI*X/SPAC)/COSH{ FN*P1*PG/SPAC)
SUM = SUM + REMAIN
IF( ABS(REMAIN/SUM).LT.1.0E-06) GO TO 15
10 CONTINUE
PRINT 300,FN,RESPT,SUM
300 FORMAT( //* IR CALCULATION DID NOT CONVERGE IN* ,F4.0,* ITERATIONS*
1 /* PROGRAM STOPPED*/* RESIR =* _E10.3,* SUM = * E10.3)
STOP
15 IF(NCOUNT.EQ.1) RESIR = RESPT + SUM
LF(NCOUNT.EQ.2) RESTST = RESPT + SUM
X = SPAC/2. + RCE
Y = DIST + RCE
IF( NCOUNT.EQ.1) GO TO 5
ERROR = (RESIR-RESTST)/RESIR
PRINT 204
PRINT 202
PRINT 200,RCE,SPAC,XGLASS,XSOLN,CERAT
PRINT 203
PRINT 200,AGLASS,ASOLN, RHOAG,RHOGS ,RHOSSC
PRINT 201 :
PRINT 200,QRATIO,ACE,RESIR,ERROR,FN
203 FORMAT( // * AGLASS (l/CM), ASOLN (l/CM), RHO; AIR/GLASS, GL
LASS/SOLN, SOLN/SEMI*)
202 FORMAT( // * CE RADIUS (CM), CE SPACING (CM), XGLASS (CM), XSO
1LN (CM), CERAT (L/D)*)
201 FORMAT( // * QRATIO, ACE, RESIR (OHM-CM2), (ERRO
IR IN RESIR), ITERATION*)
204 FORMAT( //, 26X,* OPTIMIZATION OF SYSTEM 1%*)
200 FORMAT( 1X,5(EL5.5))
RETURN
END

0.25/PI/COND*( ALOG( TERM1/TERM2) + ALOG(TERM3/TERM4))
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SUBROUTINE OPTIMZ

SUBROUTINE FOR DETERMINATION OF CELL DESIGN EFFECTS. THE CELL
INCLUDES A TRANSLUSCENT PLATE WITH THICKNESS “XGLASS" (CM)
AND MEAN ABSORPTION COEFFICIENT "AGLASS" (l1/CM), A SOLUTION
DEPTH OF "XSOLN" (CM) WITH MEAN ABSORPTION COEFFICIENT "ASOLN"
(1/CM), AND A SLOTTED SEMICONDUCTOR.

THE SEMICONDUCTOR IS ILLUMINATED FROM THE ELECTROLYTE SIDE.
THE REFLECTIVITY OF THE AIR/GLASS INTERFACE "RHOAG,"

THE OVER-ALL REFLECTIVITY OF THE GLASS/METAL AND
METAL/ELECTROLYTE INTERFACES "RHOGS," AND THE REFLECTIVITY OF
THE ELECTROLYTE/SEMICONDUCTOR INTERFACE "RHOSSC"™ ARE INCLUDED.
THE EFFECTIVE SOLAR FLUX, THE RATIO OF COUNTERELECTRODE TO
SEMICONDUCTOR AREA, AND THE ELECTROLYTIC RESISTANCE ARE
CALCULATED.

COMMON/IN/ ALM,DELT,BD,S0,CURRNT,QII,SPOSN,TET,ANI2,DSC,DSOL,MSOL
COMMON/IN2/ BE,B3,RSC,GSC,RSOLN,GSOLN,GV,GT,GC,SI,DEL1,DEL3
COMMON/CONV/ CL,CPOT,CCHG, COND

COMMON/CE/ DIST

COMMON/OPT/ MOPT,SFLUX,ACE,RESIR

FORMAT( 6(E10.3))

FORMAT( 5(E10.3))

READ 105,THICK,ABLONG,TALL,GAP,WKRES

READ 100, AGLASS,ASOLN,RHOAG, RHOGS ,RHOSSC ,XGLASS

MODIFICATION OF SOLAR FLUX

XSOLN = TALL

SFLUXO = SFLUX

SFLUX = SFLUX*(1.-RHOAG)*EXP{~-AGLASS*XGLASS)*(1.-RHOGS)
! *EXP( -ASOLN*XSOLN)*(1.-RHOSSC)

QRATIO = SFLUX/SFLUXO

CALCULATION OF THE RATIO OF COUNTERELECTRODE TO SEMICONDUCTOR
AREA

ACE = ABLONG/{ABLONG+GAP)

CALCULATION OF POTENTIAL DROP IN SOLUTION
RESIR = WKRES*ABLONG/COND

PRINT 204

PRINT 202

PRINT 200,THICK,ABLONG,TALL,GAP,XGLASS
PRINT 203

PRINT 200,AGLASS,ASOLN,RHOAG, RHOGS ,RHOSSC
PRINT 201

PRINT 200,QRATIO,ACE,WKRES,RESIR

203 FORMAT( // * AGLASS (1/CM), ASOLN (1/CM), RHO; AIR/GLASS, GLAS
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1S/SOLN, SOLN/SEMI*)

202 FORMAT( // * THICKNESS (CM), LENGTH OF AB (CM), HEIGHT (CM),

1 GAP (CM), XGLASS (CM)*)

201 FORMAT( // * QRATIO, ACE, WKRES,

1 RESIR (OHM-CM2)*)

204 FORMAT( //, 26X,* OPTIMIZATION OF SYSTEM 4%)
200 FORMAT( 1X,5(E15.5))

100
105

RETURN
END

SUBROUTINE OPTIM3

SUBROUTINE FOR DETERMINATION OF CELL DESIGN EFFECTS. THE CELL
INCLUDES A TRANSLUSCENT PLATE WITH THICKNESS "XGLASS" (CM),
MEAN ABSORPTION COEFFICIENT "AGLASS" (1/CM), AND RESISTIVITY
"RESGLS" (OHM-CM2), A SOLUTION DEPTH OF "XSOLN™ (CM),

AND A GRID CURRENT-COLLECTOR WITH ELEMENT HALF-WIDTH

"RCB" (CM) AND A SPACING "SPAC" (CM). THE SEMICONDUCTOR IS
ILLUMINATED FROM THE CURRENT-COLLECTOR SIDE.

THE REFLECTIVITIES OF THE AIR/GLASS INTERFACE "RHOAG"

AND THE GLASS/SEMICONDUCTOR INTERFACE "RHOGSC™ ARE INCLUDED.
THE EFFECTIVE SOLAR FLUX, THE RATIO OF COUNTERELECTRODE TO
SEMICONDUCTOR AREA, AND THE ELECTROLYTIC RESISTANCE ARE
CALCULATED.

COMMON/IN/ ALM,DELT,BD,SO,CURRNT,QII,SPOSN,TET,ANI2,DSC,DSOL,MSOL
COMMON/IN2/ BE,B3,RSC,GSC,RSOLN,GSOLN,GV,GT,GC,SI,DELL,DEL3
COMMON/CONV/ CL,CPOT,CCHG, COND

COMMON/CE/ DIST :

COMMON/OPT/ MOPT,SFLUX,ACE,RESIR

FORMAT( 4(E10.3))

FORMAT( 5(E10.3))

READ 100,RCB,SPAC,XGLASS,XSOLN

READ 100,AGLASS,RESGLS,RHOAG,RHOGSC

MODIFICATION OF SOLAR FLUX

SFLUX0 = SFLUX

SFLUX = SFLUX*(1.-RHOAG)*EXP(~-AGLASS*XGLASS)*(1.-RHOGSC)
1  *(1.-RCB/SPAC)

QRATIO = SFLUX/SFLUXO

CERAT = SPAC/RCB

CALCULATION OF THE RATIO OF COUNTERELECTRODE TO SEMICONDUCTOR
AREA

ACE = 1.0

CALCULATION OF POTENTIAL DROP IN SOLUTION
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RESSOL = XSOLN/COND
CALCULATION OF POTENTIAL DROP IN CURRENT COLLECTOR

EKOEK1 = SPAC/XGLASS

EMK1 = 0.

PI = 3.141592654

IF(EKOEK1.GE.1.) GO TO 19

EK10EK = 1./EKOEK1

EMK = 0.

DO 10 NCNT=1,40

FNCNT = FLOAT(NCNT)

EMKOLD = EMK

EMK = 16.*EXP(-PI*EK10EK-EMKOLD/2.-252./768 .*EMKOLD**2)
ERROR = ABS((EMK-EMKOLD)/{EMK+1.0E-10))
IF(ERROR.LE.1.0E-08) GO TO 11

CONTINUE

PRINT 300, FNCNT,ERROR

EMK1l = 1.-EMK

GO TO" 23

DO 20 NCNT=1,40

FNCNT = FLOAT(NCNT)

EMK10D = EMK1

EMK]l = 16.*EXP(~-PI*EKOEKI-EMK10D/2.-252./768.*EMK10D**2)
ERROR = ABS({(EMK1-EMK10D)/(EMK1+1.0E-10))
IF(ERROR.LE.1.0E-08) GO TO 21

CONTINUE

PRINT 300,FNCNT,ERROR

FORMAT( * CALCULATION OF EMK1 IN SUBROUTINE OPTIM3 DID NOT CONVERG
LE*/* IN * F4.0 * ITERATIONS (ERROR = * E10.3 *)#*)

STOP

EMK = 1.-EMK1

EKSPAC = EK(EMK1)

U = RCB*EKSPAC/SPAC

INDEX = O

IF(EMK1.LT.0.0001) GO TO 30

EMKNEW = EMK

IF(EMKNEW.GT.0.9999) GO TO 35

INDEX = INDEX + 1

SQTEMK = SQRT(EMKNEW)

EMKNEW = 4.%SQTEMK/(L.+SQTEMK)**2

PARAM]l = (1.-SQTEMK)/(1.+SQTEMK)

UNEW = U/(1.+PARAML)

SNNEW = TANH(UNEW) + (1.-EMKNEW)/4./(SINH(UNEW))**2%(SINH(UNEW)
1 *COSH(UNEW)~=UNEW)

CNNEW = 1./SINH(UNEW) - (l.-EMKNEW)/4.*TANH(UNEW)/SINH(UNEW)
1 *(SINH(UNEW)*COSH( UNEW)-UNEW)

DNNEW = 1./SINH(UNEW) + (1.-EMKNEW)/4.*TANH(UNEW)/SINH( UNEW)
1 *(SINH(UNEW)*COSH( UNEW)+UNEW)

SN = (1.+PARAM])*SNNEW*CNNEW/DNNEW
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IF ( INDEX.GE.20) GC TO 35
GO TO 25

30 SN = TANH(U) + EMK1/4./(SINH(U))**2*(SINH(U)Y*COSH(U)-U)
35 EML = EMK*(SN)**2

EKL1 = EK(EML)

EMLL = 1.~EML

EKL = EK(EML1)

RESCB = SPAC*RESGLS*EKL1/EKL

RESIR = RESSQL + RESCB

PRINT 204
PRINT 202
PRINT 200,RCB,SPAC,XGLASS,XSOLN,CERAT
PRINT 203
PRINT 200,ACLASS,RESGLS,RHOAG,RHOGSC
PRINT 201
PRINT 200,QRATIO,ACE,RESSOL,RESCB,RESIR
PRINT 205
PRINT 200,EMK,EMK1,EKSPAC,EKOEK]
PRINT 206
PRINT 200,EML,EML1,EKL,EKLL
IF (INDEX.EQ.0) GO TO 50
203 FORMAT( // * AGLASS (1/CM), RESGLS (OHM-CM2), RHO; AIR/GLASS, GL
1ASS/SEMI*)
202 FORMAT( // * CC WIDTH (CM), CC SPACING (CM), XGLASS (CM), XSO
ILN (CM), CC RATIO (L/D)*)

201 FORMAT( // * QRATIO, ACE, RESSOL (OHM-CM2), RESCB
1{ OHM~-CM2) RESIR (OHM~CM2)*)

205 FORMAT( // * EMK, EMK1, EKSPAC, EK
10EK1%)

206 FORMAT( // * EML, EMLL, EKL, E
1KL1*)

204 FORMAT( //, 26X,* OPTIMIZATION OF SYSTEM 3*)
200 FORMAT( 1X,5(E15.5))

IF (INDEX.EQ.0) GO TO 50

PRINT 220,INDEX,EMKNEW

IF (INDEX.GE.20) PRINT 310

310 FORMAT( * CAUTION; LANDEN SERIES DID NOT MEET SPECIFICATIONS FOR E

1MK.*)
220 FORMAT( /* USED LANDEN SERIES TO CALCULATE SN(UEMK);*

1 /* INDEX = *I4% EMKNEW = *E15.8)
50 CONTINUE

RETURN

END

FUNCTION EK(EM1)
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FUNCTION CALCULATES COMPLETE ELLIPTIC INTEGRALS OF THE FIRST
KIND WITE COMPLEMENTARY MODULUS AS A PARAMETER.

IF(EML.NE.O.) GO TO 10

PRINT 200
200 FORMAT( * PROGRAM STOPPED IN FUNCTION EK(EMl). *

1 /* COMPLEMENTARY MODULUS EQUAL TO ZERO.*)

STOP ,
10 EK = 1.38629436112 + EML*(0.096663464259 + EML*(0.03590092383 +

1 EMI*(0.03742563713 + EM1*0.01451196212)))

2~ ALOG(EML)*(0.5 + EMI*(0.12498593597 + EML*(0.06880248576 +

3 EMI*(0.03328355346 + EM1*0.00441787012))))

RETURN

END

SUBROUTINE PRINT(NCOUNT)

SUBROUTINE FOR MANIPULATING AND PRINTING RESULTS OF PROGRAM
LJCMPY

DIMENSION RXNMOD(14),CR(4)
COMMON/SC/ PHI(250),P(250),AN(250),DFN(250),DFP(250),FN(250),
1 FP(250)
COMMON/RUN/ EX,H,H2,HD2,EXH,NJJ,INDEX(7,250),KERR,ERRSUB,IJ
COMMON/IN/ ALM,DELT,BD,SC,CURRNT,QLI,SPOSN,TET,ANI2
COMMON/IN2/ BE,B3,RSC,GSC,RSOLN,GSOLN,GV,GT,GC,SI,DELL,DEL3
COMMON/SOL/ CBULK(4),Z(4),CSOL(4,250),F(4),HS,DC(4,250)
COMMON/FLUX/ F3(250),F4(250)
COMMON/IFC/ RATE(13),EQUIL(13),5(13,13),CONC(13),RXN(13),RXS(13)
1 ,CIF(S)
COMMON/IFC2/ PHISS,PHISC,PHIHP,BKISS
COMMON/SMQ/ SMQ,QI,QSL,SMQL
COMMON/CHG/ SQL(250)
COMMON/M/ MODE ,MRPRNT ,MREAL
COMMON/CONV/ CL,CPOT,CCHG,COND
COMMON/CE/ DIST,EXCOB,NREACT,CLIM3,CLIM4
COMMON/OPT/ MOPT,SFLUX,ACE,RESIR
COMMON/STOP/ NSTOP
COMMON/END/ CURAN(40),VOLT(40),VNOT(40),VWIR(40),VWCE(40)
1  ,CHGISS(40),CHGIHP(40),CHG(40)
2 ,POWERL(40),POWER2(40) ,POWER3(40),POWER4(40)
190 FORMAT( *  J* 10X,*PHI(J)*,10X,*CSOL(I)*,10X,*CR(I)*
1 ,6X,*F(L)/HS*, 8X,*I*%)
195 FORMAT( /* INTERFACE...*/ 15X,*PHISC*,
1 10X, *PHISS*, 9X,*PHIHP*)
DO 2 I=l,4
F(I) = 0.
2 CONTINUE
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NJ = NJJ + 1
ZPOT LIQUID-JUNCTION VOLTAGE AT EQUILIBRIUM (DIMENSIONLESS)
DIST DISTANCE BETWEEN ELECTRODES (CM)
COND BULK ELECTROLYTE CONDUCTIVITY (1./0HM-CM)

EXCOB  BUTLER-VOLMER EXCHANGE-CURRENT DENSITY FOR
REACTION AT COUNTERELECTRODE WITH NO MASS-TRANSFER
LIMITATIONS (MA/CM2)
NREACT  NUMBER OF ELECTRONS TRANSFERED IN REACTION AT
COUNTERELECTRODE (EQUIV./MOLE)
CLIM3,CLIM4  MASS-TRANSFER LIMITING CURRENTS FOR SPECIES 3
AND 4 AT COUNTERELECTRODE (MA/CM2)
RMSC  THE RATIO OF ELECTRON CONCENTRATIONS IN THE METAL
CURRENT-COLLECTOR TO THAT IN THE SEMICONDUCTOR

IF(NCOUNT.EQ.1) ZPOT = 45.6052*CPOT

IF(NCOUNT.GT.1) GO TO 6

PRINT 140

PRINT 141,DIST,COND

PRINT 142,EXCOB,NREACT

PRINT 143,CLIM3,CLIM4

FORMAT( /* ELECTROLYTE AND COUNTERELECTRODE CHARACTERISTICS*)
FORMAT( /* DIST =*F9.4*% CM*L5X*COND =*F9.4% 1/OHM~CM*)
FORMAT( * EXCOB =*F9.4*% MA/CM2*11X*NREACT =*I4,65X* EQUIV./MOLE*)
FORMAT( * CLIM3 =*F9.4% MA/CM2*L1X*CLIM4 =*F9.4% MA/CM2*/)
CONTINUE

CALCULATION OF TOTAL CELL VOLTAGE INCLUDING SEMICONDUCTOR,
COUNTERELECTRODE, AND SOLUTION RESISTANCE CONTRIBUTIONS.

VLJ = =(PHI{NJ) = PHISC + PHISS - PHI(1))*CPOT
IF(MODE.EQ.1) CURRENT = CURRNT*CL
IF(MODE.EQ.2) CURRENT = (FP(LJ)/BD-FN(IJ))/H*CL
IF(SO.NE.C.) GO TO 7

IF(CURRENT.NE.0.) GO TO 7

ZPOT = -VLJ

VIR = DIST*CURRENT/COND

IF(MOPT.NE.Q0) VIR = CURRENT*RESIR

IJJ=1J -1

C3 = -F3(1JJ)/HS/BE*CL

C4 = ~F4(1JJ)/HS/BE/B3*CL

IF( CURRENT.EQ.0.) C3 = 0.

IF( CURRENT.EQ.0.) C4 = 0.

IF(MOPT.NE.Q) C3 = C3*ACE

IF(MOPT.NE.O) C4 = C4*ACE

BETA = 0.50

IF((1.+C3/CLIM3)/(1.+C4/CLIM4).LE.1.0E~10) PRINT 300
IF({1.+C3/CLIM3)/(1.+C4/CLIM4).LE.1.0E-10) NSTOP = 1
IF((1.+C3/CLIM3)/(1.+C4/CLIM4) .LE.1.0E~-10) RETURN

ETACE = CPOT/(FLOAT(NREACT))*ALOG({1.+C3/CLIM3)/(1.+C4/CLIM4))
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DO 15 K=1,100
GOFETA = (1 +C4/CLIH4)*EXP((1 -BETA)*FLOAT({ NREACT )*ETACE/CPQT)
1 - SQRT(1.+C3/CLIM3)*EXP(~BETA*FLOAT({ NREACT)*ETACE/CPOT)
2 + CURRENT/EXCOB
GPRIME = (1.4+C4/CLIM4)*EXP((1l.-BETA)*FLOAT(NREACT)*ETACE/CPOT)
*(1.-BETA)*FLOAT(NREACT)/CPOT
+ SQRT(1.+C3/CLIM3)*EXP(-BETA*FLOAT(NREACT )*ETACE/CPOT)
*BETA*FLOAT( NREACT)/CPOT
ETANEW = ETACE - GOFETA/GPRIME
PRINT 1010,K,ETACE,ETANEW
IF( ABS(ETANEW=ETACE) .LT.1.0E-05) GO TO 16
ETACE = ETANEW
1010 FORMAT( * K=*,I4,* ETACE=* F12.7,* ETANEW=*,F12.7)
15 CONTINUE
16 ETACE = ETANEW

w M

300 FORMAT( * COUNTERELECTRODE LIMITING CURRENT EXCEEDED*)
RMSC = 1.
VMSC = ~CPOT*ALOG(RMSC)
VEQ = ZPOT
VCE = -ETACE + VEQ
VTOT = VMSC + VLJ + VIR + VCE
VCALCl = VLJ + VEQ
VCALC2 = VCALCL + VIR
VCALC3 = VCALCl - ETACE
VNOT(NCOUNT) = VCALC1
POWERL( NCOUNT) = -VCALCL*CURRENT/100.
VWIR(NCOUNT) = VCALC2
POWER2( NCOUNT) = -VCALC2*CURRENT/100.
VWCE(NCOUNT) = VCALC3
POWERI( NCOUNT) = -VCALC3*CURRENT/100.
VOLT(NCOUNT) = VTOT
CURAN(NCOUNT) = —CURRENT

CALCULATION OF CHARGE DISTRIBUTION IN SEMICONDUCTOR, 1SS, IHP,
AND SOLUTION.

NI = 1J/2 - 1
SUM = SQL(1l) + SQL(2*NI+L)
DO 3 K=1,NI
SUM = SUM + 4.%SQL(2*K)
IF(K.EQ.NI) GO TO 3
SUM = SUM + 2.*SQL(2*K+1)
3 CONTINUE
QSL = -QSL*RSC*DEL3/RSOLN/DELL
SMQL = SUMMRSC*DEL3/RSOLN/DEL1
QISS = =(CIF(1)+CIF(2)+CIF(3)-BKISS)*GSC/DELL
QIHP = (CIF(4)*Z(3) + CIF(5)*Z(4))*GSOLN*RSC/RSOLN/DEL1
SUMQ = (QISS + QILHP)*CCHG
CHGISS(NCOUNT) = QISS*CCHG
CHGIHP(NCOUNT) = QIHP*CCHG
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CHG(NCOUNT) = SUMQ

DPHDYZ = (4.*PHI(2)~-3.*PHI(1)-PHI(3))*RSC*DEL3/RSOLN/DELL/HS/2.
QSL = QSL - DPHDYZ

QISL = (PHISS - PHIHP)*RSC/DELL

EN1 = QI + QISS + QIHP + QSL

EN2 = SM) + QISS + QIHP + SMQL

POWER = =CURRENT*VTOT/100.

POWER4( NCOUNT) = POWER

PRINTING OF RESULTS

PRINT 176,CURRENT,VTOT,SUMQ,POWER,VCALCL,VCALC2 ,VCALC3
PRINT 177,Q1,SMQ

PRINT 178,Q185,QISS

PRINT 179,QIHP,QIHP

PRINT 180,QSL,SMQL

PRINT 181,EN1,EN2

PRINT 182,DPHDYZ

PRINT 183,QISL

PRINT 191

PRINT 189,VMSC

PRINT 184,VLJ

PRINT 185,VIR

PRINT 186,VCE

PRINT 187,VTOT

176 FORMAT{ * CURRENT = * F6.2,* MA/CM2; CELL VOLTAGE = * F6.l,*% MV;

1 SURFACE CHRG = * E10.3,/* CHARGE IN UNITS OF MICRO-C/CM2*/
2 * POWER DENSITY = * F6.2,* W/M2* /

3 * CELL VOLTAGE (NO IR OR CE EFFECTS) = * F6.2,% My%/

4 * CELL VOLTAGE (WITH IR, NO CE) = % F6.2,% MUX/
4 * CELL VOLTAGE (WITH CE, NO IR) = % F6.2,% MV*/)

177 FORMAT( * CHARGE IN SEMICONDUCTOR; DERIVATIVE, INTEGRAL...*2(F9.5,

12X))

178 FORMAT( * CHARGE ON INNER SURFACE STATES..:cescacas cenaen¥F9.5,
13X,E13.6)

179 FORMAT( * CHARGE ON INNER HELMHOLTZ PLANE:ccseeasaanaas .« XF9.5,
13X,E13.6)

180 FORMAT( * CHARGE IN SOLUTION; DERIVATIVE, INTEGRAL...... .+ *2(F9.5,
12X))

181 FORMAT( * OVERALL ELECTRONEUTRALITY CHECK; SUM EQUALS.....*2(F9.5,
12X))

182 FORMAT( /* POTENTIAL DERIVATIVE AT J®l...cecveeenenns erers+*F9,5)

183 FORMAT( * POTENTIAL DERIVATIVE BETWEEN ISS AND IHP........*F9.5)

191 FORMAT( /* TOTAL CELL VOLTAGE = (COUNTERELECTRODE)} - (SEMICONDUCTO
1R CURRENT-COLLECTOR)*)

189 FORMAT( * METAL-SEMICONDUCTOR JUNCTION VOLTAGE..sevvess.ss *F9,2
1% MV*)

184 FORMAT( * LIQUID-JUNCTION VOLTAGE...:eesosoecacanns R *F9.2
1% My*)

185 FORMAT( * IR DROP IN SOLUTION....... e eteteeneaeaneaan . *F9.2

1% My*)
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188

150
155

4

165

166

FORMAT( * COUNTERELECTRODE VOLTAGE.::esseascsesens ceeenee®F9.2

1% My*)

FORMAT( * TOTAL CELL VOLTAGE.:ccccsssscsssasssoanasccnns .o . XF9.2

1% MV*)

PRINT 188

FORMAT( //* SOLUTION...*)

PRINT 190

YSOL = O.

FORMAT(/,I14,6X,4(E13.6,2X),1I4)

FORMAT( 3( 25X,3(E13.6,2X),I4/))

IL =1

IF(IJJ.GT.5) IL = 1JJ - 1

IF(MRPRNT.EQ.1) IL = 1

PHIDIF = PHISS - PHISC

DO 5 J=IL,I1JJ

DO 4 I=1,4
CR(L) = CSOL(I,J)*EXP(~Z(I)*PHI(J))
IF(I.GE.3) GO TO 4
IF(J.EQ.1l) GO TO 4
I[F(J.EQ.2) F(I) = -DC(I,J=1)*EXP(-Z(I)*((PHI(J-1)

1 +PHI(J))/2.-(PHI(J-1)=-2.*PHI(J)+PHI(J+1))/8.))/HS/BE
IF(J.GT.2) F(I) = =DC(T,J-1)*EXP(~2(I)*((PHI(J~1)

1 +PHI(J))/2.=(PHI(J)=2.*PHI(J-1)+PHI(J-2))/8.))/HS/BE
CONTINUE

F(3) = F3(J)/HS/BE
F(4) = F4(J)/HS/BE/B3
I =1

PHIMOD = PHI(J)

IF{MREAL.EQ.1) F(l) = F(l)*CL
IF(MREAL.EQ.1l) F(2) = F(2)*CL
IF(MREAL.EQ.1) F(3) = F(3)*CL
IF(MREAL.EQ.1) F(4) = F(4)*CL

IF(MREAL.EQ.1) PHIMOD = (PHI(J) ~ PHIDIF ~ PHI(NJ))*CPOT
PRINT 150,J,PHIMOD,CSOL(1,J),CR(1),F(1),I
PRINT 155,(CSOL(I,J),CR(I),F(I),I, I=2,4)
YSOL = YSOL + HS
CONTINUE
PHISCP = PHISC
PHISSP = PHISS
PHIHPP = PHIHP
IF(MREAL.EQ.1) PHISCP = (PHISC - PHI(NJ))*CPOT
IF(MREAL.EQ.1) PHISSP = PHISC
IF(MREAL.EQ.1) PHIHPP = (PHIHP - PHIDIF - PHI(NJ))*CPOT
PRINT 165,PHISCP,PHISSP,PHIHPP
FORMAT( * INTERFACE...*,/* PHISC,SS,HP = *,8X,3(£13.6,1X))
PRINT 166,(CIF(I),I=1,5)

FORMAT( * CIF(I) =*,5(E13.6,1X))
RANMOD(1) = RXN(1)

RXNMOD(2) = RXN(2)/BD

RXNMOD(3) = RXN(3)/BD

RXNMOD(4) = RXN(4)
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RXNMOD(5)
RXNMOD(6)
RXNMOD( 7)
RXNMOD( 8)
RXNMOD( 9)
RXNMOD( 10)
RXNMOD(11)
RXNMOD(12)

RXN(5)/BD
RXN(6)
RXN(7)
RXN(8)/BE
RXN(9)/BE/B3
RXN(10)
RXN(11)
RXN(12)/BD
RXNMOD(13) = RXN(13)/BD
RXNMOD(14) = SI*SO
IF(MREAL.NE.1) GO TO 9
DO 9 L=1,l4
RXNMOD(L) = RXNMOD(L)*CL
9 CONTINUE
PRINT 167,(L,RXNMOD(L), L=1,12)
PRINT 168,RXNMOD(13),RXNMOD(14)
167 FORMAT( 3(* RXN(*,I2,*)=* E13.6,2X))
168 FORMAT{ * RXN(13)=*E13.6,2X,* RXN(14)=*E13.6)
PRINT 196
196 FORMAT( //* SEMICONDUCTOR...*)
PRINT 200
200 FORMAT( * J *,6X,*AN(J)*,10X,*P(J)*
1,11X,*PHI(J)*,8X ,*FP(J)/H*,9X,*FN(J)/H*)
YSC = 0.
LI = 1IJ + 2
IF(MRPRNT.EQ.1) LJ = NJ
DO 10 J=LJ,LJ
FPOH = FP(J)/H/BD
FNOH = FN(J)/H
IF(MREAL.EQ.1) FPOH = FPOH*CL
IF(MREAL.EQ.1) FNOH = FNOH*CL
IF(MREAL.EQ.1) PHIMOD = (PHI(J)-PHI(NJ))*CPOT
PR = P(J)/EXP(PHI(J))
ANR = AN(J)*EXP(PHI(J))
IF(MREAL.EQ.1) PRINT 20S5,J,ANR,PR,PHIMOD, FPOH,FNOH
IF(MREAL.EQ.0) PRINT 205,J,AN(J),P(J),PHI(J),FPOH,FNOH
YSC = ¥SC + H
10 CONTINUE
205 FORMAT( I4,1X,5(E13.6,2X))
IF{MREAL.EQ.0) PRINT 206
IF{MREAL.EQ.1) PRINT 207
IF(MREAL.EQ.1) PRINT 208
IF(MREAL.EQ.0) PRINT 209
206 FORMAT( * AN(J) AND P(J) ARE COMPUTER VARIABLES; PR = P(J)/EXP(PHI
L(J))*)
207 FORMAT( * AN(J) AND P(J) ARE REAL CONCENTRATIONS, NORMALIZED TC TH
LE BACKGROUND CHARGE*/
2  * POTENTIALS REFERENCED TO CURRENT-COLLECTOR  (MV)*)
208 FORMAT( * ALL FLUXES AND REACTION RATES ARE IN UNITS OF ELECTRON F
1LUX (MA/CM2)*)
209 FORMAT( * ALL FLUXES AND REACTION RATES ARE IN UNITS OF ELECTRON F
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1LUX ( DIMENSIONLESS)*)
PRINT 210
210 FORMAT( // )
RETURN
END
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2. PROGRAM RCALC

This program was written to calculate the primary resistance and
current distributions along the electrodes for a slotted-electrode cell. The
Schwarz-Christoffel transformation is the basis of this work, and the

appropriate equations are present'ed in Chapter 4.

Input program control parameters are defined in the main program
listing. The correspondence between program variables and the variables
defined in Chapter 4 is given below. A sample input data file and output are

presented after the program listing.

AHGTH = Re{C - B}

ALNGTH = Im{B - A}

AT = a

ATOLD = initial guess for at
AZ = A

BT = b

BTOLD = initial guess for bt
BZ = B

CT = c

CTOLD = initial guess for ct
CZ = C

DT = d

DTOLD = initial guess for dt
DZ = D

GAP = Im{-D}
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WIDTH = Re{A]
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PROGRAM RCALC ( INPUT,OUTPUT)

PROGRAM FOR CALCULATION OF PRIMARY CURRENT DISTRIBUTION
AND CELL RESISTANCE FOR A SLOTTED ELECTRODE ABOVE A

PLANAR ELECTRODE (BOTH FACING THE SAME DIRECTION) USING THE
SCHWARZ-CHRISTOFFEL TRANSFORMATION.

DIMENSION NPEG(3)
COMMON/TRANS/ AT,BT,CT,DT,AZI,BZI,CZI,DZI
COMMON/TRANS2/ NATSND
COMMON/WMAX/ WIMAX
COMMON/CURR/ AZIMAG,BZIMAG,CZIMAG,DZIMAG, SUMAB,RESCD,MPLOT,WOVRAZ
COMMON N,B(3,4),C(3),G6(3)
COMPLEX AZ,BZ,CZ,DZ
COMPLEX AZWDTH,BZWDTH,CZWDTH,DZWDTH
COMPLEX AZWANT,BZWANT,CZWANT ,DZWANT
100 FORMAT{6I3)
102 FORMAT(4E10.3)
200 FORMAT( //,* CALCULATION OF PRIMARY CURRENT DISTRIBUTION AND CELL
LRESISTANCE*/* FOR A SYSTEM OF THE GENERAL SHAPE;*//,14X,*D*,
2% Ch/, 15K, * |%,28X,%|*, /, 15X % |*
3,28X,%[* /[, 15X,* [* 4X *A |*/,15%,
4* |* 6X,%|%* 4X,*ELECTRODE AB*,7X,*B*,/,15X,* [*, 66X,
5% | * [/ 15K,* |*,28X,%|* / 15X,% |*, 28X *{* /
615X,* | _ |*/,24X,*ELECTRODE ~C-D*/)
201 FORMAT( * SHAPE PARAMETERS;*,5X,*HALF-WIDTH (0A) =*,F12.4,/
1,27X,*LENGTH (AB) =* ,F12.4,/
1,27X,*HEIGHT (BC) =*,F12.4,/
1,25X,*GAP (CD)-(AB) =* F12.4,/)
400 FORMAT{//,* CALCULATION OF Z-DOMAIN PARAMETERS FROM T-DOMAIN PARAM
LETERS*,/* NATMAX=*18,/)
210 FORMAT( /* PARAMETERS IN T-DOMAIN*/ * AT=*E18.9,12X,F18.6
1 /% BT=*E18.9,12X,F18.6
2 /% CT=*E18.9,12X,F18.6
3 /* DT=*E18.9,12X,F18.6)
205 FORMAT( /* PARAMETERS IN Z-DOMAIN*/ * AZ=#*2E12.5,6X,2F12.6
1 /* BZ=%2F12.5,6X,2F12.6
2 /% CZ=*2E12.5,6X,2F12.6
3 /% DZ=*2E12.5,6X,2F12.6)
300 FORMAT( * CONVERGENCE NOT ACHIEVED IN*, I4,* ITERATIONS*)

301 FORMAT( * CONVERGENCE ACHIEVED IN*, I4,* ITERATIONS*)

801 FORMAT( * CURRENT DISTRIBUTION ALONG ELECTRODE CD*)

802 FORMAT( * CURRENT DISTRIBUTION ALONG ELECTRODE AB*)

803 FORMAT( * ASYMPTOTIC CURRENT DISTRIBUTION ALONG ELECTRGDE CD*)
804 FORMAT( * ASYMPTOTIC CURRENT DISTRIBUTION ALONG ELECTRODE AB*)
1000 FORMAT( * TARGET *, 4E15.6)

1001 FORMAT( * G, B“S *, 4E15.6)

1002 FORMAT( / * ICOUNT *, 14)

1003 FORMAT( * C”S *  15X,3El5.6)

1004 FORMAT( * TOLD"S *, 4E15.6)

1005 FORMAT( * ZN”S *, 4E15.6)
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1007 FORMAT( * NPEG"S *, 20X,3(I15,10X))
PRINT 200

MPLOT = 0 ALLOWS PRINTING COF CURRENT DISTRIBUTION WITH LABLED
FORMAT .

MPLOT = 1 ALLOWS PRINTING OF CURRENT DISTRIBUTION IN UNLABELED
FORMAT FOR EASE IN COMPUTER~ASSISTED PLOTTING.

MDIST = O SUPRESSES CALCULATION OF CURRENT DISTRIBUTION.

MDIST = 1 ALLOWS CALCULATION OF CURRENT DISTRIBUTION.

MIT = O SUPRESSES PRINTING OF CALCULATED VALUES DURING
ITERATION FOR T-PARAMETERS FROM INPUT Z-PARAMETERS.

MIT = 1 ALLOWS PRINTING OF CALCULATED VALUES DURING
ITERATION FOR T-PARAMETERS FROM INPUT Z-PARAMETERS.

MSCALE = 0 SUPRESSES ADJUSTMENT OF POSITION VARIABLE FOR THE AB
ELECTRODE SUCH THAT THE ELECTRODE BEGINS AT O.

MSCALE = 1 ADJUSTS POSITION VARIABLE FOR THE AB ELECTRODE
SUCH THAT THE ELECTRODE BEGINS AT A.

MASYMP = 0 SUPRESSES PRINTING OF ASYMPTOTIC SOLUTIONS FOR
CURRENT DISTRIBUTION.

MASYMP = 1 ALLOWS PRINTING OF ASYMPTOTIC SOLUTIONS FOR
CURRENT DISTRIBUTION.

IMAX MAXIMUM NUMBER OF ITERATIONS ALLOWED.

READ 100,MPLOT,MDIST,MIT,MSCALE ,MASYMP , IMAX
READ 102,WIDTH,ALNGTH,AHGTH,GAP

READ 102,ATOLD, BTOLD,CTOLD,DTOLD

PRINT 201,WIDTH,ALNGTH,AHGTH,GAP

AZWANT = CMPLX(WIDTH,O0.)

BZWANT = CMPLX(WIDTH,ALNGTH)

CZWANT = CMPLX(WIDTH+AHGTH,ALNGTH)

DZWANT = CMPLX(WIDTH+AHGTH,-GAP)

N=3

ICOUNT = 0

AZTG = REAL{ AZWANT)

BZTG = AIMAG(BZWANT)

CZTG = REAL( CZWANT-BZWANT)

DZTG = AIMAG(DZWANT—-CZWANT)

IF(MIT.EQ.1) PRINT 1000, AZTG,BZTG,CZTG,DZTG

1 ICOUNT = ICOUNT + 1
IF(MIT.EQ.1) PRINT 1002,ICOUNT
IF(MIT.EQ.1) PRINT 1004,ATOLD,BTOLD,CTOLD,DTOLD
AT = ATOLD
BT = BTOLD
CT = CTOLD
DT = DTOLD
CALL TRANSZ
WOVRAZ = WIDTH/AZI
AZN = WIDTH
BZN = BZIXWOVRAZ
CZIN = CZI*WOVRAZ
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DZN = DZI*WOVRAZ
DELBT = (CT-BT)/100.
IF( (BT~AT).LT.(CT-BT)) DELBT = (BT-AT)/100.
DELCT = (DT-CT)/100.
IF((CT~BT).LT.(DT-CT)) DELCT = (CT-BT)/100.
DELDT = (DT-CT)/100.
BT = BTOLD + DELBT
CALL TRANSZ

WTEMP = WIDTH/AZI
BZNP1B = BZIMJTEMP
CZNPLlB = CZI*WTEMP
DZNPLB = DZI*WTEMP
BT = BTOLD - DELBT
CALL TRANSZ

WTEMP = WIDTH/AZI
BZNM1B = BZI*WTEMP
CZNMLB = CZI*WTEMP
DZNM1B = DZI*WTEMP
BT = BTOLD

CT = CTOLD + DELCT
CALL TRANSZ

WTEMP = WIDTH/AZI
BZNPLC = BZI*WTEMP
CZNP1C = CZI*WTEMP
DZNP1C = DZI*WTEMP
CT = CTOLD -~ DELCT
CALL TRANSZ

WTEMP = WIDTH/AZI
BZNM1C = BZIAWTEMP
CZNMLC = CZI*WTEMP
DZNM1C = DZIXWTEMP
CT = CTOLD

DT = DTOLD + DELDT
CALL TRANSZ

WTEMP = WIDTH/AZI
BZNP1D = BZI*WTEMP
CZNPLD = CZI*WTEMP
DZNP1D = DZI*WTEMP
DT = DTOLD - DELDT
CALL TRANSZ

WTEMP = WIDTH/AZI
BZNM1D = BZI*WTEMP
CZNMLD = CZI*WTEMP
DZNMLD = DZI*WTEMP

DT = DTOLD

DBZDBT = -(BZNMIB - BZNP1B)/DELBT/2.
DBZDCT = —(BZNM1C - BZNPLC)/DELCT/2.
DBZDDT = -(BZNM1D - BZNP1D)/DELDT/2.
DCZDBT = ~(CZNM1B - CZNP1B)/DELBT/2.
DCZDCT = ~{CZNMIC - CZNPLC)/DELCT/2.
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DCZDDT = -(CZNMLD - CZNP1D)/DELDT/2.
DDZDBT = -(DZNMLB -~ DZNP1B)/DELBT/2.
DDZDCT = -(DZNMLC - DZNP1C)/DELCT/2.
DDZDDT = ~(DZNMLD - DZNPLD)/DELDT/2.

G(1) = BZTG - BZN
B(1,1) = DBZDBT
B(1,2) = DBZDCT
B(1,3) = DBZDDT -
G(2) = CZTG - C2ZN
B(2,1) = DCZDBT
B(2,2) = DCZDCT
B(2,3) = DCZDDT
G(3) = DZIG - DzZN
B(3,1) = DDZDBT
B(3,2) = DDZDCT
B(3,3) = DDZDDT
IF(MIT.EQ.1) PRINT 1001,(G(L),B(L,1),B(L,2),B(L,3),L=1,3)

CALL SOLVEQ
IF(MIT.EQ.1) PRINT 1003,(C(K),K=1,3)
DO 15, K=1,3

15  NPEG(K) = 0
IF(C(1).GT.(CT-BT)*0.499) C(1l) = (CT-BT)*0.499
IF(C(1) .GT.(CT~BT)*0.499) NPEG(1l) = 1
IF(C(1) .LT.=( BT=AT)*0.999) C(l) = —( BT-AT)*0.499
IF(C(1).LT.~(BT-AT)*0.999) NPEG(1) = 1
IF(C(2).GT.(DT~CT)*0.499) C(2) = (DT-CT)*0.499
IF(C(2).GT.(DT-CT)*0.499) NPEG(2) = 1
IF(C(2).LT.=(CT-BT)*0.499) C(2) = —(CT-BT)*0.499
IF(C(2).LT.~(CT=BT)*0.499) NPEG(2) = 1
IF(C(3).GT.DT) C(3) = DT
IF(C(3).GT.DT) NPEG(3) = 1
IF(C(3).LT.=(DT-CT)*0.499) C(3) = —(DT-CT)*0.499
IF(C(3) .LT.=(DT-CT)*0.499) NPEG(3) = 1
IF(MIT.EQ.1) PRINT 1007,(NPEG(K),K=l,3)
IF(MIT.EQ.1) PRINT 1003,(C(K),K=1,3)
BTOLD = BTOLD + C(1)
CTOLD = CTOLD + C(2)
DTOLD = DTOLD + C(3)
IF(MIT.EQ.1) PRINT 1005,AZN,BZN,CZN,DZN

IF(ICOUNT.GE.IMAX) GO TO 50
IF(ICOUNT.GE.IMAX-4) MIT =1
IF(ABS(G(1)).GT.1.0E-Q6) GO TO 1
IF(ABS(G(2)).GT.1.0E-06) GO TO 1
IFCABS(G(3})).GT.1.0E~06) GO TO 1
PRINT 301,ICOUNT

GO TO 51

50 PRINT 300,ICOUNT
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51 AZWDTH = CMPLX(AZN,0.)
BZWDTH = AZWDTH + CMPLX(O0.,BZN)
CZWDTH = BZWDTH + CMPLX(CZN,0.)
DZWDTH = CZWDTH + CMPLX(0.,DZK)

AZ = CMPLX(WIDTE/WOVRAZ,0.)
BZ = AZ + CMPLX(0.,BZN/WOVRAZ)
CZ = BZ + CMPLX(CZN/WOVRAZ,0.)
DZ = CZ + CMPLX(O0.,DZN/WOVRAZ)
BT = BTOLD

CT = CTOLD

DT = DTOLD

PRINT 400,NATSND

PRINT 210, AT,AT,BT,BT,CT,CT,DT,DT

PRINT 205, AZ,AZWDTH,BZ,BZWDTH,CZ,CZWDTH,DZ,DZWDTH

CALL TRANSW

AZIMAG = AIMAG(AZ)

BZIMAG = AIMAG(BZ)

CZIMAG = AIMAG(CZ)

DZIMAG = AIMAG(DZ)

IF(MPLOT.EQ.1 .AND. MDIST.EQ.1l) PRINT 801

CALL DISTCD(MDIST,CURCD)

IF(MSCALE.EQ.1) DZADJ = DZIMAG

IF(MSCALE.EQ.0) DZADJ = 0.

IF(MPLOT.EQ.1 .AND. MDIST.EQ.1) PRINT 802

IF(MDIST.EQ.l) CALL DISTAB(NATSND,DZADJ,CURAB)

IF(MASYMP.EQ-1 .AND. MDIST.EQ.l) PRINT 803

IF(MASYMP.EQ.1) CALL ASYMPT(CURCD,AHGTH,ALNGTH+GAP)
IF(MASYMP.EQ.1 .AND. MDIST.EQ.1l) PRINT 804

IF(MASYMP.EQ.1 .AND. MDIST.EQ.1) CALL ASYMPT(CURAB,AHGTH,ALNGTH)
STOP .
END

SUBROUTINE TRANSZ

ROUTINE FOR CALCULATION OF CONSTANTS IN THE Z-DOMAIN FROM
CONSTANTS IN THE T-DOMAIN USING THE SCHWARZ-CHRISTOFFEL
TRANSFORMATION.

COMMON/TRANS/ AT,BT,CT,DT,AZI,BZI,CZI,DZI
COMMON/TRANS2/ NATSND
NATMAX = 100
AZI = 0.
BZL = 0.
CZI = 0.
DZL = 0.
1 NATMAX = NATMAX*2
IF(NATMAX.GT.6500) PRINT 100,NATMAX/2
IF( NATMAX.GT.6500) STOP

100 FORMAT( * CONVERGENCE NOT ACHIEVED FOR NATMAX =%, TI6,* IN TRANSZ*)



IF(NATMAX.GT.6500) GO TO 99

AZOLD = AZI

BZOLD = BZI

CZOLD = CZI

DZOLD = DZI

HAT = AT/FLOAT{NATMAX)

HBT = SQRT(BT-AT)/FLOAT(NATMAX)

HCT1 = SQRT((CT-BT)/2.)/FLOAT(NATMAX)

HCT2 = HCT1

HDTL = SQRT((DT-CT)/2.)/FLOAT(NATMAX)

HDT2 = HDT1

T4A = =HAT

U4B = -HBT

U4Cl = -HCT1

U4C2 = -HCT2

U4D1 = -HDT1

U4D2 = -HDT2

T2A = O.

U2B = 0.

y2c1 = 0.

U2c2 = 0.

U201 = 0.

U202 = 0.

SUM4A = O.

SUM4B = O.

SUM4CL = 0.

SUM4C2 = 0.

SUM4D1 = 0.

SUM4D2 = 0.

SUM2A = O.

SUM2B = O,

SUM2CL = O.

SUM2C2 = 0.

SUM2Dl = 0.

SUM2D2 = 0.

MAX = NATMAX/2-~1
DO 10,N=1,MAX
T4A = T4A + 2.%HAT
U4B = U4B + 2.*HBT
T4B = BT-U4B**2
U4Cl = UACL + 2.*HCT1
U4C2 = U4C2 + 2.*HCT2

T4Cl = BT4+U4CLl%k*2
T4C2 = CT-U4C2**2
U4D1 = U4D1 + 2.*HDT1
U4D2 = UAD2 + 2.*HDT2
T4D1 = CTHI4DL**2
T4D2 = DT-U4D2%*2

T2A = T2A + 2.*HAT
U2B = U2B + 2.*HBT
T2B = BT-U2B**2
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U2Cl = U2Cl + 2.*HCT1
U2C2 = U2C2 + 2.*HCT2
T2Cl = BT+U2Cl**2
T2C2 = CT-U2C2**2
U2D1 = y2D1 + 2.*EDT1
U2D2 = U2D2 + 2.*HDT2
T2D1 = CT+U2D1**2
T2D2 = DT-U2D2%*2

SUM4A = SUM4LA + FA(T4A)
SUM4B = SUM4B + FB(T4B)*2.
SUM4CL = SUM4CL + 2.*FB(T4Cl)
SUM4C2 = SUM4C2 + 2.*FC(T4C2)
SUM4D1 = SUM4DL - 2.*FC(T4Dl)
SUM4D2 = SUM4D2 + 2.*FD(T4D2)
SUM2A = SUM2A + FA(T2A)
SUM2B = SUM2B + FB(T2B)*2.
SUM2Cl = SUM2C1l + 2.*FB(T2Cl)
SUM2C2 = SUM2C2 + 2.*FC(T2C2)
SUM2D1l = SUM2DLl - 2.%FC(T2Dl)
SUM2D2 = SUM2D2 + 2.*FD(T2D2)
CONTINUE
AZL = HAT/3.*(FA(O0.) + 4.*(SUMAA+FA(T4A+2.*HAT)) + 2.*SUM2A)
BZI = HBT/3.*(2.*FB(BT) + 4.*(SUM4B+2.*FB(BT-(U4B+2.*HBT)**2))
1 + 2.*%*SUM2B + 2.*FB{AT))
CZI = HCTL/3.%(2.*FB(BT) + 4.*(SUM4CLl+2.*FB(BT+(U4CL+2.*HCTL)**2))
1+ 2.%#SUM2CL + 2.*FB((BT+CT)/2.))
2  + HCT2/3.*%(2.*FC(CT) + 4.*%(SUM4C2+2.*FC(CT-(U4C2+2.XHCT2)**2))
3  + 2.%SUM2C2 + 2.*FC((BT+CT)/2.))
DZI = HDTL1/3.*(~2.*FC(CT)+4.*(SUM4DL=2.*FC(CT+{U4D1+2 . *HDT1)%**2))
1L+ 2.%*SUM2DL - 2.*FC({CT+DT)/2.))
2  + HDT2/3.*(2.*FD(DT) + 4.*(SUM4D2+2.*FD(DT-(U4D2+2 .XHDT2)**2))
3 4+ 2.%SUM2D2 + 2.*FD((CT+DT)/2.))
IF( ABS{(AZOLD—~AZI)/AZ1).GT.1.0E=04) GO TO 1
IF(ABS((BZOLD~BZI)/BZI).GT.1.0E-04) GO TO 1
IF(ABS((CZOLD~CZI)/CZ1).GT.1.0E=04) GO TO 1
IF(ABS((DZOLD-DZ1)/DZI).GT.1.0E-04) GO TO 1
NATSND = NATMAX
RETURN
END

FUNCTION FA(T)

COMMON/TRANS/ AT,BT,CT,DT,AZI,BZI,CZI,DZI

IF(T.EQ.AT) GO TO 5

FA = SQRT(AT*AT-T*T)/SQRT(BT*BT-T*T)}/SQRT(CT*CT-T*T)/
1 SQRT(DT*DT-T*T)

RETURN

FA = 0.

RETURN

END
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FUNCTION FB(T)
COMMON/TRANS/ AT,BT,CT,DT,AZI,BZI,CZI,DZI
IF(T.EQ.AT) GO TO S
FB = SQRT(TAT-AT*AT)/SQRT(BT+T)/SQRT(CT*CT=T*T)/SQRT(DT*DT-T*T)
RETURN
S FB = 0.
RETURN
END

FUNCTION FC(T)
COMMON/TRANS/ AT,BT,CT,DT,AZI,BZI,CZI,DZI
IF(T.EQ.AT) GO TO 5
FC = SQRT(T*T-AT*AT)/SQRT(T*T-BT*BT)/SQRT( CT+T)/SQRT(DT*DT-T*T)
RETURN
5 FC = 0.
RETURN
END

FUNCTION FD(T)
COMMON/TRANS/ AT,BT,CT,DT,AZI,BZI,CZI,DZI
IF(T.EQ.AT) GO TO 5
FD = =-SQRT(T*T~AT*AT)/SQRT( T*T-BT*BT)/SQRT(T*T-CT*CT)/SQRT(DT+T)
RETURN
5 FD = O.
RETURN
END

SUBROUTINE TRANSW

ROUTINE FOR CALCULATION OF GEOMETRIC RESISTANCE FOR THE
RECTANGULAR CELL IN THE W-DOMAIN FROM CONSTANTS IN THE
T-DOMAIN USING THE SCHWARZ-CHRISTOFFEL TRANSFORMATION.

COMMON/TRANS/ AT,BT,CT,DT,AZI,B2I,CZI,DZI
COMMON/WMAX/ WIMAX
COMPLEX AZ,BZ,CZ,DZ
400 FORMAT(//,* CALCULATION OF W-DOMAIN EFFECTIVE RESISTANCE FROM T-DO
IMAIN PARAMETERS*,/* NATMAX=*I8,/)
202 FORMAT( * N=*I3,*% T4Cl=*Ell,5% T2C1=*Ell,5% SUM4Cl=*Ell.5
1 * SUM2Cl=*Ell.5)
203 FORMAT( 6X,* T4C2=*E11.5% T2C2=*EL1l.5% SUM4C2=%E1l.5
1 * SUM2C2=*El1l.5)
210 FORMAT( /* PARAMETERS IN T-DOMAIN*/ * WIMAX=*E12.5,18X,F12.6)
NATMAX = 10
WIMAX = O.
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NATMAX
WOLD =
HCTL =
HCT2
Uacl
U4c2
U2c1
U2e2 =
SUM4CL
SUM4cC2
SUM2Cl
SuM2C2

= NATMAX*2
WIMAX
SQRT( (CT+AT)/2.)/FLOAT(NATMAX)
HCT1

~HCT1
~HCT2

0.

0.

= 0.

.0.

= 0.

= 0.

MAX = NATMAX/2-1

DO 1
U4Cl
U4C2
T4Cl
T4C2
U2Cl
Uu2c2
T2C1
T2C2
SUM4
SUM4
SUM2
SUM2

0,N=1,MAX

= U4C1 + 2.*HCT1

= UJ4C2 + 2.*HCT2
~CTHI4C1#*2

AT-U4C24%2.

U2C1 + 2.*HCT1

U2C2 + 2.*HCT2
~CT+U2C1**2

= AT~U2C2%%*2

Cl = SUM4CL + 2.*FBW(T4CL)
C2 = SUM4CZ + 2.*FCW(T4C2)
Cl = SUM2CLl + 2.*FBW(T2Cl)
€2 = SUM2C2 + 2.*FCW(T2C2)

PRINT 202,N,T4C1,T2C1,SUM4CL,SUM2CL
PRINT 203,T4C2,T2C2,SUM4C2,SUM2C2

CONT

INUE

WIMAX = HCTL/3.%(2.*FBW{-CT) +

1 b.¥(
2 2.*F
3 4%
4 2.%F

IF( ABS(

PRINT 4
PRINT 2
RETURN
END

FUNCTIO
COMMON/
FBW =
RETURN
END

SUM4CL+2.*FBW(~-CTH U4CL+2 . XHCT1)**2)) + 2.*SUM2Cl +
BW((AT-CT)/2.)) + HCT2/3.%(2.*FCW(AT) +

SUM4C2+2 . *FCW( AT-(U4C2+2 . #HCT2)**2)) + 2.*SUM2C2 +
CW((AT-CT)/2.))

{ WOLD~WIMAX)/WIMAX).GT.1.0E~04) GO TO 1

00, NATMAX
10, WIMAX,WIMAX

N FBW(T)
TRANS/ AT,BT,CT,DT,AZI,B2I,CZI,DZI
1./SQRT(AT-T)/SQRT(BT-T)/SQRT(DT+T)
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FUNCTION FCW(T)

COMMON/TRANS/ AT,BT,CT,DT,AZI,BZI,CZI,DZI
FCW = 1./SQRT(BT~-T)/SQRT(DT+T)/SQRT{CT+T)
RETURN

END

SUBROUTINE DISTAB(NATSND,DZADJ,CURAB)

ROUTINE FOR CALCULATION OF CURRENT DISTRIBUTION AT THE
ELECTRODE AZ-BZ.

COMMON/TRANS/ AT,BT,CT,DT,AZI,BZI,CZI,DZI

COMMON/WMAX/ WIMAX

COMMON/CURR/ AZIMAG, BZIMAG,CZIMAG,DZIMAG,SUMAB,RESCD,MPLOT,WOVRAZ
FORMAT( 2(3X,E13.5),10X,*INF*)

FORMAT( 10X,*T*,15X,*Z* 13X, *CURRENT*)

FORMAT( 3(3X,E13.5))

FORMAT(//,* CALCULATION OF CURRENT DISTRIBUTION ALONG THE ELECTROD
1E A-B* /* NATMAX=*I3)

FORMAT( I4)

FORMAT( 2E15.7)

NATMAX = 800

IF(NATSND.GT.1600) NATMAX = NATSND/2

IF(MPLOT.EQ.Q) PRINT 400,NATMAX

IF(MPLOT.EQ.1) PRINT 600,(2*NATMAX+1)

HBT = ((BT=-AT)/2.)**(1.5)/FLOAT(NATMAX)

CURAVG = SUMAB/(BZIMAG-AZIMAG)

TNM2 = AT

UNM1 = HBT

UN = 2.%HBT

TNML = UNMi**(2./3.) + AT

TN = UN**(2./3.) + AT

ZINM2 = 0,

ZNML = ZNM2 + HBT/9.*(FAT(TNM2)+4.*FAT( (TNM2+TNM1)/2.)+FAT(TNML))
ZN = ZNM2 + 2.*HBT/9.*(FAT(TNM2)+4.*FAT( TNML)+FAT(TN))
CURNML = 1./WIMAX*SQRT(BT+TNML)#*SQRT(CT-TNML)*SQRT(DT-TNML)
1 /(TNM1-AT)/SQRT(AT+TNM1)/CURAVG

CURN = 1./WIMAX*SQRT(BT+TN)*SQRT(CT-TN)*SQRT(DT~-TN)

1 /(TN~AT)/SQRT{AT+TN)/CURAVG

IF(MPLOT.EQ.0) PRINT 199

IF(MPLOT.EQ.0) PRINT 198,TNM2,ZNM2

IF(MPLOT.EQ.1) PRINT 620,(ZNM2-DZADJ)*WOVRAZ,1.0E+20
IF(MPLOT.EQ.0) PRINT 201,TNML,ZNM1,CURNM1

IF(MPLOT.EQ.0) PRINT 201,TN,ZN,CURN

ILF(MPLOT.EQ.1) PRINT 620,(ZNM1-DZADJ)*WOVRAZ,CURNM1
IF(MPLOT.EQ.1l) PRINT 620,(ZN-DZADJ)*WOVRAZ,CURN

MAX = NATMAX/2-1
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DO 10,N=1,MAX

TNM2 = TN

TNM3 = TNML

UNM1 = UNM1 + 2.*HBT

UN = UN + 2.%HBT

TNM1 = UNM1**(2./3.) + AT

TN = UN**(2./3.) + AT

ZNM2 = 2N

ZNM3 = ZNM1

ZNML = ZNM3 + 2.*HBT/9.%( FAT( TNM3)+4.*FAT( TNM2)+FAT(TNM1))
ZN = ZNM2 + 2.*HBT/9.*( FAT(TNM2)+4.*FAT( TNML)+FAT(TN))
CURNML = 1./WIMAX*SQRT(BT+TNML)*SQRT(CT-TNML)*SQRT(DT~TNML)

1 /(TNML-AT) /SQRT{ AT+TNM1 ) /CURAVG
CURN = 1./WIMAX*SQRT(BT+TN)*SQRT( CT~TN)*SQRT(DT-TN)
1 / (TN=AT)/SQRT(AT+TN)/CURAVG

IF(MPLOT.EQ.Q) PRINT 201,TNM1,ZNM1,CURNML
IF(MPLOT.EQ.0) PRINT 201,TN,ZN,CURN
IF(MPLOT.EQ.1) PRINT 620,(ZNML-DZADJ)*WOVRAZ ,CURNML
IF(MPLOT.EQ.1) PRINT 620,(ZN=DZADJ)*WOVRAZ,CURN
CONTINUE

HBT = SQRT((BT-AT)/2.)/FLOAT{NATMAX)

TNM2 = TN

UNML = SQRT((BT-AT)/2.) - HBT

UN = UNM1l - HBT

TNM1 = BT-UNMI1**2

TN = BT-UN**2

ZNM2 = ZN

ZNML = ZNM2 + HBT/3.*(FB( TNM2)+4.*FB(( TNM2+TNM1)/2.)+FB(TNM1))

ZN = ZNM2 + 2.*HBT/3.%( FB( TNM2)+4.*FB( TNM1)+FB(TN))

CURNML = l./WIMAX*SQRT(BT+TNM1)*SQRT(CT-TNM1)*SQRT(DT~TNM1)

1 /(TNM1=-AT)/SQRT(AT+TNM1)/CURAVG

CURN = 1./WIMAX*SQRT(BT+TN)*SQRT(CT-TN)*SQRT(DT-TN)

1 /(TN-AT)/SQRT(AT+TN)/CURAVG

IF(MPLOT.EQ.0) PRINT 201,TNMl,ZNMl,CURNML

IF(MPLOT.EQ.0) PRINT 201,TN,ZN,CURN

LF({MPLOT.EQ.1) PRINT 620,(ZNM1=DZADJ)*WOVRAZ , CURNML

IF(MPLOT.EQ.1) PRINT 620,(ZN-DZADJ)*WOVRAZ,CURN
DO 20,N=1,MAX
TNM2 = TN
TNM3 = TNML
UNM1 = UNM1l - 2.*HBT
UN = UN - 2.%HBT
TNML = BT - UNML#*%2
TN = BT — UN**2
ZNMZ = ZIN
ZNM3 = ZNM1
ZNML = ZNM3 + 2.%HBT/3.*(FB(TNM3)+4.*FB( TNM2)+FB(TNM1))
ZN = ZNM2 + 2.*HBT/3.*( FB(TNM2)+4.*FB( TNM1)+FB(TN))
CURNM1 = 1./WIMAX*SQRT(BT+TNML)*SQRT(CT-TNM])*SQRT(DT-T¥ML)

1 /(TNM1~-AT)/SQRT( AT+TNM1) /CURAVG
CURN = 1./WIMAX*SQRT(BT+TN)*SQRT(CT-TN)*SQRT(DT-TN)
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1 /{TN=-AT)/SQRT(AT+TN)/CURAVG

20

220
400

600
620
198
199
200
201
310

100

IF{MPLOT.EQ.0) PRINT 201,TNMl,ZNM1,CURNML
IF(MPLOT.EQ.0) PRINT 201,TIN,ZN,CURN

IF(MPLOT.EQ.1) PRINT 620,(ZNM1-DZADJ)*WOVRAZ,CURNM1
IF{MPLOT.EQ.1) PRINT 620,(2ZN-DZADJ)*WOVRAZ,CURN
CONTINUE

CURAB = CURN
RETURN
END

FUNCTION FAT(T)

COMMON/TRANS/ AT,BT,CT,DT,AZI,BZI,CZI,DZI

FAT = SQRT{AT+T)/SQRT(BT*BT-T*T)/SQRT( CT*CT~T*T)/
1 SQRT(DT*DT-T*T)

RETURN

END

SUBROUTINE DISTCD(MDIST,CURCD)

ROUTINE FOR CALCULATION OF CURRENT DISTRIBUTION, TOTAL
CURRENT, AND CELL RESISTANCE AT THE ELECTRODE (~-CZ)-(-DZ).

COMMON/TRANS/ AT,BT,CT,DT,AZI,BZI,CZI,DZI

COMMON/WMAX/ WIMAX

COMMON/CURR/ AZIMAG,BZIMAG,CZIMAG,DZIMAG, SUMAB,RESCD,MPLOT,WOVRAZ
FORMAT( /* CELL RESISTANCE (EVALUATED AT CD) =* E13.5,/)

FORMAT( //,* CALCULATION OF CURRENT DISTRIBUTION ALONG THE ELECTROD
1E (=C)=(=D)*,/* NATMAX=*18,/)

FORMAT( I4)

FORMAT{ 2E15.7)

FORMAT( 14,4(3X,E13.5))

FORMAT( 3X,*N* 10X,*T*,15X,*Z* 13X ,*CURRENT*,8X,* INTEGRAL*)
FORMAT( I4,4(3X,E13.5),3X,I4)

FORMAT( 4X,3(3X,E13.5))

FORMAT( * CONVERGENCE NOT ACHIEVED BY *I14* ITERATIONS.*

1 /* TOLD=* E13.5, * TNEW=%* E13.5)

NATMAX = 100 '

SUMAB = 0.

CURAVG = 1,

NPRINT = O

IF(NPRINT.EQ.0) NATMAX = NATMAX*2

IF(NATMAX.GT.6500) PRINT 100,NATMAX/2

IF(NATMAX.GT.6500) STOP

FORMAT( * CONVERGENCE NOT ACHIEVED FOR NATMAX =*  16,* IN DLSTCD*)
IF{NATMAX.GT.6500) NPRINT = 1

IF(NPRINT.EQ.1) RESCD = 1./SUMAB
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IF(NPRINT.EQ.1) PRINT 220, RESCD
IF(MDIST.EQ.O0 .AND. NPRINT.EQ.l) CURCD = CURN
IF(MDIST.EQ.0 .AND. NPRINT.EQ.1) RETURN
MSWICE = 0
MS = 0
IF(MPLOT.EQ.0 .AND. NPRINT.EQ.1) PRINT 400,NATMAX
IF(MPLOT.EQ.1 .AND. NPRINT.EQ.1) PRINT 600,NATMAX+1
MAX = NATMAX/2-1
SOLD = SUMAB
HBT = (~CZIMAG+DZIMAG)/FLOAT({NATMAX)
ZINM2 = 0.
ZNML = HBT
ZN = 2.%HBT
TNM2 = -DT
TNM1O = -DT + (DT~CT)/2000./FLOAT{NATMAX)
TNO = =DT + (DT-CT)/1000./FLOAT(NATMAX)
DO 13,K=1,100

KPR = K
TNML = =DT + ( - 3.%(ZNM1-ZNM2)/(FDT(TNM2)+

1 4 *FDT( (TNM2+TNM10)/2.)+FDT(TNM10)) y**2
TN = =DT + ( = 3.*(ZN-ZNM2)/(FDT{TNM2)+

1 4 #*FDT(TNML)+FDT({TNQ)) )**2

IF(ABS({ (TN-TNO)/TN).LT.1.0E-10.AND.ABS{ ( TNM1-TNM10)/TNM1)

TNM1O = TNML
13 TNO = TN
PRINT 310,KPR,TNO,TN
14 CONTINUE
. SUMAB = HBT/3./WIMAX*( FBCUR2( TN)+4.*FBCUR2( TNM1)
1 +FBCUR2(TNM2))
CURNML = 1./WIMAX*SQRT(~BT-TNM1)}*SQRT(CT-TNM1)*SQRT(DT-TNM1)
1 /(TNML-AT)/SQRT(-AT-TNM1)/CURAVG
CURN = 1./WIMAX*SQRT(=BT-TN)*SQRT{CT-TN)*SQRT(DT-TN)
1 /(TN-AT)/SQRT(~-AT-TN)/CURAVG
KN=2
KNOO = ¢
TNOO = -DT
ZNOQ = 0.
CURNOQ = -1./WIMAX*SQRT(DT-BT)*SQRT(CT+DT)*SQRT(DT+DT)
1 /(DT+AT)/SQRT{DT~AT)/CURAVG
SUMOO = 0.
[F(MPLOT.EQ.0 .AND. NPRINT.EQ.l) PRINT 199
IF(MPLOT.EQ.0 .AND. NPRINT.EQ.1) PRINT 198,KNOO,TNOO,-ZNOO*WOVRAZ
1 ,CURNOO,SUMOO
IF(MPLOT.EQ.Q .AND. NPRINT.EQ.l) PRINT 201,TNMl,-ZNM1*WOVRAZ
1 ,CURNML
IF(MPLOT.EQ.0 .AND. NPRINT.EQ.l) PRINT 200,KN,TN,-ZN*WOVRAZ ,CURN
1 ,SUMAB,KPR
IF(MPLOT.EQ.1 .AND. NPRINT.EQ.l) PRINT 620,-ZNOO*WOVRAZ,CURNOO
IF(MPLOT.EQ.1l .AND. NPRINT.EQ.l) PRINT 620,-ZNM1*WOVRAZ,CURNML

»
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IF(MPLOT.EQ.l .AND. NPRINT.EQ.1) PRINT 620,-ZN*WOVRAZ,CURN

DO 20,N=1,MAX
KN = 2%(N+1)
ZNM2 = ZN
ZNM3 = ZNM1
ZNMl = ZNM1 + 2.%*HBT
ZN = ZN + 2.*HBT
TNM2 = TN
TNM3 = TNM1
TNO = TN + (DT-CT)/1000./FLOAT(NATMAX)
TNM1O = TNM1 + (DT-CT)/1000./FLOAT(NATMAX)
DO 15,K=1,100
KPR = K
IF(TNM2.GT.({-DT-CT)/2.)) GO TO 12
TNM1 = -DT + (SQRT{DT+INM3) - 3.*(ZNM1-ZNM3)/(FDT(TNM3)+
4 *FDT(TNM2)+FDT({ TNM1LO)) )**2
TN = -DT + (SQRT(DT+TNM2) = 3.*(ZN~ZNM2)/(FDT(TNM2)+
4 *FDT( TNML)+FDT(TNO)) Y*%*2
GO TO 9
IF(MSWICH.EQ.0) TNMl=—CT-(SQRT(-CT-TNM2) + 3.*(ZNM1-ZNM2)
/(FCT(TNM2)+4 . *FCT({ ( TNM2+TNM10) /2. )+FCT(TNMLO) ) ) **2
IF(MSWICH.EQ.0) GO TO 19
TNMl = -CT - (SQRT(=CT-TNM3) + 3.%(ZNM1-ZNM3)/(FCT( TNM3)+
& *FCT(TNM2)+FCT{ TNMLO)) )**2
TN = —=CT - (SQRT(~CT-TNM2) + 3.*(ZN-ZNM2)/(FCT(TNM2)+
4 .SFCT( TNML)+FCT{TNO)) )**2
MS = 1
IF(ABS{ (TN-TNO)/TN).LT.1.0E~10.AND.ABS( (TNM1-TNM10)/TNML)
.LT.1.0E-10) GO TO 16
TNM10 = TNM1
TNO = TN
PRINT 310,KPR,TNO,TN
CONTINUE
IF(MS.EQ.1) MSWICH = 1
SUMAB = SUMAB + HBT/3./WIMAX*
( FBCUR2( TN)+4 . *FBCUR2{ TNM1 )+FBCUR2( TNM2 ) )
CURNM1 = 1./WIMAX*SQRT({-BT-TNM1)*SQRT{CT-TNM1)*SQRT(DT~-TNM1)
/( TNML-AT)/SQRT(-AT-TNM1) /CURAVG .
CURN = 1./WIMAX*SQRT(-BT-TN)*SQRT(CT-TN)*SQRT(DT-TN)
/(TN-AT) /SQRT(-AT-TN) /CURAVG
IF(MPLOT.EQ.Q0 .AND. NPRINT.EQ.l) PRINT 201,TNMl,-ZNM1*WOVRAZ
,CURNM1
IF(MPLOT.EQ.0 .AND. NPRINT.EQ.l) PRINT 200,KN,TN,-ZN*WOVRAZ
,CURN, SUMAB
,KPR
[F(MPLOT.EQ.1.AND.NPRINT.EQ.1) PRINT 620,-ZNM1*WOVRAZ,CURNML
IF(MPLOT.EQ.l .AND. NPRINT.EQ.l) PRINT 620,-ZN*WOVRAZ,CURN
CONTINUE

IF(NPRINT.EQ.1) GO TO 2
IF(ABS{ (SOLD=-SUMAB)/SUMAB) .LT.1.0E-04) NPRINT = 1
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CURAVG = SUMAB/(DZIMAG-CZIMAG)
GO TO 1
2 CURCD = CURN
RETURN
END

FUNCTION FBCUR2(T)
COMMON/TRANS/ AT,BT,CT,DT,AZI,BZI,CZI,DZI
IF(T.LT.AT) GO TO 5
FBCUR2 = SQRT( BT+T)*SQRT( CT-T)*SQRT{DT~T)/(T~AT)/SQRT( AT+T)
RETURN

5 FBCUR2 = SQRT(-BT-T)*SQRT(CT-T)*SQRT(DT-T)/(T-AT)/SQRT{-AT-T)
RETURN
END

FUNCTION FDT(T)
COMMON/TRANS/ AT,BT,CT,DT,AZI1,BZI,CZI,DZI
IF(T.EQ.AT) GO TO 5
FDT = SQRT(—AT*AT+T*T)/SQRT(=BT*BT+T*T)/SQRT(~CT*CT+T*T)/
1 SQRT(DT-T)
RETURN
5 FDT = Q.
RETURN
END

FUNCTION FCT(T)
COMMON/TRANS/ AT,BT,CT,DT,AZI,BZI,CZI,DZI
IF(T.EQ.AT) GO TO 5
FCT = SQRT(=AT*AT+T*T)/SQRT(=BT*BT+T*T)/SQRT(DT*DT~T*T)/
1 SQRT(CT-T)
RETURN
5 FCT = O.
RETURN
END

SUBROUTINE SOLVEQ
COMMON N,B(3,4),C(3),G(3)
100 FORMAT( * PIVOT IS TOO SMALL. PIVOT =*,E12.5)
DO 5 K=1,N
5 B(K,N+1)=G(K)
K=1
NP1=N+1
DO 70 IROW=1,N



50
51

92
99

27

28
10

18
20
70

72

600
620

10

K=K+1

ISWAP=1ROW

IF(K.GT.N) GO TO 51
DO 50 IN=K,N

IF(ABS(B( ISWAP,IROW))-ABS(B(IN,IRCW)).GE.0.) GO TO 50

ISWAP=IN
CONTINUE
CONTINUE
IF( ISWAP.EQ.IROW) GO TO 99
DO 92 J=1,NP1
TEMP=B( IROW,J)
B( IROW,J)=B( ISWAP,J)
B( ISWAP,J)=TEMP
PIVOT=B({ IROW,IROW)
IF(ABS(PIVOT)~1.0E~12) 27,27,28
PRINT 100,PIVOT
STOP
DO 10 J=1,NP1
B( IROW,J)=B( IROW,J)/PIVOT
DO 20 I=1,N
IF(I.EQ.IROW) GO TO 20
RATIO=B( I, IROW)
DO 18 J=1,NP1
B(I,J)=B(I,J)-B(IROW,J)*RATIO
CONTINUE
CONTINUE
DO 72, K=1,N
C(K)=B(K,N+1)
RETURN
END

SUBROUTINE ASYMPT(CURZMX,ZIMAX,ZRMAX)
FORMAT( 14)
FORMAT( 2E15.7)
PIL = 3,14159265358979
NMAX = 200
ANU = P1/2./ZIMAX
PRINT 600, NMAX
DELZR = ZRMAX/(NMAX-1)
ZR = -DELZR
DO 10 K=1,NMAX
ZR = ZR + DELZR
VAR = ANU*( ZR-ZRMAX)
CURDST = CURZMX*( EXP(VAR)+EXP(-VAR))/2.
PRINT 620,ZR,CURDST
RETURN
END
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0 0 0 0 040
1.000e-06 1.500e+01 3.000e+01 5.000e+00
1.000e+00 1.958e+03 1.960e+03 2.027e+03
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CALCULATION OF PRIMARY CURRENT DISTRIBUTION AND CELL RESISTANCE
FOR A SYSTEM OF THE GENERAL SHAPE; :

D C

! ELECTRODE AB B

tmh sam SmE sem gpem Fum e oy

ELECTRODE ~-C-D

SHAPE PARAMETERS; HALF-WIDTH (QA) = .0000
LENGTH (AB) = 15.0000

HEIGHT (BC) = 30.0000

GAP (CD)-(AB) = 5.0000

CONVERGENCE ACHIEVED IN 8 ITERATIONS

CALCULATION OF Z-DOMAIN PARAMETERS FROM T-DOMAIN PARAMETERS
NATMAX = 400

PARAMETERS IN T-DOMAIN

AT= +100000000E+01 1.000000

BT= .188013153E+04 - 1880.131532

CT= +202461487E+04 2024.614874

DT= .204604066E+04 2046.040661
PARAMETERS IN Z-DOMAIN

AZ= .10084E-09 0. .000001 0.

BZ= .10084E-09 .15126E-02 .000001 15.000000
CZ= .30252E-02 .15126E-02 30.000001 15.000000
DZ= .30252E-02 =-.50420E-03 30.000001 -5.000000

CALCULATION OF W-DOMAIN EFFECTIVE RESISTANCE FROM T-DOMAIN PARAMETERS
NATMAX= 40

PARAMETERS IN T-DOMAIN
WIMAX= .28548E-02 .002855

CELL RESISTANCE {(EVALUATED AT CD) = .25659E+01








