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CHEMICAL ENGINEERS working in the field of
electronic materials are not normally concerned with
processes taking place within the semiconductor. Most direct
application of chemical engineering principle is seen in the
analysis of the growth of semiconductors in the gas phase
(CVD or MOCVD) or in the liquid phase (crystallization,
Czochralski crystal growth, and Bridgman growth). Applica-
tion of chemical engineering principles to these processes is
not easy but is direct because the species of concern are not
electrically charged. In contrast, the species within the
semiconductor (e.g., electrons, holes, ionized electron donors
or acceptors) are charged, and proper analysis of processes
taking place within the semiconductor requires that this elec-
trical charge be treated.

Since ions in electrolytic solutions are also charged, the
principles learned in the application of transport phenomena,
reaction engineering, and thermodynamics to electrochemi-
cal systems can be applied almost directly to the study of
semiconductor devices. Here, these principles are applied to
inte(:irpret the impedance response of semiconducting elec-
trodes.

BACKGROUND

Impedance techniques can be applied to semiconductors
to identify the electronic structure, i.e., the distribution of
states within the semiconductor bandgap. A simplified
schematic representation of the band structure is shown in
Figure 1. Electrons can be excited from the valence or bond-
ing orbitals to the conduction band by receiving thermal or
electromagnetic (illumination) energy. The species formed
by this excitation are electrons (in the conduction band) and
holes (absence of an electron in the valence band).  Both
species are charged (electrons have a negative charge and
holes have a positive charge) and can move in response to
concentration or potential gradients.

The minimum energy required to excite an electron from
the valence band to the conduction band is the bandgap
energy. In the ideal semiconductor, electrons cannot exist
at energy levels between the valence and conduction ener-
gies. In real materials, electronic states within the band gap
can exist due to the presence of impurities (carbon, oxygen,
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FIGURE 1. Generalized reaction scheme showing electronic
transitions between the conduction band edge with energy E,,
the valence band edge with energy E,, and a defect level with
energy E,.

and chromium are examples) or of dislocations, vacancies,
or other lattice defects. These states can be electron donors
or electron acceptors. Donor species are those which become
positively charged when an electron is released, while accep-
tors become negatively charged when an electron is added.
Because these species are charged, the distribution of elec-
trical potential can be affected. Inter-band electronic states
can be undesirable since they facilitate electronic transitions
which can reduce the efficiency of electronic devices. In some
cases, inter-band states are intentionally added when the
added reaction pathways for electrons result in desired ef-
fects. Electroluminescent devices, for example, rely on emis-
sion of photons which takes place when electrons are trans-
ferred from the conduction band to an inter-band state in a
large-bandgap semiconductor. The energy level of the states
caused by introduction of the impurity determines the color
of the emitted light. The impact of these states can be signif-
icant, even in concentrations that would seem tobe very low
by normal chemical engineering standards. There is, there-
fore, a need for developing new ways to evaluate the concen-
tration, energy, and distribution of such electronic states.

A variety of techniques have been developed to study
semiconductors which are based on impedance spectros-
copy. We wish to focus here on a variant of electrochemical
photocapacitance spectroscopy [1-5] in which the capacity of
a reverse-biased electrode is measured as a function of the
wavelength of incident sub-bandgap light. Let us note here
that we really do not measure a capacity. Instead, we meas-
ure a periodic cell potential in response to a periodic current
(or vice-versa) from which we calculate an impedance which
has real and imaginary components. If we assume that this
system behaves like an electrical circuit consisting of a
capacitor and a resistor in series, we can, through regres-
sion techniques, obtain a value for-a capacity and a resist-
ance. The capacity obtained in this way is usually em-
phasized in this type of work since it can be easily related
to the charge held in the semiconductor.

Since light of energy sufficient to cause an electronic
transition will change the amount of charge held in a given
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acity at a given photon energy indicate
tes that allow transitions requiring that
From this type of data we can obtain the
of electronic states. The problem in this is
ontribution to the capacity is due to shallow
nic states that are usually intentionally intro-
ducec ypants. In fact, the change in capacity seen under
illumination is (at best) proportional to the square root of
the ratio of the defect concentration to the dopant concentra-
tion. This means that the technique of Haak and Tench [1-4]
can be applied to semiconductors with a large defect concen-
tration as compared to dopant concentration, but provides
an unacceptable low signal to noise ratio when the dopant
concentration is moderately large. On the other hand, the
real part of the impedance, normally ignored since it is so
difficult to relate to physical parameters, is very sensitive
to these defects as low frequencies. We wish to focus here
on the application of electrochemical principles to the prob-
lem of i(ﬂentifying the relationship between the real part of
the impedance response and the energy, concentration, and
distribution of defects. We can do this through development
of a mathematical model based on the principles used in
analysis of electrochemical systems. The treatment pre-
sented here follows a qualitative description of the experi-
mental technique and the miethods usually used in its
analysis.

IMPEDANCE TECHNIQUES

Impedance techniques involve perturbation of a steady-
state condition by a sinusoidal current or applied potential
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FIGURE 2. Impedance data for a system consisting of a resistor
(with no capacitive component): a) impedance plane plots
with frequency as a parameter; b) Bode plots for real and
imaginary components of impedance.
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of low magnitude. A typical amplitude for an applied poten-
tial perturbation might be 10 mV, and the resulting sinusoi-
dal current should have the same frequency, but may be
shifted in phase. Thus the impedance, obtained by dividing
otential by current, can be described as having real and

imaginary components, i.e.,
Z=2, +jZ; oD

A typical way to analyze impedance experiments is to com-
pare the results to the impedance of simplified “equivalent”
electrical circuits.

Equivalent Circuit Representations of Simple Systems

Electrochemists commonly present the resulting data in
the form of an impedance plane plot (-Z; as a function of Z,
with frequency as a parameter). An impedance plane plot is
given in Figure 2 for an electrical circuit consisting of a
resistor. This is, of course, a very simple case. A Bode plot
for this system (see Figure 2b) shows that the real part of
the impedance is constant for all frequencies, and, since
there is no phase shift, the imaginary part of the impedance
is equal to zero. Thus, Z, = R, and Z; = 0.

The impedance data for a resistor and capacitor in series
are given in Figure 3. The real part of the impedance is
independent of potential, and the magnitude of the imagi-
nary part is inversely proportional to frequency, i.e., the
highest values are seen at low frequencies. For this case: Z,

= Rl’ and ZJ = —1/(.001.
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FIGURE 3. Impedance data for a system consisting of a resistor
and a capacitor in series: a) impedance plane plots with fre-
quency as a parameter; b) Bode plots for real and imaginary
components of impedance.
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Equivalent Circuit Representations for
Electrochemical Systems

Simple electrochemical reactions at an electrode surface
are often modeled in terms of the circuit shown in Figure 4.
The resistance Ry is associated with the Ohmic resistance of
the cell, the capacity is associated with the double layer
capacity, and the resistance R, is related to the rate con-
stant for the surface reaction. The impedance plane plot for
‘this case is in the shape of a semicircle with the high fre-
quency asymptote shifted from the origin by an amount
equal to the solution resistance. Additional elements can be
added to account for reactions proceeding in parallel or in
series. A perfect semicircle is usually not observed experi-
mentally, and a number of factors have been used to explain
the observed depression of the semicircle. Roughening of
the surface or growth of films during the course of an exper-
iment can, in some cases, account for these observations.
Mass transfer effects are also often important. These are
treated by adding a Warburg element (see Figure 5). The
impedance response of a Warburg element is a function of
frequency and is derived by solving the convective diffusion
equation for a given geometry to obtain the frequency de-
pendent concentrations of reactants at the electrode surface.
See reference 6 and chapter 9 in reference 7 for more discus-
sion on the application of impedance techniques to typical
electrochemical systems.
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FIGURE 4. Impedance data for a system consisting of a resistor
in series with the parallel combination of a capacitor and a
resistor: a) impedance plane plots with frequency as a
parameter; b) Bode plots for real and imaginary components
of impedance.
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An Equivalent Circuit Representation for
Defects in Semiconductors

The fifth case considered here is that of a second resistor
and capacitor in series added in parallel to the capacitor of
Figure 3. The resulting impedance data are shown in Figure
6. The magnitude of the imaginary part of the impedance is
largest at lower frequencies, and the impact of the added
circuit components is seen at lower frequencies. The real
and imaginary components of impedance, based on the equi-
valent circuit given in Figure 6, are

Z,=Rys— OB @
(€, +C,)" +0?(C,C,R,)
and
___C, +C,+0’CiC,R? 3)
J— o(C, +C,)* +@*(C,C,R, )
respectively.

If the experimental system behaves like a given electri-
cal circuit, nonlinear regression techniques could be used to
obtain values for the resistor and capacitor components in
that circuit. If the electrical circuit chosen does not account
for all aspects of the data, e.g., if the circuit of Figure 3 is
used to model the data shown in Figure 6, the circuit compo-
nents will be functions of frequency. Note that the circuits
given in Figures 3 and 6 do not allow passage of direct cur-
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FIGURE 5. Impedance data for a system consisting of a resistor
in series with the parallel combination of a capacitor and a
resistor and Warburg element in series: a) impedance plane
plots with frequency as a parameter; b) Bode plots for real
and imaginary components of impedance.
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rent. This corresponds to an ideally polarized or completely
blocking electrode. To allow passage of direct current, a
resistor in parallel to the other elements would be added as
was done in Figures 4 and 5. ) )

The electrical circuit given in Figure 6 is especially relev-
ant to our system because it describes the behavior of an
ideally polarized semiconductor electrode that contains a
reasonable concentration of inter-band defects. In the high

frequency limit,

Z.=R, 4

and
1 5
7=t ®)

This behavior is more easily seen in a logarithmic impedance
plane plot as shown in Figure 7. This type of plot emphasizes
the high frequency data at the expense of the low frequency
asymptote. The high frequency limit obscures the influence
of the defects and yields the same result as would be ob-
tained for a resistor and capacitor in series. For this reason,
experimental data are frequently taken at high frequencies
(greater than 10 kHz is usually sufficient). The defects, rep-
resented by C; and R,, have a major influence at low fre-
quencies, i.e.,

2
Z,=R,+—1 21 6)
(C,+Cy)

8.0
I I I
7.0 |— Cy=1nF ]
6.0 —
‘% 5.0 —
x
ﬁé’ 4.0 —
ey
o
3.0 — —
'\.‘; 2.0 — —
]
1.0 — —
0.0 J —
s | | | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Z., Ohms %107
(a)
10® 10*°
) 10°
10
E 10°
& B 12}
g 100 = 107 E
E S
s E S
N 105 B :lOs B
N E N
= 10°
F
10
E 10
10° 10°

102 107! 10° 10! 10® 10® 10* 10°

Frequency, Hz

)

FIGURE 6. Impedance data for a sysiem consisting of a resistor
in series with the parallel combination of a capacitor and a
resistor and capacitor in series: a) impedance plane plots with
frequency as a parameter; b) Bode plots for real and imag-
inary components of impedance.
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and
C,+C
=t (7
o(C, +C,)

The imaginary part of the impedance tends toward — while
the real part of the impedance is shifted from the bulk resist-
ance by a constant which includes the time constant as-
sociated with the defects R;C; and and averaged capacity
(C; + Cp)?/C,. This interpretation of the circuit elements is
based, to a large extent, on the results of the mathematical
model presented in subsequent sections.

We can compare these idealized cases to experimental
results. Impedance plane plots are presented in Figure 8
with potential as a parameter for an n-GaAs electrode in
contact with a mercury pool [8]. The logarithmic plot was
used to emphasize the behavior at the high frequency limit.
Linear regression of these data with Eqgs. (2) and (3) yields
frequency-independent values of circuit components which
correspond to the solid line. The component values do vary
with applied potential, and, if illumination had been used,
the component values would vary with the photon energy
of the illumination. The problem we face is how to tie these
component values to physical characteristics of the semicon-
ductor. One way to gain this intuition is to develop models
for the system based on treatment of transport phenomena
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and reaction kinetics and to compare the results of these
models to those from the equivalent electrical circuits.

THEORETICAL DEVELOPMENT

Development of mathematical models for the impedance
response of semiconducting systems generally takes place
in two steps: development of a steady-state model followed
by development of a model treating the sinusoidal perturba-
tion of voltage or current about the steady-state values.
Since the species of interest have a charge associated with
them, we need to include treatment of electrical potential
as well as concentrations. Thus, the electrostatic potential
and the concentrations of electrons, holes, and ionized defect
states become dependent variables for this system. The
shallow-level doping species are usually assumed to be com-
pletely ionized at room temperatures and thus contribute to
a fixed concentration of charge. Parts of the development
presented here are given in references 9, 10, 11, and 12.
References 13 and 14 provide good background to general
aspects of semiconductor physics, and 15 provides a good
mathematical foundation for electrochemical engineering.

Mass Transport Expressions

The electrochemical potential p; of a given species i can
arbitrarily be separated into terms representing a second-
ary reference state 3, a chemical contribution, and an elec-
trical contribution, i.e., ’

;= p +RT fn(c;f;) +2,FO (8)

where ¢; is the volumetric concentration of species i, f; is the
activity coefficient, z; is the charge number, and @ is a po-
tential which characterizes the electrical state of the system
and can be defined in many ways. This treatment is entirely
analogous to the definition of chemical potentials as used for
electrically neutral systems. In fact, the usual chemical po-
tential is recovered for the case where z is equal to zero.
The flux N; of species i is governed by the gradient of
the electrochemical potential, given in one dimension by

N; =-uc; % 9
dy
where u; is the mobility of species i. If the semiconductor is
nondegenerate, the electron and hole activity coefficients f;
can be considered to be constant, and Eq. (8) can be substi-
tuted into Eq. (9) to give the dilute solution transport ex-
pression
' e
1 dy

N;=-D u,;z;Fe; do (10)

where the transport properties D; and u; are related through
the Nernst-Einstein equation; i.e.,

D, =RTy, an

From Eq. (10), the fluxes of electrons and holes are driven
by concentration and potential gradients. This distinction is
a result of the separation of the chemical and electrical con-
tributions given in Eq. (8). If desired, degenerate semicon-
ductor conditions can be modeled by calculating the value of
the activity coefficients f; for electrons and holes (e.g., [16]
and [17]). The flux expression for species i is constrained by
the equation of continuity, i.e.,

3 Ny q, 12)
ot ay
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Usually inter-band defect states are considered to be im-
mobile; the rate of change of the concentration of ionized
inter-band states is equal to their (position-dependent) rate
of production, G;.

For most electrochemical systems, the separation of
charge associated with interfacial regions can be treated
simply as contributing to rate constants associated with
electrode kinetics. This is not appropriate for a semiconduc-
tor because this separation of charge is integral to the oper-
ation of electronic devices. Poisson’s equation,

2
g_f=_ei[p-n+nd_n,] a13)
y 8c

can be used to relate the electrostatic potential ® to the
charge held within the semiconductor. The scaling length
for this system, found by making the governing equations
dimensionless, is given by the Debye length,

1
pe o| —ExRT P2 14)
= Fz(Nd"Na)

The term (N4 — N,) includes the charge associated with par-
tially ionized mid-bandgap acceptors (which may be a func-
tion of applied potential) as well as the completely ionized
dopant species (which may have an arbitrary distribution,
but i§ usually assumed to be independent of operating condi-
tions).

Kinetic Expressions for Electronic Transitions

Calculation of a rate expression for G; requires the choice
of a kinetic framework. In this work, electrons are allowed
to pass between the conduction band (with energy E,), the
valence band (with energy E,), and the inter-band species
(with energy E,). A general scheme for the various electron
transitions associated with this approach are shown in Fig-
ure 1. With these representations, the rates of the electronic
transitions between the various energy levels can be de-
scribed by applying mass action principles (e.g., [13]) to give

r=k,cg (15)
r2=k2(c: -c} )p (16)
r3=k3(c;— c;) an
r,=k,cin (18)
rs=ks 19)
and rs =kenp (20)

where k; is the rate constant of reaction i, ¢} is the concen-
tration of positively charged, inter-band donor species, ¢ is
the total concentration of inter-band donors, n is the elec-
tron concentration, and p is the hole concentration.

In the absence of inter-band states, generation of elec-
trons and holes occurs through band-to-band mechanisms.
The rate of electron generation is given by

G _=k6(ni2 —np) 21)

where the two righthand terms represent thermal genera-
tion (ks = kgn?) and recombination, respectively, and n, is
termed the “intrinsic concentration” (a physical property
equal to the concentration of electrons and holes in the
“ideal” undoped semiconductor). The constraint that the
rates of generation and recombination are equal provides
that np = n? under equilibrium conditions. In the presence
of inter-band states, the net rate of production for electrons
(and holes) is given by
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_ K Kep (2
G- ‘ks[“ Ko(K, +k2p)](n‘ np) (22)

Again, at equilibrium, the rates of generation and recombi-
nation are equal and np = n?.

Use of the above six kinetic expressions requires selec-
tion of the six rate constants (or three rate constants and
three equilibrium constants) associated with these expres-
sions. This apparently arbitrary selection can be approached
by deriving equilibrium expressions to relate the rate con-
stants for the reversible, homogeneous reaction pairs
explicitly in terms of the energy differences between the
valence band, inter-band species, and the conduction band,
i.e.,

k] | I(] v t) (23)
E, = —2 = Nvgexp[ RT
= k, —_.._I '° _L__") 24
E,, -—:- exp[ (24)

and

k x F Ev _Ec
Es= k—:'= NN, EXP['(T“‘)':I (25)

where E; is the equilibrium constant for reaction pair ij, g
is the degeneracy associated with the inter-band state, N,
is the conduction band density of states, and N, is the val-
ence band density of states. These expressions were derived
by assuming thermal equilibrium and substituting standard
statistical expressions for electron, hole, and defect concen-
tration in terms of energy level. The numerical value for g
is determined by the electronic character of the state, e.g.,
g = 4 for electron acceptors and g = 2 for electron donors
[14]. .
Parameter variation studies can be further simplified by
the assumption that the rate constants are interrelated such
that, given energy levels for the electronic states, all rate
constants can be obtained from a single rate constant. For
example, the relationship,

1
k, =k, (%)’ (26)

34

was obtained by assuming that changes in the free energy
of reaction associated with varying the energy of an elec-
tronic state are distributed equally between the activation
energies for the forward and the reverse directions. This is
similar to the standard approach used to separate the free
energy of an electrochemical reaction into chemical and elec-
trical terms. The symmetry factor in this application is as-
sumed to have a value of 1/2 (e.g., [15]).

Similar expressions can be developed for band-to-band
recombination, i.e.,

1
k2=k6(§—”)z @n
12

The use of Eq. (27) to relate the homogeneous, band-to-band
rate constant kg to the corresponding inter-band constants
ko (and k) is equivalent to assuming that the reaction cross
section is the same for recombination through trap sites as
it is for direct band-to-band recombination. This assumption
could easily be relaxed to account for enhanced rates of re-
combination through trap sites.

In the case where solar illumination is applied to the
semiconductor, the expression for the optical generation of
electrons under solar illumination is

WINTER 1990

G, , =9.Ym exp(-my) (28)

where +y is the fraction of incident photons with energy
greater than the bandgap E,, m is the band-to-band absorp-
tion coefficient, and q, is the solar flux. Similar expressions
apply for sub-bandgap illumination; however, treatment of
optical excitation by light with photon energies smaller than
the bandgap requires expressions for the effective absorp-
tion coefficient. Such expressions can be found in the litera-
ture (e.g., [18]) for the absorption coefficient m correspond-
ing to the transition of electrons from inter-band acceptor
states to the conduction band. This absorption coefficient is
a function of the inter-band state energy, the photon energy,
and the concentration of ionized states. Absorption of sub-
bandgap illumination is negligible for the usual values of
semiconductor thickness, inter-band species density, and
absorption coefficients. This allows the effects of sub-
bandgap illumination to be included as a modification of the
rate constants in the expressions for r; and rs.

Impedance Modeling

A system ‘whose time response y(t) to a perturbation x(t)
can be described by the expression

dy(t d™y(t)

dtl(‘ )+l:m d(t‘)“‘ +d... ,+(b;Y(t)
x(t “x(t
T

b,

+ .. +agx(t) (29)

is defined as a linear system. One characteristic of such a
system is that a perturbation of the form x(t) = cos{wt) will
result in a response of the form y(t) = cos(wt + 6). This
behavior is also observed for nonlinear systems if the
amdplitude of the perturbation is small enough that a first-
order Taylor series expansion about the steady state is ap-
propriate.

Experimental impedance measurements are evaluated
using this theory since the current response to a sinusoidal
applied potential is also sinusoidal. The important restric-
tions are that the system be stationary, that the system
response be driven by the imposed signal, and that the im-
posed voltage perturbation be sufficiently small that the sys-
tem can be described by Eq. (29). If these conditions are not
violated, all variables of the system will take the form

x=i+(i, +ji,~) exp(jot) (30)

where %, X,, and X; are functions of position, but are inde-
pendent of time. This means that impedance measurements
are usually made in the region where the voltage perturba-
tion is small enough for the system to be linear, yet large
enough to give a significant signal to noise ratio. For a cur-

rent density given by ’

i=1+i, exp(jot) (31)
the concentration of electrons is given by
n=1n +(ﬁr + jﬁj)exp(jmt) (32)

Similar expressions are used for potential and the concentra-
tions of holes, ionized electron acceptors, and ionized elec-
tron donors. In the above equations, an overbar represents
the steady-state value, and a tilde represents the perturba-
tion value. The actual concentration or potential at a given
point in time and space is given by tlI:e real part of the
expressions given above. The approach described here has
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been used to model the impedance response of semiconduc-
tors in the absence of inter-band states [19, 20] and in the
analysis of electrochemical systems (e.g., [21-24]).

The above expressions are substituted into the govern-
ing equations which are solved sequentially for the steady-
state and the sinusoidal steady-state portions, respectively.
The impedance can be resolved from the calculated potential
variation across the space charge region into real and imagi-
nary components according to

2, =2 (33)

i,

and

Zy=—3 (34)

respectively.

Steady State Boundary Conditions

The governing equations are initially solved under the
steady-state condition, subject to the boundary conditions
= do B
}Ip = 0, E = 0, and i=0

at the semiconductor-current collector interface (ohmic con-
tact), and _
N,.=0, ®=0, and 40 _ _de
dy €gc
at the semiconductor-electrolyte interface (ideally polariza-
ble contact). These conditions are appropriate for a semicon-
ductor-mercury contact or for a semiconductor-electrolyte
contact where the electrolyte is chosen so that no chemical
reaction occurs.

Sinusoidal Steady State Boundary Conditions

The time-dependent equations are solved for the re-
sponse to a superimposed sinusoidal current by introducing
expressions for the dependent variables (such as Eq. (32))
into the governing equations and linearizing around the
steady state solution obtained in the previous step. Appro-
priate boundary conditions for the impedance calculations
are given by

N,;=N,, =0, p;=p,=0, and #;=4,=0

at the semiconductor-current-collector interface, and by

< L do; | B
N, =N, =0, &=, =0, So_t_ .59 9%

’ =0
J dy e,0 dy

at the semiconductor-electrolyte interface. Again, these
conditions are consistent with an ideally polarized electrode
where the superimposed current acts only as a charging
current.

Numerical Method for Solution

The solution of the coupled differential equations is non-
trivial, and a complete solution requires use of a computer.
The results of this type of numerical solution are presented
elsewhere [11, 12]. The point here is to emphasize that the
apparently complex behavior associated with transport and
reaction processes within the semiconductor in response to
a sinusoidal perturbation of current or applied potential can

54

be described by a straightforward application of principles
learned in the study of electrochemical systems.

Analytic Expressions Used for Analysis of
Experimental Data

Analytic solutions to the above equations have been de-
veloped that are valid in the high frequency limit. These
solutions are based on integration of Poisson’s equation
coupled with assumption of equilibrium concentration distri-
butions. The relationship between the applied potential and
the R-C series capacitance was derived by Mott and
Schottky (see, e.g. Joffe [25]) in the late 1930’s to be (for an

n-type semiconductor)
RT

1 I e ee————
C?  ¢F(N;-N,) 35)

This is the well-known Mott-Schottky relationship.

Deviations from straight lines in Mott-Schottky plots,
are frequently attributed to the influence of potential depen-
dent charging of surface or bulk states. While deviations
can also be attributed to non-uniform dopant concentrations,
this interpretation is supported by analytic calculations of
the contribution of defects to the space charge as a function
of applied potential (i.e., [26-27]).

CONCLUSIONS

The principles learned in the study of mass transport,
thermodynamics, and heterogeneous and homogeneous
kinetics associated with electrochemical systems can be
applied directly to the transport and reaction processes that
take place within a semiconductor. The theory of dilute sol-
utions is generally appropriate, and values for needed
parameters can be obtained through application of statistical
thermodynamics.
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NOTATION

Roman Characters .
¢i concentration of species i, cm™3
C space charge capacitance calculated from an R-C
series circuit, F/em?2
AC  Change in C from a chosen reference level, F/cm?
D; diffusivity of species i, cm2/s
E, inter-band acceptor energy, eV
E. conduction band energy, eV
Egq inter-band donor energy, eV
Ef Fermi energy, eV
Eg bandgap energy, Ec - Ey, eV
Ex equilibrium constant for reversible reactions j and k
E¢ Energy of generalized inter-band trap species, eV
Ey valence bandedge energy, eV
fi activity coefficient for generalized species i
F  Faraday's constant, 96487 C/equiv.
g degeneracy of inter-band species
i current density, mA

i
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M<g A, B

e Pt
. M

N A<

rate constant for species j

absorption coefficient, cm-1

electron concentration, cm-3

intrinsic carrier concentration, c¢m-3

effective density of conduction band states, cm-3
doping concentration, cm-3

effective density of valence band states, cm3
molar flux of species i, mol/m2es

rate of reaction of species i, mol/cm-3es
universal gas constant, 8.314 J/mol*K
resistance associated with a given electrical circuit, Q
time, s

absolute temperature, K

mobility of species i, m2/Ves

applied potential, referenced to flatband, V
steady state symbol for variable x

real component of the perturbation in variable x
imaginary component of the perturbation in variable x
distance from interface, cm

charge number for species, i

complex impedance, Q*cm?

Greek Characters

¢ permittivity, Farad/cm
6 phase angle, rad
A Debye length, cm
i electrochemical potential of species i, J/mol
ue  reference electrochemical potential of species i, J/mol
@ electrostatic potential, V
AD change in the real or imaginary portion of the potential

across the semiconductor sample, V

o frequency, s1
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