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A method is presented for interpretation of impedance spectra which employs
measurement models for assessing the error structure of the measurement. The
information obtained through use of the measurement model guides refinement of the
experimental procedure and suggests phenomena to be included in the process model. The
ultimate goal of the experimental observation is interpretation of impedance spectra in
terms of physically meaningful parameters; therefore, the measurement model is used as a
statistical tool to support development and regression of process models to experimental
data.

Electrochemical impedance spectroscopy can provide a powerful tool for identification of
phenomena governing electrochemical systems. The development and application of mathematical
models for the interpretation of electrochemical impedance data requires quantitative assessment of
the fundamental characteristics of the measurement as well as quantitative identification and
evaluation of the physics and chemistry of the system under study. An important factor, often
ignored or understated in electrochemical impedance spectroscopy, is the nature of the error
structure associated with the measurements. The importance of the error structure is neglected in
spite of the fact that electrochemical impedance measurements are recognized as being, in general,
heteroskedastic and time varying. Identification and quantification of the measurement error
structure is essential for filtering data, designing experiments, and assessing the validity of regression
assumptions and the confidence intervals of the resulting parameters.

A method for interpretation of impedance spectra has been developed which employs
measurement models for assessing the error structure of the measurement.[1-3] The information obtained
through use of the measurement model guides refinement of the experimental procedure and suggests
phenomena to be included in the process model. The synergistic implementation of experiment,
measurement model and process model has been applied to a variety of electrochemical systems, including
corrosion of copper, electrochemistry of metal hydrides (for battery applications), characterization of -
iontophoresis for transdermal delivery of therapeutic drugs, and identification of deep-level states in
semiconductors (GaAs, ZnO, ZnS, and multilayer structures). The measurement model has been
developed as a statistical tool to support development and regression of process models to experimental
data.

Definition of Terms
In this work, two types of models are used to facilitate interpretation of experimental results.

Process Model

A process model is a deterministic model built upon hypothesized physical and chemical phenomena.
Such models can be built upon prior information. For example, the principles governing clectronic
transitions within semiconductors are well known and can provide a working hypothesis to develop a
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model for the impedance response of a solid-state semiconducting system.[4,5] A similar level of prior
understanding is available for certain aspects (e.g., mass transfer) of electrochemical systems. Typically,
the major uncertainty in electrochemical systems pertains to phenomena occurring at the electrode surface.

Experiment ~

The inability of impedance spectroscopy to serve as a stand-alone method for identification of a correct
model has been addressed experimentally by including additional analysis techniques or by incorporating
multiple or more directed forcing functions. For the study of corrosion, mass loss measurements, in-situ
or ex-situ microscopic visualization of coupon surfaces, and chemistry-sensitive spectroscopic techniques
are often used to support model identification. Model identification can be further supported by
regressing models to a set of impedance spectra obtained at different temperatures or potentials. The
dependence of the model parameters on temperature or potential can be incorporated into the model, or
systematic variations of regressed parameters can be noted as a function of temperature or potential.[6,7]
Another approach has been to replace potential as the forcing function for the impedance experiment.[8]
The impedance response has been obtained by measuring the current response to modulated light
intensity,[9] disk rotation speed,[10] magnetic fields,[11] and electrode temperature.[12] Quartz
microbalances have been used to monitor the electrode mass in response to a modulated forcing
parameter.[13,14] Insight into the experimental system is gained because the impedance response to a
voltage perturbation is separated into its component transfer functions.

Measurement Model

The non-stationary character of electrochemical measurements has limited the ability to obtain a
direct assessment of the stochastic error structure, and the finite frequency range associated with
most experiments has limited the direct application of the Kramers Kronig relations for assessing the
degree to which non-stationary phenomena have influenced the results. In this paper, the progress
made in the use of measurement models for identification of the error structure of electrochemical
impedance data is presented. Error structures, identified for other types of spectroscopic techniques,
are used as starting points in the development of suitable models for the interpretation of
electrochemical impedance which take into consideration the nature of the experimental error.
Comparison of these measurement models with experimental observations suggest avenues for the
generalization of models for the error structure. The status of a generalized model for the error
structure is also presented and discussed.

Classification of Measurement Errors

The residual errors (Ereaaua) that arise when a model is regressed to experimental data can be
described as being either systematic or stochastic. Thus (see, e.g., reference 15),

Zexp = Zrnod + Ere.ndunl

)

€ renava = € + &, .n

The systematic errors can arise from the lack of fit of the model to the data (€iy) or from a bias (€sias)
in the experiment.

€

svtemanc

= squ + 8bm.v (2)

Presence of stochastic errors €gschasmc in any experimental data is inevitable. In electrochemical
impedance spectroscopy, nonstationary behavior (e,) and instrumental artifacts (g..,) are often
contributors to the systematic errors €.



®y.

Materials Science Forum Vols. 192-194 565

Eb'w :En.f +€in.1 (3)

The nonstationary contribution to the bias is usually most easily observed at low frequencies.
[nstrumental artifacts may be seen at high frequency resulting from equipment limitations. Most
electrochemical systems are inherently non-stationary due to the change in the electrode surface
during the course of an experiment. In contrast, solid state systems, as a first approximation, may be
assumed to stationary. Impedance data can be corrupted by instrumental artifacts for both
electrochemical and solid state systems.

Application of Measurement Models to Impedance Spectroscopy

Identification of the error structure for most radiation-based spectroscopic measurements such as
light scattering can be accomplished by calculating the standard deviation of replicate measurements.
This approach is successful because the measurements are made in a very short timescale, and,
therefore, stochastic noise can be assumed to be the only cause of scattering between independent
measurements at a given frequency. In contrast, the stochastic contribution to the error structure of
electrochemical impedance spectroscopy measurements cannot be obtained from the standard
deviation of replicated measurements because the inherently nonstationary character of
electrochemical systems introduces a non-negligible bias contribution to the error.

To get past this hurdle, we have introduced the measurement model as a tool for assessment
of measurement characteristics. The first step in this development was to demonstrate that a model
composed of a superposition of lineshapes was sufficient to model electrochemical impedance data.
At first glance, it is not at all obvious that such an approach should work. It is well known, for
example, that the impedance spectrum associated with an electrochemical reaction limited by the rate
of diffusion through a stagnant layer (the Warburg impedance) can be approximated by an infinite
number of RC circuits in series (the Voigt model). In theory, then, a measurement model based on
the Voigt circuit should require an infinite number of parameters to describe adequately the
impedance response of any electrochemical system influenced by mass transfer. In practice, an
infinite number of Voigt parameters cannot be obtained from experimental data because stochastic
errors (or noise) in the measurement limit the information content of the data. An infinite number of
Voigt parameters cannot be obtained even from synthetic data because round-off errors limit the
information content of the calculation.[1] The residual errors associated with fitting a Voigt model
to experimental impedance data which are influenced by mass transfer can, with appropriate
weighting, be made to be of the order of the stochastic noise in the measurement. A Voigt circuit,
or any equivalent circuit, can yield an appropriate measurement model for electrochemical impedance
spectra.

Determination of Stochastic Errors

The second stage in this development was to identify a method for measuring the error structure of

impedance data. The approach taken was to identify the measurement characteristics experimentally
rather than to assess the noise level from the published specifications of the component
instrumentation.

For non-stationary systems €,; is not equal to zero. In fact, since the system changes with
time, €., changes from one experiment to another if a set of replicate (or consecutive) experiments
are performed. Hence, the standard deviation of replicate measurements yields an inaccurate estimate
for o, because &, will also contribute to the calculation of the standard deviation. For example, the
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results of six consecutive (pseudo-replicate) experiments for copper in alkaline solution are shown in
Figure 1. Each spectrum shown in the figure was found to be stationary but a careful analysis of the
data using the measurement model approach showed that the data were not replicate.[16] A
measurement model, with eight Voigt elements was regressed to the combined data set. The
normalized residual errors obtained from the regression are shown in Figures 2a and 2b. Examination
of the real and imaginary part of the residual errors shows that the system changed from one
experiment to the other and the residuals for the six experiments can be distinguished from one
another. The plot of the imaginary versus the real residuals is shown in Figure 2c. The plot suggests
that the residuals are strongly correlated. Examination of real (circles) and imaginary (triangles) o
shown in Figure 2d as a function of frequency suggests that they are not equal. This observation is
counter to the result obtained for stationary data, which is plotted as a solid line in Figure 2d.[1]

Filtering Algorithm

An algorithm designed to filter out €,, from non-stationary data to obtain €chanc is proposed in this
section. Instead of regressing a measurement model to the combined data set, each data shown in
Figure 1 was regressed separately. The parameters for the measurement model for the each data set
differ because the system changed from one experiment to the other. Hence, by regressing the
measurement model to individual data sets separately, the effects of the change of the experimental
conditions from one experiment to another are incorporated into the measurement model parameters.
The normalized real and imaginary residual errors for six regressions are shown in Figure 3a and 3b.
The results show that the six data sets can no longer be distinguished. The plot of the imaginary
versus real residual errors, shown in Figure 3c, suggests that the residuals are not correlated. The
real and imaginary standard deviations of the residual errors are shown as a function of frequency in
Figure 3d. The real (circles) and imaginary (triangles) values for o cannot be distinguished. The
results of the filtering algorithm show good agreement with the model obtained for the standard
deviation of the stochastic error for a solid-state system (see the solid line in Figure 3d) which can be
assumed to be relatively stationary.

Model for the Error Structure

Following the experimental observation that
o,=0,=0 4)

a semi-empirical model for the error structure was obtained:

o,=0,=0=a [7]+p |z |+ )
where o, B, and y are adjustable parameters and R,, is the value for the current measuring resistor.
The parameters a, B, and y should, in principle, be dependent on the instruments used and on the
experimental parameters employed. For example, the parameters obtained under potentiostatic
control using a Solartron 1250 frequency response analyzer and a PAR 273 potentiostat are different
than those obtained using the same frequency response analyzer coupled with a Solartron 1286
potentiostat. Different parameters were obtained using galvanostatic control with a fixed current
amplitude. The validity of the model for the error structure is supported by the fact that a three
parameter model provides a good agreement for solid state systems as well as for corrosion systems,
for data collected under a wide variety of experimental conditions and for errors ranging from mQ to
MQ.
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Figure 2. Results of regressions using a Voigt circuit as a measurement model.
Here, a single circuit containing 7 elements was regressed to all data sets. a) and b),
residual errors as a function of frequency; c¢) Correlation plot for the real and
imaginary components of the residual errors; d) The standard deviation of the residual
errors (circles are the real component, triangles are the imaginary component, and the

solid line is the model of the error structure obtained from a stationary solid-state
system.
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Figure 1. Pseudo replicate impedance scans obtained
for a copper rotating disk in an electrolyte containing
IM CI' and with pH adjusted to 10 with NaOH. The
data were collected over a period of 1 hour after 72
hours of immersion.
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Figure 3. Results of regressions using a Voigt circuit as a measurement model.
Here, a circuit containing 7 elements was regressed to each data set individually. a)
and b), residual errors as a function of frequency; c) Correlation plot for the real and
imaginary components of the residual errors; d) The standard deviation of the residual
errors (circles are the real component, triangles are the imaginary component, and the
solid line is the model of the error structure obtained from a stationary solid-state
system.

Applications of the Error Structure

A priori knowledge of error structure for impedance experiments aids in the analysis of impedance
data and the design of experiments. Identification of the various components of the error can help
guide the design of experiments because one can thus minimize the source of error. The model for
the error structure can also be used to weight data during regression of a model to impedance data.
Proper weighting of data is crucial during non-linear regression of a model to impedance data in
order to get unbiased estimates of the parameters. In the absence of explicit weighting, the objective
function J minimized by the regression algorithm for complex fitting is given by

J= g(z,, -2+ 'z;<2,, -Z,,) (6)

The objection to the “no-weighting approach is that the largest magnitude terms contribute the
greatest amount to the objective function, and potentially important information at high frequency
(where Z; tends towards zero and Z, becomes small) can often be lost.

The most commonly used weighting strategy found in the literature is “proportional weighting”,
either using the experimental data:
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or, as suggested by Macdonald and Potter,[17] using model estimates. The most defensible

weighting approach is to weight the regressxon by the measured variance of the data o’ i.e.
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Z( ) ) it

®
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The model for the error structure given by equation (5) provides an accurate estimate for the
variance and can be used to weight the regression.

Bias Contributions to the Error Structure.

Having a viable approach for obtaining the stochastic contribution to the error structure and viable
models for some specific experimental designs, the next step was to identify the bias error of the
measurement. If the models to be used are stationary, a quantitative measure of the consistency with
the Kramers Kronig relations would provide evidence that a given data set was unaffected by
nonstationary behavior or instrumental artifacts. The Kramers-Kronig relations have not found
widespread use in the analysis and interpretation of electrochemical impedance spectroscopy data
due to difficulties with their application. The integral relations require data for frequencies ranging
from zero to infinity; whereas, the experimental frequency range is often constrained by instrumental
limitations or by the instability of the electrode.

In this work, measurement models are used to check for the consistency of the experimental
data with the Kramers-Kronig relations. The methodology takes advantage of the fact that electrical
circuits composed of passive elements must satisfy the Kramers-Kronig relations. Since, by including
a sufficient number of lineshapes, a measurement model can provide an adequate fit to stationary
electrochemical impedance data, an inability to fit an impedance spectrum can be attributed to the

~” failure of the data to conform to the assumptions of the Kramers-Kronig relations rather than the

failure of the model.

The algorithm used to check data consistency takes advantage of the Kramers-Kronig equations in
that the equations relate the real part of the impedance spectra to the imaginary part, i.e. the real part
of the spectra is constrained by the imaginary part and vice versa. The measurement model is
regressed to the real (or imaginary) part of the spectra and the parameters obtained from the
regression are used to predict the imaginary (or real) part of the spectra. Experimental data always
have random or stochastic errors associated with it. The presence of these random errors gives rise
10 an uncertainty in the prediction of parameters in a regression. This uncertainty in the parameter
estimation is quantified by the standard deviation (o) of the parameters, i.e. one can say with 95.4%
certainty that the parameter estimates lie within 2¢ of the value calculated by regression. Due to this
uncertainty in the parameter estimation, there is uncertainty in any prediction that is made using these
parameters. A Monte-Carlo simulation is used to determine the 95.4% confidence interval for the
prediction. Calculation of the 95.4% confidence interval takes into account the stochastic component
of measurement error. Hence, one can say with 95.4% certainty that the data points which lie outside
this predicted confidence interval are corrupted by systematic error, i.e. they are inconsistent with the
Kramers-Kronig relations.

In principle, regression can be performed on the real or imaginary part of the spectra to
obtain the same information, but in practice, due to stochastic errors, the information content of the
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real and imaginary part of the spectra can differ. For example, impedance data typically exhibit a high
frequency asymptote, i.e. at the high frequency the real part of the impedance tends towards a
constant but finite value and the imaginary part tends towards zero. It was shown in the previous
section that the absolute values of the stochastic error in the real and the imaginary part of
impedance are equal. The implication of this result is that at high frequency, as the imaginary part of
the impedance goes to zero and the real part goes to a finite non zero value, the stochastic error is
finite and non zero, i.e. the percentage error in the imaginary part tends to infinity at high frequency.
Hence, at high frequency the imaginary part of the impedance has very little information content
compared to the real part of the impedance because the imaginary part of the data is corrupted by
stochastic error. Due to experimental difficulties (such as the time required to collect low frequency
data), typical impedance spectra often do not exhibit low frequency asymptotic behavior. At the low
frequency end, since the stochastic errors in the real part are equal to stochastic errors in the
imaginary part, both the real and imaginary data are equally reliable. At low frequency, the real part
of a deconvolution of the measurement model does not have significant frequency dependence;
whereas, a significant change is observed in the imaginary part of the deconvolution. Hence, we can
conclude that the imaginary part of an impedance spectra usually has higher information content at
low frequencies.

While in principle, a complex fit of the measurement model could be used to assess the consistency
of impedance data, sequential regression to either the real or the imaginary can provide a greater
sensitivity to lack of consistency. The preferred approach can be determined by trial and error, but
the selection should be guided by use of the real part of the measurement to assess consistency in the
frequency limit (high or low) where the asymptotic behavior of the imaginary impedance is seen.
Conversely, the imaginary part of the measurement should be used to assess consistency in the
frequency limit where the asymptotic behavior of the imaginary impedance is not seen. For example,
if the imaginary part of impedance approaches asymptotic behavior at high frequency but is finite at
low frequency, the following algorithm is proposed:

Step 1: Check for consistency at the high frequency end.
a) Regress the measurement model to the real part of the data.
b) Predict the imaginary part and the 95.4% confidence interval through Monte-Carlo
simulation.
c) High frequency data that lie outside the 95.4% confidence interval are deemed
inconsistent. Delete the inconsistent data points.

Step 2: Check for consistency at the low frequency end.
a) Regress the measurement model to the imaginary part of the truncated data set.
b) Predict the real part and the 95.4% confidence interval through Monte-Carlo simulation.
c) Low frequency data that lie outside the 95.4% confidence interval are deemed inconsistent.
Delete the inconsistent data points.

Conclusions

The development and application of mathematical models for the interpretation of electrochemical
impedance data requires both physical insight and a quantitative assessment of the fundamental
characteristics of the measurement. The synergistic implementation of experiment, measurement model
and process model can enhance the information content of impedance spectra in terms of physically
meaningful parameters.
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