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My study covers two important research topics that are relevant to corrosion of

metal. The first project involved developing a mathematical model for delamination of

polymeric coating from active materials. The model described simultaneously the coupled

phenomena of mass transfer, electroneutrality, loss of interfacial adhesion, and propagation

of delamination during the delamination process. The key to this work included the use of

pH-dependent porosity and pH-dependent polarization kinetics to simulate implicitly the

bond-breaking reactions that occurred during the delamination process.

The computational results predicted from the model, under the assumption of

equilibrium pH-porosity relation, concluded the overall delamination process is limited by

the transport of cations from defect to delaminated zone, and the rate of the delamination

process scales with the mobility and ionic strength of cations. This conclusion is in good

agreement with the interpretation obtained from experiments. The consistency with

experiments supported the pH-dependent hypotheses employed in the model.

The equilibrium pH-porosity relation becomes invalid when time constants for the

bond-breaking reactions are large compared to those for the diffusion and migration

processes. The investigation of kinetic pH-porosity relation showed that when the

bond-breaking reactions occur in a sufficiently small rate, the delamination mechanism

shifts from a mass-transfer-limited mechanism to a mixed-controlled mechanism. A similar

mechanism transition was also observed in experiments.
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The second project presented in this document explored, by theoretical calculations,

the role of current and potential distributions associated with disk electrodes on

impedance response. It has known that the geometry-induced current and potential

distributions lead to a high-frequency dispersion on impedance response of a disk

electrode. The contribution of the work was to express the geometric effect on impedance

response in terms of constant-phase element (CPE) and to use both global and local

impedances to study this geometric effect. A coherent notation was proposed for global

and local impedances which accounted for global, local, local interfacial, and both global

and local Ohmic impedances.

The electrochemical systems under study in the second project included an

ideally-polarized blocking electrode, an electrode exhibiting a local CPE behavior, and

an electrode exhibiting a single Faradaic reaction. The calculation results from these

systems showed that the global impedance of a disk electrode is influenced by the current

and potential distributions at high frequencies. While the local interfacial impedance

exhibits the expected behavior for a given system, the local impedance shows inductive

behavior at high frequency and ideal behavior at low frequency. The local impedance

is influenced by the Ohmic impedance, which has complex behavior at intermediate

frequencies. The representation of an Ohmic impedance as a complex number represents

a departure from standard practice. This complex character is believed to be the origin of

the inductive features seen in the local impedance and the origin of the CPE-like behavior

found in the global impedance.
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CHAPTER 1
INTRODUCTION

This dissertation covers two research topics that are important to corrosion of metal.

The first research topic involves developing a mathematical model for delamination

of polymeric films from active metals. The delamination of paint from metal surface,

also known as cathodic delamination, is a major problem for automotive and building

applications. Experimental findings demonstrated that the cathodic delamination process

involved coupling of mass transfer, electrochemical reactions, loss of interfacial adhesions,

and propagation of the delamination along the metal-coating interface. These experiments,

in principle, are useful for identifying the phenomena occurring in the delamination

systems. However, it is difficult to verify that a proposed mechanism does indeed give

observed experimental results. Therefore, a quantitative approach was taken to simulate

the transit, propagation phase of the delamination process on coated metals.

The second project presented in this document explored, by theoretical calculations,

the role of current and potential distributions associated with disk electrodes on

impedance response. Electrochemical impedance spectroscopy (EIS) is often applied as a

tool to investigate the rate of corrosion. Impedance spectra, however, are often influenced

by the current and potential distributions on electrode surfaces. This work investigates the

influence of the geometric effect associated with disk electrodes on impedance responses

and describes this effect in terms of constant phase element (CPE).

The introduction for the cathodic delamination model is presented in Section 1.1.

Section 1.2 presents the introduction for the impedance calculation.

1.1 Mathematical Models for Cathodic Delamination of Coated Metal

Reactive metals in applications such as automotive and architecture are often

protected by covering their surfaces with a micron-thick layer of organic/polymeric

coatings. The organic coating provides a matrix in which anticorrosive pigments and/or

inhibitors are dispersed [1] and forms a physical barrier between metal and atmosphere.
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While additives are introduced into polymeric coatings, the detachment of polymers from

metal surface reduces significantly the efficiency of the corrosion protection.

The adhesive strength between the metal and the coating plays an essential role on

determining the rate of corrosion. Sugama et al. [2] demonstrated that thermoplastic

polymers such as poly(ethylene) exhibit a poor adherence to the metal surface due to

the lack of functional groups. George et al. [3] and Sugama et al. [2] showed that the

incorporation of functional groups, for example, methacrylic acid (MA) and -COOH, onto

the thermoplastic polymers improved the bond strength and further reduced the corrosion

rate. Despite the fact that the functional groups on the coating lead to a strong adhesion,

the experimental results by Leidheiser et al. [4, 5] indicated that the bond structure is

vulnerable to alkaline environment created by oxygen reduction underneath the coating.

Yasuda et al. [6, 7] found that small molecules with high permeability, such as

water and oxygen, can penetrate through a defect-free coating and be reduced at the

metal-coating surface. So long as the cathodic reaction began to occur underneath the

paint, the OH− ions produced in the interfacial layers promoted the decomposition

of polymers, resulting in a delamination of the polymer film from the metal surface.

Hammond [8] and Sugama [2] verified the bond-breakage phenomenon by a reduction of

the bonding energy for -COOH group and an increase in the bonding energy for -COONa

group.

Stratmann et al. [9–18] investigated experimentally the cathodic delamination for

coated steel and coated electrogalvanized steel. Following the interpretation reported

by Stratmann et al. [9–11, 13–16], the cathodic delamination system consists of a defect

where the bare metal is exposed to atmosphere, and a delaminated zone where the

interfacial bonding is partially damaged due to the delamination process. Exposure of the

metal surface to atmosphere favors metal dissolution at the defect. Along the delaminated

zone where the anodic reactions are prohibited because of the presence of the coating,

oxygen and water penetrate the coating and react at the interface. Due to the nature of
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the configuration, the early stage of the cathodic delamination is often described as the

formation of an electrochemical cell with distinct anodic and cathodic zones.

The later stage of the delamination becomes complicated when corrosion products are

formed underneath the paint. Furbeth and Stratmann [10] reported that the precipitation

of ZnCO3, under a high CO2 concentration in atmosphere, inhibited the oxygen reduction

and led to a pure anodic delamination for a coated electrogalvanized steel. Ogle et al.

[19, 20] studied the cathodic delamination on galvanized steel and found that the chemical

stability of the interfacial oxide layers plays a critical role on determining the propagation

rate and the delamination mechanism. [19, 20]

It is difficult to demonstrate that a proposed mechanism suggested based on

experimental work does indeed give the observed experimental results. Interpretation

is often limited to qualitative and subjective observations. Therefore, a quantitative

approach is necessary. Allahar [21, 22] developed the first mathematical model for the

cathodic delamination of coated metal. The key to his work involved applying the concept

that the porosity and the polarization kinetics at the metal-coating interface were pH

dependent. The simulation results provided qualitative agreements with the experimental

observations reported by Stratmann et al. [9–11, 14–16], which supported the hypotheses

employed in the model. The model developed by Allahar, however, did not incorporate

chemical reactions that take place at the later stage of the delamination process.

The objective of the work was to develop, from first principles, a mathematical

model that simulates the propagation of delamination in the presence of electrochemical

and chemical reactions. The chemical reactions included homogeneous reactions in the

interfacial oxidized layer and formation of corrosion product underneath the coating. A

second objective was to examine whether the delamination rate and the delamination

mechanism predicted from the model agree with the experimental results.
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1.2 Influence of Geometry-Induced Current And Potential Distribution of
Disk Electrodes on Impedance Response

Electrochemical impedance spectroscopy (EIS) is a powerful technique that has been

used extensively in interfacial electrochemistry to study electrochemical kinetics [23, 24]

and to determine interfacial capacitance. [25, 26] The impedance response of an electrode

is generated by measuring the ratio of applied potential to surface-averaged current as

a function of frequency. The influence of a particular phenomenon on the impedance

response is determined by the time constant of that process. [27] Mass transfer effects

are usually apparent at low frequencies because the diffusivity of ionic species in aqueous

medium is small. Kinetic and double-layer effects are more important at high frequencies.

An important advantage of EIS is that the influence of governing chemical and physical

phenomena can be distinguished with a single experimental procedure encompassing a

sufficiently broad range of frequency.

The critical issue of EIS is the ambiguity associated with the interpretation of

impedance results. [25, 28, 29] A common approach of interpreting impedance data is

to compare experimental spectra with that of known electrical circuit elements such as

resistors, capacitors, and inductors. [28] The circuit analog models are found useful for

understanding the physical processes that contribute to impedance responses; however,

experimental data rarely show the ideal response expected for electrochemical reactions.

The impedance response typically reflects a distribution of reactivity that is commonly

represented in equivalent circuits as a constant-phase element (CPE). [29, 30]

The dispersion leading to CPE behavior can be attributed to distributions of time

constants along either the area of the electrode (a two-dimensional surface) or along the

axis normal to the electrode surface (a three-dimensional aspect of the electrode). A 2-D

distribution might arise from surface heterogeneities such as grain boundaries, crystal

faces on a polycrystalline electrode, variations in surface properties, or geometry-induced

current and potential distributions. [31–34] A 3-D distributions may be attributed to
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changes in the conductivity of oxide layers [35, 36] or from porosity or surface roughness.

[37, 38] This CPE behavior can be described as arising from a 3-dimensional distribution,

with the third direction being the direction normal to the electrode surface. [39, 40] Jorcin

et al. [40] demonstrated that the use of local electrochemical impedance spectroscopy

(LEIS) makes it possible to distinguish the CPE behavior that has an origin with a 3-D

distribution from one that arises from a 2-D distribution of properties along the surface of

the electrode.

The disk electrode geometry is well-defined and amenable to numerical calculation

of the impedance response. Newman [41, 42] calculated the current and potential

distributions on disk electrodes and developed both numerical and analytical treatments

for the impedance response of a blocking electrode and an electrode subject to a Faradaic

reaction. The results demonstrated that geometry-induced current and potential

distributions cause a time-constant dispersion that distorts the impedance response.

Nisancioglu [43–45] showed the extent to which this frequency dispersion causes an

error in the values for charge-transfer resistance and interfacial capacitance obtained

from impedance data. The discussion by Nisancioglu and by Newman, however, did not

address the common practice of describing non-ideal impedance response in terms of

constant-phase elements.

The first objective of this research topic was to calculate, from first principles,

the influence of non-uniform current and potential distributions associated with a disk

electrode on impedance response. The second objective of the work was to describe

the role of the time-constant dispersion in terms of CPE behavior and to relate global

impedance response with local impedance. The impedance calculations were performed

for an ideally-polarized blocking electrode, a blocking disk electrode with a local CPE

behavior, and a disk electrode subject to a simple Faradaic reaction.

The structure of the dissertation is divided according to the two research topics.

The first part of the dissertation, presented from Chapter 2 to Chapter 6, deals with
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fundamental electrochemical concepts, theoretical development, simulation results, and

discussions that are associated with the cathodic delamination system. The objective

of this part was to gain an understanding of the phenomena that may contribute to the

delamination process through developing a mathematical model for cathodic delamination.

The fundamental electrochemical concepts relevant to the cathodic delamination

system, such as electrode kinetics and transport in dilute solutions, are presented in

Chapter 2. Experimental and simulation work associated with the cathodic delamination

system are reviewed in Chapter 3. The constructions of the pH-dependent porosity and

pH-dependent polarization kinetics are also presented in Chapter 3.

The model developed by Allahar did not include chemical reactions that become

important at the later stage of the delamination. In the present work, multiple homogeneous

reactions and precipitation of corrosion products were considered in the oxidized layer.

The theoretical development of the present model followed the approaches taken by

Allahar [22]. The development of the model is presented in Chapters 4 and 5. The

computational results are presented in Chapter 6.

The second part of this dissertation, presented in Chapters 7 to 10, explores the

influence of geometry-induced current and potential distributions on the impedance

response of a disk electrode. Electrochemical impedance spectroscopy (EIS) is a rapid and

convenient technique that provides electrochemical properties of tested systems over a

wide range of frequencies. A brief introduction to EIS and issues encountered in EIS are

presented in Chapter 7.

The current and potential distributions associated with a disk electrode embedded

in an insulating plane are reviewed in Chapter 7. The theoretical development and

calculation results for the ideally-polarized blocking electrode are presented in Chapter 8,

the results for the blocking electrode with a local CPE behavior are presented in Chapter

9, and the results for the disk electrode exhibiting a Faradaic reaction are presented in

Chapter 10.
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CHAPTER 2
BACKGROUND ELECTROCHEMISTRY

The fundamental electrochemical concepts relevant to the cathodic delamination

system, such as mass transport of ionic species in dilute solutions and electrode kinetics,

are presented in this chapter. A detailed treatment of electrochemistry in electrolyte from

a mathematical perspective has been presented by Newman. [46]

2.1 Mass Transport

In an electrochemical system, conservation of mass restricts the governing equation for

the concentration of a species i to [46]

∂ci

∂t
= −∇ ·Ni + Ri (2–1)

where the terms on the right side represent the net input due to the flux Ni and the net

rate of production due to homogeneous reactions Ri, respectively. In dilute electrochemical

systems, Ni is given by the Nernst-Planck equation [46]

Ni = −ziciFui∇Φ−Di∇ci + civ (2–2)

where Φ is the local solution potential, ui is the mobility, Di is the diffusion coefficient, zi

is the charge number, v is the mass average velocity of the electrolyte, and F is Faraday’s

constant. The terms on the right side of equation (2–2) represent the contributions by

migration, diffusion, and convection to the flux of a species, respectively.

Combination of equations (2–1) and (2–2), under the assumption that the electrolyte

is incompressible (∇ · v = 0), yields the governing equation for ci in a stagnant

electrochemical system

∂ci

∂t
= ziuiF∇ · (ci∇Φ) + Di∇2ci + Ri (2–3)
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where convective contributions to the flux of a species are negligible. The Nernst-Einstein

equation [46]

ui = Di/RT (2–4)

is generally applicable to dilute electrochemical systems where R is the molar gas constant

and T is the absolute temperature. Combination of equations (2–2) and (2–4) yields the

flux of a species

Ni = −ziciF
Di

RT
∇Φ−Di∇ci (2–5)

Equations (2–3) is rewritten as

∂ci

∂t
= Di

[
zi∇ · (ci∇Φ) +∇2ci

]
+ Ri (2–6)

by employing the Nernst-Einstein equation.

2.2 Solution Potential

The governing equation for the solution potential in an electrochemical system is

Poisson’s equation [46]

∇2Φ = −F

ε

∑
i

zici (2–7)

where ε is the permittivitty of the medium. An expression based on the concept of

electroneutrality at a point, i.e.
∑

i

zici = 0 (2–8)

has been used as the governing equation for Φ. Newman has shown that equation

(2–8) provides a very good approximation to Poisson’s equation outside the thin

double charge layer near electrodes. [46] It is important to note that the assumption

of electroneutrality does not imply that Lapalace’s equation holds for the potential,

because this approximation is made on the basis of a large value of F/ε in equation (2–7).

[46]
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The conservation of charge is given by

∇ · i = 0 (2–9)

The ionic current density due to the motion of charged particles in an electrolytic solution

is calculated by [46]

i = F
∑

i

ziNi (2–10)

Combination of equations (2–5) and (2–10), in the absence of convection, yields

i = −κ∇Φ− F
∑

i

ziDi∇ci (2–11)

where the conductivity κ is defined as

κ =
F 2

RT

∑
i

z2
i Dici (2–12)

The ionic current density in equation (2–11) can be divided into migration and diffusion

contributions. The driving force for the migration and diffusion current densities are

potential and concentration gradients, respectively. [46]

In the absence of concentration gradients, equation (2–11) reduces to an expression of

Ohm’s law

i = −κ∇Φ (2–13)

Combination of equation (2–13) with equation (2–9) yields Laplace’s equation

∇2Φ = 0 (2–14)

for the solution potential Φ.

2.3 Electrochemical Kinetics

The rate of charge-transfer or Faradaic reactions taking place at electrode surface

is important in corrosion systems. The reaction rate, characterized by current density,

depends on the composition of the electrolytic solution adjacent to the electrode. [46]
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Consider a simple heterogeneous electrochemical conversion of A to B on an electrode

surface

A À B+ + e− (2–15)

For the reaction described by equation (2–15), the forward reaction is anodic and the

backward reaction is cathodic. The overall rate of the reaction r is given

r = rf − rb (2–16)

where rf and rb are the forward and backward rates, respectively.

Under the assumption that each reaction is first order, the overall rate can be written

as

r = kfcA − kbcB (2–17)

From activated complex theory, equation (2–17) can be recast as

r = ka exp

(
(1− β)nF

RT
V

)
cA − kc exp

(−βnF

RT
V

)
cB (2–18)

where V is the interfacial potential, β (known as the symmetry factor) is the fraction of

the applied potential that favors the cathodic reaction, and n is the number of electrons

transferred. Equation (2–18) can be written in terms of current density i as [46]

i

nF
= ka exp

(
(1− β)nF

RT
V

)
cA − kc exp

(−βnF

RT
V

)
cB (2–19)

The interfacial potential V is defined as

V = Ψ− Φ (2–20)

where Ψ is the potential of the metal and Φ is the potential in electrolytic solution

adjacent to the electrode.

When the anodic and cathodic reactions in equation (2–15) reach the same rate, a

zero current is obtained under the condition of reaction equilibrium. At the equilibrium

potential V0, the net rate of the reaction is zero; however, the individual rates of the
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reactions are non-zero. The current density at the equilibrium potential is defined as

exchange current density i0 and is calculated using either

i0
nF

= ka exp

(
(1− β)nF

RT
V0

)
cA (2–21)

or

i0
nF

= kcexp

(−βnF

RT
V0

)
cB (2–22)

Substitution of i0 into equation (2–19) yields the Butler-Volmer equation [46]

i = i0

[
exp

(
αaF

RT
ηs

)
− exp

(−αcF

RT
ηs

)]
(2–23)

where the surface overpotential ηs is given by ηs = V − V0, the anodic transfer coefficient

αa is given by αa = (1 − β)n, and the cathodic transfer coefficient is given by αc = βn.

The surface overpotential ηs represents the departure from an equilibrium potential such

that, at ηs=0, the total current i = ia - ic is equal to zero.

The exponential behavior of the Butler-Volmer equation results in a characteristic

feature of electrochemical reactions. In the limit of αaFηs À RT , equation (2–23) can be

reduced to

i = i0 exp

(
αaF

RT
ηs

)
(2–24)

Solving for ηs in equation (2–24) gives

ηs =
RT

αaF
ln

∣∣∣∣
i

i0

∣∣∣∣ (2–25)

or

ηs = 2.303
RT

αaF
log10

∣∣∣∣
i

i0

∣∣∣∣ (2–26)

The Tafel slope for the anodic reaction βa is given by the expression in front of the log

term in equation (2–26)

βa = 2.303
RT

αaF
(2–27)

29



The corresponding Tafel slope for the cathodic reaction is given as

βc = 2.303
RT

αcF
(2–28)

The Butler-Volmer equation, equation (2–23), can be recast using these Tafel slopes into

i = 10(V−Ea)/βa − 10(V−Ec)/βc (2–29)

where Ea and Ec are the effective equilibrium potentials given by

Ea = V0 − βa log10 i0 (2–30)

for the anodic reaction and

Ec = V0 − βc log10 i0 (2–31)

for the cathodic reaction, respectively. [47]

2.3.1 Kinetic Control

In electrochemical systems, multiple Faradaic reactions often occur simultaneously on

an electrode surface. For example, zinc dissolution

Zn → Zn+2 + 2e− (2–32)

and hydrogen evolution reaction

2H2O + 2e− → H2 + 2OH− (2–33)

may both occur in a corrosion system. Under such circumstance, the individual electrochemical

reactions can be treated independently. Therefore, a Butler-Volmer equation such as

equation (2–23) can be written for each of these reactions.

The current density due to the reversible corrosion reaction iZn

Zn À Zn2+ + 2e− (2–34)
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can be calculated by

iZn = 10(V−Ea,Zn)/βa,Zn − 10(V−Ec,Zn)/βc,Zn (2–35)

In most corrosion systems, metal dissolution is considered to be an irreversible reaction.

Thus, the current density due to the zinc dissolution iZn is given by

iZn = 10(V−EZn)/βZn (2–36)

where Ea,Zn and βa,Zn are replaced by EZn and βZn, respectively. Similarly, the current

density iH2 due to the hydrogen evolution in reaction (2–33) is given by

iH2 = −10−(V−EH2
)/βH2 (2–37)

under the assumption that the reaction is irreversible. The total current density for the

given system is the sum of the individual current density

inet = iZn + iH2 (2–38)

The polarization behavior of the corrosion and the hydrogen evolution are termed

activation polarization because the rates of the electrochemical reactions are driven by

the surface overpotential ηs.

2.3.2 Mass Transfer Control

The rate of electrochemical reactions can also be limited by the rate at which

reacting species are carried to the electrode surface. An example of such a case is

illustrated in Figure 2-1 for an oxygen reduction reaction. The polarization behavior

of the oxygen reduction contains activation and concentration components. The current

densities is a function of potential in the activation polarization part, but is independent

of potential in the concentration polarization part. The reaction rate in the concentration

polarization regime is limited by the rate of transport of oxygen to the metal surface. The

mass-transfer-limited current density, symbolized as ilim,O2 , depends on solution agitation,

temperature and concentration of the limiting species. [48] The numerical value of the

31



i
2

i
1

V

log | i
O

2

 |

Activation

polarization

Concentration

polarization

O
2
 + 2H

2
O +4e

-
 4OH

-

Figure 2-1. Polarization plots for oxygen reduction at two values of mass-transfer-limited
current density labelled as i1 and i2. The horizontal dashed line separates the
activation potential and concentration polarization parts of the plots.

limiting current density is given by

ilim,O2 =
−nFDO2cO2,∞

x
(2–39)

where x and cO2 are the distance that oxygen diffuses through and the oxygen concentration

in the bulk, respectively. The current density due to the oxygen reduction iO2 is given by

the mathematical expression

iO2 = −
[

1

ilim,O2

+ 10(V−EO2
)/β

]−1

(2–40)

to account for both activation and concentration regimes.
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CHAPTER 3
LITERATURE REVIEW ON CATHODIC DELAMINATION

As described in literature, the delamination of paint under humid and corrosive

environment involves a coupling of mass transfer, electrochemistry, loss of adhesion

at the metal-coating interface, and propagation of a moving front along the interface.

Experimental and simulation work associated with the cathodic delamination system are

reviewed briefly in this chapter.

3.1 Experimental Observation

The kinetics and the mechanisms of the delamination process have been investigated

experimentally for coated steel and coated electrogalvanized steel using local electrochemical

and physical techniques. Stratmann et al. [9–18, 49] employed a scanning Kelvin probe

to measure potential distributions at buried polymer/metal interfaces. They performed

the experiments under accelerated corrosive conditions and minimized surface treatments,

thus the delamination rate predicted from their samples were larger than that observed

from commercial technical samples. [19] William et al. [50, 51] also employed the scanning

Kelvin probe technique to study the influence of inhibitors on the delamination mechanism

of coated galvanized steel.

A new technique based on Fourier transform infrared-multiple internal reflection

(FTIR-MIR) allowed in-situ measurements of the thickness of water layer at metal-coating

interface. [52, 53] This technique provided a means to determine the rate of water

transport through the coating and to calculate the diffusion coefficient of water through

the polymer film. Jorcin et al. [54] explored the delamination phenomena at a steel/epoxy-vinyl

prime interface using local electrochemical impedance mapping. The results showed that

the delaminated area measured by visual observations after the removal of the coating

were approximately three times smaller than that determined by the local electrochemical

impedance mapping.
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The samples used in delamination experiments are typically made by applying a

micro-thick polymer layer on a metal substrate using a roll coat procedure. [19] After

few days of curing, the samples are scribed to create a defect area. This well-defined

defect serves as a reservoir for electrolyte when the coated samples are placed into a

controlled-humidity and subjected to intermittent salt sprays. Depending upon whether

the metal dissolution occurs at the defect or under the paint, the electrochemical

mechanisms of the delamination can be divided into two broad categories: anodic and

cathodic delamination. As reported in the literature, the delamination often begins in

a condition where the uncoated area plays a role of a local anode, and the coated part

represents a local cathode.

Furbeth and Stratmann [9–11] reported that the cathodic delamination process on

a coated metal with a coating defect was the result of a galvanic couple formed between

the defect and the intact zone. Cathodic reactions at the metal-coating interface were

balanced by anodic reactions at the bare metal exposed by the defect. A schematic

diagram of a delamination system, following the interpretation obtained by Stratmann

et al., is presented in Figure 3-1. The system consists of a defect where the bare metal is

exposed to an electrolyte of NaCl, and a delaminated zone where the interfacial adhesive

bonding between the substrate and the paint is partially damaged due to the delamination

process. The exposure of the metal to the electrolyte initiates an anodic reaction at the

defect. On the delaminated zone where the metal dissolution is limited due to the presence

of the coating, small molecules such as water and oxygen diffuse through the polymer film

and are reduced at the interface. [6, 7, 12, 16] The cathodic delamination process is driven

by the formation of an electrochemical cell formed between the anodic and the cathodic

sites.

Leng and Stratmann [15] suggested that, after the delamination began to occur,

the intact coating-substrate interface was replaced gradually by two new interfaces: a

substrate-electrolyte layer and electrolyte-polymer layer. The electrochemical reactions,
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Figure 3-1. Schematic representation of cathodic delamination of a coated metal, following
the interpretation obtained by Stratmann et al. [9–11] The system consists of
a defect where the metal is exposed to an electrolyte, and a delaminated zone
where the interface adhesive strength is partially broken.

therefore, expanded from the scratch and propagated away from the defect with a

well-defined delamination front. The OH− ions produced in the cathodic reaction

mechanism promoted coating disbondment through polymer decomposition and hydrolysis

of interfacial bonds. [51] Leng and Stratmann [14] found that the reduction of oxygen

partial pressure decreased significantly the delamination rate, concluding that the oxygen

reduction was important in the delamination process. Other radical peroxide intermediates

generated in the oxygen reduction have also been proposed as possible aggressive species

during the delamination process. For a case of an ultrathin plasma polymer layer,

Grundmeier [55, 56] suggested that the metal-coating interface was destroyed by the

attack of the intermediates formed in the cathodic reaction mechanism.

The potential distributions obtained from the scanning Kelvin probe were used to

interpret the delamination mechanism for coated zinc and coated steel. [9–18, 50, 51] A

schematic representation of a potential distribution, following the experimental results

reported by Stratmann et al., is given in Figure 3-2(a) as a function of position with

elapsed time as a parameter. The zero position in the figure represents the boundary

between the defect and the delaminated zone. Three different regions are observed in

Figure 3-2(a). The interfacial potential shows a gradual increase with position in the

delaminated region, an abrupt increase in the front region, and approximately a constant

value in the intact region. As observed in Figure 3-2(a), the shape of the potential
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(a) (b)

Figure 3-2. Schematic representation of experimental interfacial potential distribution. a)
interfacial potential distribution as a function of position with elapsed time as
a parameter; and b) dV /dx distribution as a function of position with elapsed
time as a parameter.

distributions is maintained throughout the experiments. The length of the intact region

decreases with increasing time. William et al. [50, 51] also obtained a similar transition in

the potential measurements for a coated electrogalvanized steel pigmented with CrO2−
4 and

Ce3+ ions.

The interfacial potential distribution was differentiated with respect to position

to yield dV /dx distributions, shown in Figure 3-2(b), as a function of position with

elapsed time as a parameter. The peak marked the deflection point of the abrupt increase

observed in Figure3-2(a). The position of the peak, recognized as the delamination front,

represented a region where the reaction of breaking bonds is ongoing. The peak height

corresponding to the value of dV /dx was observed to decease with delamination time.

Leng and Stratmann [15] suggested that, with increasing time, there was a more gradual

change in the electrochemical potential across the front region.

The delamination kinetics can be determined by plotting the delaminated distance

calculated from the dV /dx curve as a function of time. Leng [15] and William [51]

employed a general power law

xdel = ktadel (3–1)
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to describe the delamination mechanism, where xdel, k, and tdel are delaminated distance,

rate constant, and delamination time, respectively. Furbeth and Stratmann [11] reported

a value of a = 0.55 from coated steel with minimized surface treatments, which concluded

that the overall delamination process was governed primarily by the transport of cations

from the defect to the delaminated zone. Their results also demonstrated that, for

non-pigmented samples and a short-time exposure, the rate of the delamination depended

strongly on the ionic strength and the mobility of cations. [11]

Experimental observations have shown that the later stage of the delamination

becomes more complicated when passive films or corrosion products are formed underneath

the coating. [10, 19] Furbeth and Stratmann [10] reported that the formation of ZnCO3,

under a high CO2 concentration in the atmosphere inhibits the electron transfer of oxygen

reduction, resulting in a pure anodic delamination for coated electrogalvanized steel.

The precipitation of Zn(OH)2 or ZnO at the defect prevents corrosion of the uncoated

area, therefore, the cathodic reaction becomes dominating on the scratch for coated zinc

samples. Moreover, after longer-time exposure, as the delamination front moves further

away the defect, both anodes and cathodes can appear under the paint and it becomes

difficult to distinguish whether the moving front is anodic or cathodic.

Numerous research efforts have been made to study the influence of inhibitors and

surface treatments on the delamination rate and the delamination kinetics. Hernandez et

al. [57] indicated that the zinc-aluminum phosphate pigments reduced the delamination

rate by forming a phosphate layer underneath the paint. Ogle et al. [19] tested various

surface treatments under both anodic and cathodic delamination conditions. The results

were interpreted in terms of the differing chemical stability of the conversion layers toward

OH− ions generated by oxygen reduction.

3.2 Mathematical Models

It is difficult to demonstrate that a proposed mechanism suggested based on

experimental work does indeed give the observed experimental results. Interpretation
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is often limited to qualitative and subjective observations. Therefore, a mathematical

model is necessary to identify the phenomena and mechanisms that contribute to the

delamination process.

To date, there are not many mathematical models that simulate explicitly the

propagation of front along the metal-coating interface during the cathodic delamination of

a coated metal. Yet, the occluded environment underneath the paint have been modeled

extensively in terms of crevice corrosion models [58–61] or disbonded coating models.

[62, 63] These models are often used to calculate the spatial distributions of ci, Φ, and the

current density along the metal surface.

3.2.1 Crevice and Disbonded Coating Models

The crevice system, given in Figure 3-3, has been approximated by a geometry that

consists of a disbonded region adjacent to a defect. The boundary located at the plane of

symmetry represents an impermeable wall. The thickness of the disbondment, termed the

gap, is assumed uniform along the metal-coating interface. In disbonded coating systems,

the length of the system in the direction parallel to the substrate is often assumed to

be large as compared to the gap. This facilitates the assumption that variations in the

direction normal to the metal surface are negligible.

Chin and Sabde [62] developed a steady-state model for a disbondment system under

cathodic protection. The model accounted for oxygen reduction but neglected corrosion

and hydrogen evolution under the cathodic protection. The ionic species considered were

Na+, Cl−, and OH−, and no other homogeneous chemical reactions were included. The

diffusion and migration of species were considered; however, the diffusion coefficients were

treated as Di = 10−5 cm2s−1 for all ionic species.

Following the development presented by Chin and Sabde [62], Allahar [22] established

a two-dimensional disbondment model in the presence of multiple electrochemical

reactions and one homogeneous reaction. In his work, the assumption that Di was

equal for all species was relaxed. [22] A quasipotential transformation was introduced
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Figure 3-3. Schematic diagram of a disbonded coating system on a coated metal.

to solve the system of coupled equations that described the transport of species and the

electroneutrality condition. The application of the transformation increased computational

accuracy and overcame the numerical difficulties arose from the inclusion of homogeneous

reactions.

Sridhar [63] developed a transient model for disbonded coating system to simulate

the evolution of the disbondedment. The species considered in the model were separated

into primary and secondary species. The concentration distributions of the primary

species were calculated using given potential distributions and conservation relationships.

The concentration distributions of the secondary species were calculated using the

concentration of the primary species and the equilibrium relationships associated with

homogeneous reactions. The computational results showed that the pH and potential

gradients in the disbonded region were the consequences of the competition between

anodic dissolution and cathodic reactions. Exposure time, applied potential, solution

conductivity, and crevice geometry were the factors that influenced the pH and potential

gradients.

3.2.2 Cathodic Delamination Model

Based upon the experimental observations reported by Stratmann et al. [9–18],

Allahar [21, 22] developed the first mathematical model for the cathodic delamination

of coated metal. The model accounted for the coupling of mass transfer of species,

electrochemical kinetics, bond-breakage phenomena, and the propagation of the front

along the metal-coating interface. The key to the development of the model involved
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applying the concept that the porosity and the polarization kinetics at the interface were

pH dependent. These pH-dependent hypotheses provided an approach to simulate the

growth of the delamination within a fixed domain. The development of Allahar’s work

served to guide that of the present work.

3.2.2.1 pH-Dependent Porosity

Furbeth and Stratmann [9] reported that, during the cathodic delamination process,

the coating degraded into a gel-type medium and the adhesive bond between the coating

and the metal was weakened. The OH− ions produced in the oxygen reduction underneath

the paint were linked to the coating degradation and the loss of adhesion. In the

mathematical model developed by Allahar, [21, 22] the transition from the degraded region

to the intact region was characterized by the change in porosity. Under the assumption

that the oxidation of the coating was due to the attack of OH− ions, the interfacial

porosity was treated as a function of pH.

The transition of the porosity in the delaminated zone was constructed based upon

the de-adhesion experiments performed by Furbeth and Stratmann. [9] From the tensile

force distributions, Allhar [22] proposed that the porosity was somewhat larger in the

delaminated region due to the interfacial bonds being partially broken. In the intact region

where the delamination has not occurred, the porosity was somewhat smaller. Thus,

the porosity made a transition from the value associated with the delaminated region to

that associated with the intact region. A mathematical formula was then constructed to

describe the the distribution of the porosity in the delaminated domain.

Experimental results revealed that in the delaminated and front regions the

concentrations of the two major species, OH− and Na+, were approximately equal.

[9] Therefore, the pH distribution was constructed according to the observed cNa+

distribution. The expression for the porosity-pH relation,

ε =
bε,1

1 + exp[bε,2(pH − bε,3)]
+

bε,4

1 + exp[bε,5(pH − bε,6)]
+ bε,7 (3–2)
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was obtained by coupling the porosity and the pH distributions, where bε,1 to bε,7 were

fitting parameters.

The use of the pH-dependent interfacial porosity represented a novel approach to

account implicitly for the bond-breaking process during the cathodic delamination. As

proven by Allahar, no propagation was observed when the pH-porosity relation was not

incorporated in the model. [22]

3.2.2.2 pH-Dependent Polarization Kinetics

Due to the presence of the coating, the polarization behavior of electrochemical

reactions at the metal-coating interface is different from that at the metal-electrolyte

interface. Allahar [22] derived expressions for the polarization kinetics at the metal-coating

interface based upon expressions applicable to a bare metal surface.

The current density due to zinc dissolution and oxygen reduction at the zinc-coating

interface were calculated using [22]

icoat
Zn = wAwZnio,Zn10

(
V−EZn

βZn
)

(3–3)

and

icoat
lim,O2

= −wAwO2nFDO2cO2,∞
ε1.5

g ε1.5
c

ε1.5
g gc + ε1.5

c gm

(3–4)

The surface coverage wA represented the surface area available for electrochemical

reactions. The poisoning parameter wZn considered the influence of surface on the

exchange current density of zinc dissolution. The effect of the coating or other formed

deposits on the transport of oxygen through the gel medium was included by a blocking

parameter wO2 . As the effect of these parameters varied according to the local pH, the

parameters were linked to pH with the same manner described in the porosity-pH relation.

The use of porosity to represent the bond-breaking process occurring during the

cathodic delamination process provided a mathematical framework for the development

of advanced models. The numerical approach employed by Allhar was not able to include
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homogeneous or other chemical reactions due to the ill-conditioned coefficient matrix

generated from governing equations. In the present work, a series of homogeneous

reactions and formation of corrosion products were considered. A different numerical

approach using Newman’s BAND algorithm [46] was employed in order to incorporate

these chemical reactions into the model.

3.3 Objective

The objective of the work was to develop a mathematical model that simulates

the cathodic delamination of a coated metal in the presence of multiple electrochemical

reactions, homogeneous reactions and formation of corrosion products. The electrochemical

reactions considered along the metal-coating interface were zinc dissolution and oxygen

reduction. Water dissociation and a series of reactions associated with Zn2+ hydrolysis

were treated as homogeneous reactions in the model. The corrosion product ZnOH2 was

assumed to precipitate along the metal-coating interface. The concepts of pH-dependent

porosity and pH-dependent polarization kinetics remained in the model, but modifications

were made to reduce the number of the fitting parameters used in the program.

The second objective was the use of the developed model to predict the delamination

rate and the delamination kinetics for non-pigmented coated samples. As addressed

earlier, the rate and the mechanism of the delamination system depend strongly on the

application and the property of inhibitors and/or pigments. The chemical variations

associated with these surface treatments, however, are not the major focus of the present

work.
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CHAPTER 4
THEORETICAL DEVELOPMENT OF DELAMINATION MODEL

The propagation model simulated the evolution of the delamination process from

given initial conditions. The propagation of front and the bond-breakage reactions

accompanying the delamination process were modeled through the hypotheses that

porosity and the polarization kinetics at the coating-metal interface were pH dependent.

Mathematical constructions for the initial conditions and the pH-dependent hypotheses

followed the development by Allhar. Modifications were made to reduce the number of the

fitting parameters used in the program.

4.1 Porosity-pH Relation

In the present model, the delaminated zone was considered to be a porous medium.

The flux in a dilute, porous electrochemical system N∗
i was expressed as [46]

N∗
i = −ziciF

D∗
i

RT
∇Φ−D∗

i∇ci (4–1)

where ci is the concentration in the aqueous phase. The effective diffusion coefficient D∗
i in

a porous medium was related to the porosity ε by [64]

D∗
i = ε1.5Di (4–2)

where Di is the diffusivity in an aqueous medium. Equation (4–1) was recast in terms of

Di using equation (4–2) as

N∗
i = ε1.5(−ziciF

Di

RT
∇Φ−Di∇ci) (4–3)

The conservation of a species i in a porous medium was expressed in terms of Ni as

∂(εci)

∂t
= −∇ · (ε1.5Ni) + εRi (4–4)

where Niwas the flux in the solution phase.
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(a) (b)

Figure 4-1. Schematic diagrams for interfacial porosity ε and pH as functions of position
in the delaminated zone. The dashed lines separate the domain into the
delaminated, front, and fully-intact regions: a) interfacial porosity; and b)
local pH.

Following the approach taken by Allahar, [22] interfacial porosity was used to

characterize the transition from a degraded region to an intact region in the delaminated

zone. An assumed porosity transition in the delaminated domain, shown in Figure 4-1(a),

was constructed according to the de-adhesion tests conducted by Stratmann et al. [9].

Three transition regions are observed in Figure 4-1(a). The porosity decreases gradually

with position in the delaminated region. In the front region where the delamination is

ongoing, the porosity shows an abrupt decrease with position. The porosity remains

unchanged in the intact region where the delamination has not yet occurred.

Experimental results revealed that in the delaminated and front regions the

concentrations of the two major species, Na+ and OH−, were approximately equal. [9]

Thus, the pH distribution in the delaminated domain was constructed based upon the

observed cNa+ distributions. [9] An assumed pH distribution is given in Figure 4-1(b)

where the pH value decreases with position in the delaminated and front regions. As

the OH− ions produced in the oxygen reduction underneath the paint were linked to the
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Figure 4-2. Schematic diagram for distribution of interfacial porosity ε as a function of
local pH.

coating degradation and the loss of adhesion, [9–18] the porosity used to represent the

adhesion between the metal and the coating was treated as a function of pH.

The porosity-pH relation was obtained by combining Figures 4-1(a) and 4-1(b) to

yield the ε distribution as a function of pH shown in Figure 4-2. The mathematical

expression for the ε-pH relationship was obtained by fitting an equation of the form

ε(pH) =
bε,1

1 + exp(bε,2(pH − bε,3))
+ bε,4 (4–5)

to the plot in Figure 4-2 where bε,1 to bε,4 were fitting parameters. The porosity was

assumed to reach the value given by equation (4–5) instantaneously; thus the ε-pH

relationship represents an equilibrium condition between ε and pH.

4.2 Polarization Kinetics

The electrochemical reactions of interest in the cathodic delamination model involved

zinc dissolution

Zn → Zn2+ + 2e− (4–6)

and oxygen reduction

O2 + 2H2O + 4e− → 4OH− (4–7)
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The polarization kinetic at the metal-coating interface was derived from that applicable to

the metal-electrolyte interface.

4.2.1 Zinc Dissolution

In an aqueous environment with a bare metal surface, the current density due to zinc

dissolution iZn follows the Bulter-Volmer equation [48]

iZn = io,Zn10
(

V−EZn
βZn

)
(4–8)

where βZn, EZn, io,Zn are the Tafel slope, equilibrium potential, and exchange current

density, respectively, for the zinc dissolution. A poisoning factor ζ was employed to

calculate the current density due to the zinc dissolution at the metal-coating interface, i.e.

[22]

icoat
Zn = ζio,Zn10

(
V−EZn

βZn
)

(4–9)

The poisoning factor ζ considered the effect of coating, the availability of surface area

to zinc dissolution during the delamination. The factor also accounted implicitly for the

presence of passive films formed on the metal surface. The poisoning factor ζ was assumed

to be a function of pH, and the construction of the ζ-pH relationship was performed in a

manner similar to the construction of the ε-pH relationship.

4.2.2 Poisoning-pH Relation

Experimental observations indicated that, during the cathodic delamination process,

anodic dissolution along the metal-coating interface is poisoned due to the presence of the

coating. [9, 16] Thus, the zinc dissolution was considered unfavorable in the delaminated

zone by assigning ζ ¿ 1. An hypothesized distribution of ζ as a function of position

is presented in Figure 4-3(a). In the delaminated region, the poisoning parameter ζ is

approximately a constant, indicating that the surface availability to the zinc dissolution is

independent of position in this region. The poisoning parameter decreases exponentially

with position in the front region, demonstrating that the anodic reaction is unfavorable in

the front. In the fully-intact region the value of ζ is held as a constant.
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(a) (b)

Figure 4-3. Schematic diagram for distribution of poisoning factor ζ: a) as a function of
position; and b) as a function of local pH.

The relationship between ζ and pH, given in Figure 4-3(b), was constructed by

coupling the distributions shown in Figures 4-3(a) and 4-1(b). The mathematical

expression for the ζ-pH relationship was obtained by fitting an equation of the form

ζ(pH) =
bζ,1

1 + exp(bζ,2(pH − bζ,3))
+ bζ,4 (4–10)

to the plot in Figure 4-3(b) where bζ,1 to bζ,4 were fitting parameters.

4.2.3 Oxygen Reduction

Under the assumption that oxygen reduction is mass-transfer-limited at the

metal-electrolyte interface, the limiting current density is given as [48, 65]

ilim,O2 =
−nFDO2cO2,∞

x
(4–11)

where x is the distance that oxygen diffuses through and cO2,∞ is the oxygen concentration

in the bulk. In the presence of coating and interfacial oxidized layer, the mass-transfer-limited

current density due to oxygen reduction was calculated using [22]

icoat
lim,O2

= −αO2nFDO2cO2,∞
ε1.5

g ε1.5
c

ε1.5
g gc + ε1.5

c gm

(4–12)
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(a) (b)

Figure 4-4. Schematic diagram for distribution of blocking factor αO2 : a) as a function of
position; and b) as a function of local pH.

where gm and gc were the thickness of the gel-medium and the coating, respectively, and

εc and εg were the porosity of the un-degraded coating and the gel-medium, respectively.

The complex term seen at the right side of equation (4–12) was derived by solving the

concentration distribution of oxygen in the direction normal to the metal surface. The

blocking factor αO2 accounted for the influence of the coating and the oxidized layer on

the transport of oxygen to the metal surface. The blocking factor αO2 was assumed to be a

function of pH and the construction of the αO2-pH relationship was performed in a manner

similar to the construction of the ε-pH relationship.

4.2.4 Blocking-pH Relation

An assumed distribution of αO2 as a function of position along the metal-coating

interface is presented in Figure 4-4(a). The blocking factor is a constant in the

delaminated region, indicating that the transport of oxygen is independent of position

in this region. A largest electrochemical reactivity for oxygen reduction is expected across

the front region; thus, the blocking factor increases in the front. The blocking factor

decreases to a minimum to represent a smallest reactivity in the intact region.

The αO2-pH relation was constructed by coupling Figures 4-4(a) and 4-1(b) to

yield the αO2 distribution as a function of pH given in Figure 4-4(b). The mathematical

48



Table 4-1. Fitting parameters used in the expressions of pH-dependent interfacial porosity,
blocking, and poisoning parameters.

k. ε ζ αO2

b1 0.01 4.50 7.50
b2 -3.00 -3.30 -7.00
b3 10.8 10.4 9.80
b4 0.001 -16.0 -0.50
b5 - - -50.0
b6 - - 11.10
b7 - - -10.0

expression for the αO2-pH relation was obtained by fitting an equation of the form

αO2(pH) = 10
(

bα,1
1+exp(bα,2(pH−bα,3))

+
bα,4

1+exp(bα,5(pH−bα,6))
+bα,7)

(4–13)

to the plot in Figure 4-4(b) where bα,1 to bα,7 were fitting parameters.

The values of the fitting parameters used in equations (4–5), (4–10) and (4–13) are

listed in Table 4-1. The choice of the values of these parameters might play an important

role on the computational results. Thus, a systematic sensitivity analysis was performed

and the results are reported in Appendix E.

4.3 Chemical Reactions

The oxygen reduction taking place underneath the coating results in an increase of

pH in the interfacial degraded layer. For zinc, a series of chemical reactions associated

with Zn2+ hydrolysis and formation of corrosion product Zn(OH)2(s) are possible in

alkaline solutions. [66, 67] In the presented model, multiple homogeneous reactions,

including water dissociation and a series of reactions associated with Zn2+ hydrolysis,

were considered. The mechanisms and equilibrium conditions of these chemical reactions

are summarized in Table 4-2. [67] All the homogeneous reactions were assumed to be

equilibrated because the time constants for reaching the equilibrium conditions are much

smaller than that for the diffusion of the limiting reactant. [68, 69]

The precipitated corrosion product Zn(OH)2(s) is thermodynamically stable within the

pH ranging from 8.5 to 11. [66, 67] The reaction mechanism of forming solid Zn(OH)2(s)
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Table 4-2. Reaction mechanism and equilibrium condition for homogeneous reactions
included in the model. [66, 67]

Reaction NO. Chemical Reaction Equilibrium Condition
1 H2O ←→ OH− + H+ Kw = cOH−cH+

2 Zn2+ + OH− ←→ ZnOH+ log
cZnOH+

cZn2+
= −9.67 + pH

3 ZnOH+ + 2OH− ←→ HZnO−
2 + H2O log

c
HZnO−2

cZnOH+
= −17.97 + pH

4 HZnO−
2 + OH− ←→ ZnO2−

2 + H2O log
c
ZnO2−

2

cHZnO2−
= −13.17 + pH

was assumed to be

Zn2+ + 2OH− → Zn(OH)2(s) (4–14)

The rate of production of Zn(OH)2(s) depends strongly on the concentrations of Zn2+ and

OH−; thus, the precipitation rate was related to cZn2+ and cOH− by

rpre = k[c2
OH−cZn2+ −Ksp] (4–15)

where k is a rate constant and Ksp is the standard solubility product of Zn(OH)2(s)

at room temperature. [70] The difference between the two terms in the bracket at

the right side of equation (4–15) represents the driving force for forming Zn(OH)2(s).

Equation (4–15) provides an approach, in terms of the concentrations of Zn2+ and OH−

ions, to incorporate the solid species Zn(OH)2(s) in the complex model. However, this

approach is different from that employed in thermodynamic calculations in which the total

concentrations of Zn2+ and OH− ions were held as constants. [71, 72]
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CHAPTER 5
CATHODIC DELAMINATION MODEL

The development of the mathematical model is presented in this chapter. The model

simulated the propagation of the front along the metal-coating interface during the

cathodic delamination of a coated zinc.

5.1 Governing Equations

Under the assumption that the thickness of the coating is much smaller than the

length of the domain, the mathematical model was developed focusing on a one-dimensional

delaminated zone. The significance of the defect was included implicitly at the boundary

sharing with the defect. The dependent variables considered in the model were potential

Φ and concentrations of OH−, Na+, Cl−, H+, Zn2+, ZnOH+, HZnO−
2 , ZnO2−

2 , and

Zn(OH)2(s).

The governing equation for the solution potential was derived from the electroneutrality

condition

i=9∑
i=1

zici = 0 (5–1)

The governing equation for ci in a 1-D domain was

∂ (εci)

∂t
= −∂ (ε1.5Ni)

∂x
+ Ri + Si (5–2)

where Si represented the rate of production per unit volume by electrochemical reactions.

The conservation equations for the chemically inert species, Na+ and Cl−, were obtained

by assigning SNa+ = 0, and SCl− = 0. The governing equations for the species participating

in heterogeneous reactions, Zn2+ and OH−, were formulated as

∂ (εcZn2+)

∂t
= −∂ (ε1.5NZn2+)

∂x
+ RZn2+ +

icoat
Zn

2F
(5–3)

and

∂ (εcOH−)

∂t
= −∂ (ε1.5NOH−)

∂x
+ ROH− +

icoat
lim,O2

−F
(5–4)
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respectively. The net production of Zn2+ and OH− by the homogeneous reactions at any

position was equal to zero, i.e.

RZn2+ + RZnOH+ + RHZnO−2
+ RZnO2−

2
= 0 (5–5)

and

ROH− −RH+ −RZn2+ + 2RHZnO−2
+ 3RZnO2−

2
= 0 (5–6)

Substitution of Ri into equation (5–5) yielded the governing equations for cZn2+ and cOH− ,

respectively, i.e.

GZn2+ − icoat
Zn

2F
+ GZnOH+ + GHZnO−2

+ GZnO2−
2

= 0 (5–7)

and

GOH− +
icoat
lim,O2

−F
−GH+ −GZn2+ +

icoat
Zn2+

2F
+ 2GHZnO−2

+ 3GZnO2−
2

= 0 (5–8)

where

Gi =
∂ (εci)

∂t
+

∂ (ε1.5Ni)

∂x
(5–9)

The equilibrium conditions listed in Table 4-2 were applied as the governing equations

for H+, ZnOH+, HZnO−
2 , and ZnO2−

2 . [66] The rate of formation of the corrosion product

Zn(OH)2(s) was associated with cZn2+ and cOH− by

∂cZn(OH)2(s)

∂t
= k[cZn2+ · c2

OH− −Ksp] (5–10)

where the standard solubility product Ksp has a value of 3×10−17 (mol/liter)3 at room

temperature. [10]

The phenomena of bond-breakage and coating degradation involve chemical reactions.

Equation (4–5) governs the equilibrium relationship between interfacial porosity and local

pH. The equilibrium ε-pH relation is valid under the assumption that the time constants

of bond-breakage reactions are sufficiently small. When the time constants for these

phenomena are large compared to those for the processes of diffusion and migration, the

equilibrium assumption becomes invalid. A non-equilibrium relationship between ε and pH
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was assumed to follow

∂ε

∂t
= −kneq (ε− εeq) (5–11)

where the equilibrium porosity εeq is obtained in equation (4–5) and kneq is the rate

constant for the bond-breakage reactions. In the limit that kneq →∞ the value of ε attains

its equilibrated value ε = εeq.

5.2 Boundary Condition

At the boundary with the defect, the solution potential and concentrations of

chemical species were fixed at a bulk condition Φ∞ and ci,∞, respectively. The boundary

condition for the solution potential Φ at the fully-intact region remained as the electroneutrality

condition. A zero-flux boundary condition Ni = 0 was used for each species at the

boundary in the fully-intact region.

5.3 Solution Method

The system of coupled equations consisted of four equations written in the form

of equation (5–2) for OH−, Na+, Cl−, and Zn2+, respectively, equation (5–1) for

the electroneutrality condition, equilibrium conditions for H+, ZnOH+, HZnO−
2 , and

ZnO2−
2 , equation (5–10) for the corrosion product, and an equation for the porosity-pH

relationship. When the porosity was assumed to reach its equilibrium value instantaneously,

the equilibrium ε-pH relationship, equation (4–5), was used as the governing equation for

ε. When the non-equilibrium ε-pH relationship was applied, equation (5–11) was used as

the governing equation for ε.

The derivative terms were discretized at each node in the domain using Taylor series

approximation. The first-order temporal derivative was given by

∂ (εci)

∂t
=

(εci)
n+1 − (εci)

n

4t

where the superscripts in brackets n and n + 1 represented the conditions at a given

time t and a time one time step ahead, t + 4t. Terms of the order (4t) and higher were

neglected in the temporal derivative. The spatial derivatives for a non-boundary node m
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were approximated using the central finite difference equations [73], i.e.

∂fm

∂x
=

fm+1 − fm−1

2∆x
+ O(∆x)2 (5–12)

∂2fm

∂x2
=

fm+1 − 2fm + fm−1

(∆x)2
+ O(∆x)2 (5–13)

where f was a generic variable for ci, Φ, and ε. Terms of the order (4x)2 and higher were

neglected in the spatial derivatives. A quarter-point method was used to approximate the

derivative term in the boundary conditions. The approximation of m-1
4

was obtained using

(
∂f

∂x

)

m+ 1
4

=
fm − fm− 1

2(
∆x
2

) + O(∆x2) (5–14)

where

fm− 1
2

=
fm + fm−1

2
(5–15)

The resulting system of algebraic equations was accurate to the order of (4x)2.

The system of coupled, non-linear, partial differential equations required an iterative

method to converge on a solution starting from an initial guess. A tri-diagonal method,

BAND algorithm, coupled with time step was chosen to calculate the distribution of

ci, Φ, and ε in the delaminated domain. The mathematical model was developed using

Microsoft Visual Fortran, Version 9.0 with double precision accuracy. [74]
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CHAPTER 6
RESULTS AND DISCUSSION FOR DELAMINATION MODEL

The present mathematical model simulated the evolution of a cathodic delamination

system from a set of given initial conditions. The resulting distributions satisfied the

coupled phenomena of mass transfer, electroneutrality, and disbondment reactions during

the delamination process. The calculated results and discussions are presented in this

chapter.

6.1 Initial Conditions

The geometric parameters used in the model included a coating thickness gc = 45 µm,

a gel-medium thickness gc = 5 µm, and a net length of 0.8 cm for the delaminated, front

and intact regions. The initial lengths of these regions were 0.1 cm, 0.05 cm, and 0.65 cm,

respectively.

The input parameters for the simulation included the grid size 4x = 4 × 10−4 cm ,

the time step 4t = 0.1 s, and the total time t = 60 min. The potential on the metal was

chosen as V = -0.95 VSHE. The polarization parameters for zinc dissolution included βZn

=0.04 V/decade, i0,Zn =0.008 A/cm2, and E0,Zn =- 0.763 VSHE. The diffusion coefficients

Di for the chemical species are given in Table 6-1. The concentration of dissolved oxygen

at the surface of the coating was 1.26 × 10−3 M. [46]

Table 6-1. Diffusion coefficients of chemical species[46, 75]

Chemical Di in bulk
Species electrolyte (cm2/s)

O2 1.90×10−5

OH− 5.25×10−5

Na+ 1.47×10−5

Cl− 2.03×10−5

Zn2+ 0.71×10−5

H+ 9.32×10−5

ZnOH+ 1.00×10−5

HZnO−
2 1.00×10−5

ZnO2−
2 1.00×10−5
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Figure 6-1. Initial concentration distributions of OH−, Na+, Cl−, and Zn2+ ions along the
metal-coating interface.

6.1.1 Initial Concentration Distributions

The objective of this work was to explore the propagation phase of the delamination

process. Thus, an initial condition was established which reflected a system after the

delamination had begun. The initial concentration distributions presented in Figure

6-1 were constructed based on the experimental data reported by Leng and Stratmann

[14–16] The initial concentrations of Na+ and OH− ions were equal at any position in the

delaminated domain. The shape of the cCl− distribution followed that of cNa+ distribution.

The concentrations of Na+, Cl−, and OH− ions decreased monotonically with position

in the delaminated and front regions. In the intact region, the concentrations of all

species reached asymptotic values. The distribution of cZn2+ was obtained by satisfying

electroneutrality at a given position. The concentrations of the corrosion product and the

species produced in the homogeneous reactions were assumed to be zero at t=0.

6.1.2 Initial Distribution of Porosity

The construction of the relation between porosity and pH is given in Section 4.1. The

fitting parameters used in the equilibrium ε-pH relationship (equation (4–5)) are given in

Table. The initial porosity distribution is shown in Figure 6-2(a) as a function of position

and in Figure 6-2(b) as a function of pH. As seen in Figure 6-2(a), the porosity decreases
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(a) (b)

Figure 6-2. Calculated initial porosity distribution: a) as a function of position; and b) as
a function of pH.

non-linearly in the delaminated and the front regions. The porosity maintains a uniform

value in the intact region. The porosity-pH plot (Figure 6-2(b)) presents the concept that

at a high pH the adhesive strength is low and that at a low pH the adhesive strength is

high.

6.1.3 Initial Distribution of Polarization Parameters

The polarization parameters αO2 and ζ were used to calculate the current densities

due to the zinc dissolution and oxygen reduction at the metal-coating interface. Equations

(4–10) and (4–13) govern the ζ-pH and αO2-pH relations. The fitting parameters used

in the equations are given in Table 4-1. The initial distributions of ζ are presented in

Figure 6-3(a) as a function of position and in Figure 6-3(b) as a function of pH. Figures

6-4(a) and 6-4(b) present the initial distributions of αO2 as a function of position and pH,

respectively.

The current density expressions given in equations (4–9) and (4–12) were applied to

generate the polarization plot at the metal-coating interface as a function of pH presented

in Figure 6-5. The pH value of 8.7 corresponds to the positions in the intact region where

local anodic reactions are balanced by local cathodic activities. The corrosion current

density at the metal-coating interface, therefore, is approximately equal to zero in the
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(a) (b)

Figure 6-3. Calculated initial distribution of poisoning factor: a) as a function of position;
and b) as a function of pH.

(a) (b)

Figure 6-4. Calculated initial distribution of blocking factor: a) as a function of position;
and b) as a function of pH.

58



Figure 6-5. Interfacial potential as a function of absolute net current density with local pH
as a parameter. The distributions associated with the pH values of 8.7 and 9
are superimposed.

intact region. As seen in Figures 6-3(b) and 6-4(b)), the magnitudes of ζ and αO2 do not

change over the pH range 8 to 9. Thus, the polarization curves associated with pH 8.7 and

9 superimpose as observed in Figure 6-5.

The pH ranging from 9 to 11 corresponds to the moving front in which the bond-breaking

reactions are ongoing. As shown in Figures 6-3(b) and 6-4(b), both ζ and αO2 show an

increase from pH 9 to 11; consequently, the anodic and cathodic current densities in the

front region are larger than those in the intact region. The increase in the current densities

reflects physically an enhanced electrochemical reactivity in the front region.

The curve of pH 12 in Figure 6-5 corresponds to the delaminated region in which the

interfacial bonds are partially broken due to the delamination process. As the polarization

parameters ζ and αO2 account implicitly for the influence of passive films or deposits

on the electrochemical reactions, both anodic and cathodic current densities in the

delaminated region are smaller than those in the front region.

6.2 Equilibrium Porosity-pH Relationship

The simulation results obtained using the equilibrium ε-pH relationship are presented

in this section. The results using the kinetic ε-pH relationship are presented in Section 6.3.

59



Figure 6-6. Calculated distributions of interfacial potential along the metal-coating
interface with elapsed time as a parameter.

6.2.1 Interfacial Potential Distribution

The calculated distribution of interfacial potential V is presented in Figure 6-6 with

elapsed time as a parameter. In the graphical presentations in the subsequent sections,

t = 30 s was chosen as the initial condition to avoid the artificiality at t = 0. At a given

time, the interfacial potential increases with distance away from the scratch and reaches

a constant value in the intact region. The constant plateau seen in Figure 6-6 represents

the intact region and is observed to shorten with elapsed time. The shape of the potential

distribution is maintained throughout the simulation, indicating that the phenomena and

the hypotheses considered in the model sustains the profile of V while the delamination

front propagates along the metal-coating interface. These features are consistent with the

experimental results of coated electrogalvanized reported by Stratmann et al. [10] and

Williams et al.. [50]

Following the analysis reported by Leng and Stratman, [15] the interfacial potential

distributions were differentiated with respect to position to yield distributions of dV /dx

as a function of position with elapsed time as a parameter given in Figure 6-7. The

sharp peak marks the deflection point of the sharp increase observed in Figure 6-7. The

position of the peak, identified as the delamination front, propagates away from the
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Figure 6-7. Calculated distributions of dV /dx along the metal-coating interface with
elapsed time as a parameter.

defect with increasing time. The peak height corresponding to the magnitude of dV /dx

deceases with increasing delamination time. The decreasing trend is in agreement with

the experimental results reported by Leng and Stratmann. [15] The explanation given

by Leng and Stratmann was that, with time, a more gradual change in electrochemical

potential in the front region. [15] The agreement with the experiments demonstrates that

the hypotheses of the pH-dependent interfacial porosity and pH-dependent polarization

kinetics were reasonable for the front propagation during the delamination process.

The rate of propagation of the potential front, calculated from the maxima peak given

in Figure 6-7, is presented in Figure 6-8. The rate initially is large but exponentially

decreases with elapsed time. After a long-time extrapolation, the delamination rate

determined by the potential front is 1.66 mm/hr, approximately two times larger than the

experimental rate for coated steel observed by Leng and Stratmann. [14] The discrepancy

between the theoretical and experimental work can be attributed to the use of the

equilibrated pH-porosity relation in the model. The phenomena of bond breakage and

coating degradation involve chemical reactions. The application of the equilibrium

pH-porosity relation assumes instantaneously that the time constants associated with

breaking bonds are small. When time constants for bond-breakage phenomena are large
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Figure 6-8. Instantaneous velocity of potential front, calculated from the time-dependent
position of the maxima given in Figure 6-7.

compared to those for the diffusion and migration, the assumption of the equilibrium

pH-porosity relation becomes invalid. An investigation for non-equilibrium pH-porosity

will be addressed in Section 6.3.

6.2.2 Concentration Distributions

The distribution of pH in the delaminated zone is presented in Figure 6-9 as a

function of position with elapsed time as a parameter. The calculated results show that

the pH in the delaminated and front regions increases with time and remains unchanged in

the intact region. The increase in pH in the delaminated and front regions is attributed to

the OH− ions produced by oxygen reduction underneath the coating and by diffusion from

the boundary with the defect. The shape of the pH distribution is maintained throughout

the simulation, which again, demonstrates that the hypotheses and physical phenomena

considered in the model are able to sustain the profile of pH while the delamination front

propagates along the interface.

The calculated distributions of cNa+ and cCl− are presented in Figure 6-10 as a

function of position with elapsed time as a parameter. The trends associated with

the cNa+ and cCl− distributions are similar with those seen in the pH distribution. A

slight decrease in the cCl− distribution is observed in the front region. This decreasing
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Figure 6-9. Calculated distributions of pH along the metal-coating interface with elapsed
time as a parameter.

(a) (b)

Figure 6-10. Calculated concentration distributions along the metal-coating interface with
elapsed time as a parameter. a) Na+ ions; and b) Cl− ions.
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Figure 6-11. Calculated concentration distributions of Zn2+ ions along the metal-coating
interface with elapsed time as a parameter.

feature demonstrates that the Cl− ions are expelled from the front region because of the

production of OH− ions by oxygen reduction.

The calculated distribution of cZn2+ is given in Figure 6-11 as a function of position

with elapsed time as a parameter. The shape of the distribution is maintained throughout

the simulation. In the front region the concentration of Zn2+ ions increases with position

at part of the region and decreases with position at the other part of the region. This

feature shows that the distribution of cZn2+ is constrained by the electroneutrality

condition applied in the model.

The concentration distributions of the species produced in the homogeneous reactions

(ZnOH+, HZnO−
2 , and ZnO2−

2 ) are presented in Figure 6-12 as a function of position

with elapsed time as a parameter. For all three species, the concentrations decrease with

position in the delaminated and the front regions. During the course of simulation, the

changes in concentration across the delaminated and the front regions become more

gradual as the delamination propagates into the fully-intact region.

6.2.3 Precipitated Corrosion Product

The precipitation of corrosion products Zn(OH)2(s) has been observed in delamination

systems and cut-edge corrosion systems. [19, 76] The distribution of cZn(OH)2(s) calculated
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(a) (b)

(c)

Figure 6-12. Calculated concentration distributions along the metal-coating interface with
elapsed time as a parameter. a) ZnOH+ ions; b) HZnO−

2 ions; and c) ZnO2−
2

ions.
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Figure 6-13. Calculated concentration distributions of precipitated corrosion product
Zn(OH)2(s) along the metal-coating interface with elapsed time as a
parameter.

from the presented model is given in Figure 6-13 as a function of position with elapsed

time as a parameter. The concentration of Zn(OH)2(s) increases with time in the

delaminated, front and intact regions. At a given time, the concentration of Zn(OH)2(s)

decreases with position in the delaminated and front regions, and maintains a constant in

the intact region.

It has been known that the formation of passive layer Zn(OH)2(s) on electrode

surface protects materials from corrosion and moderates the corrosion rate. [19] This

inhibitive feature, in the model presented here, was included implicitly through the use

of the poisoning factor, but not related quantitatively with the local concentration of

Zn(OH)2(s). The solubility of Zn(OH)2(s), as indicated in the Purbaix diagram, [66] has

a minimum around pH 9 and increases with increasing pH. This transition feature is not

observed in Figure 6-13. The inconsistency with the literature might be due to that the

approach taken in the model to incorporate the solid species Zn(OH)2(s) (equation (4–14))

is different from that employed in the Purbaix diagram in which the total concentrations

of Zn2+ and OH− ions were held as constants. [71, 72].
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Figure 6-14. Calculated distributions of porosity along the metal-coating interface with
elapsed time as a parameter.

6.2.4 Porosity Distribution

The calculated porosity distribution is presented in Figure 6-14 as a function of

position with elapsed time as a parameter. The shape of the porosity distribution remains

the same with the initial distributions throughout the simulation. As the delamination

front propagates into the intact region, the interfacial porosity increases to satisfy the

equilibrium ε-pH relationship. At a given position, the increase in the porosity with time

is reflected by the increase in pH observed in Figure 6-9. The trends associated in the

porosity distribution are similar with those observed in the pH distributions, confirming

that the destruction of the interfacial adhesions is related to the generation of OH− ions

during the delamination process.

In experiments, the delamination front, where the delamination is ongoing, is often

determined by the potential distributions measured using the scanning Kelvin probe.

In the mathematical model presented here, however, it is more reasonable to define the

delamination front by the porosity gradients, because the porosity is the key to represent

the adhesive strength between the metal and the coating. [21, 22]

The distribution of dε/dx along the metal-coating interface is presented in Figure 6-15

as a function of position with elapsed time as a parameter. The sharp peak characterizes a
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Figure 6-15. Calculated distributions of dε/dx along the metal-coating interface with
elapsed time as a parameter.

porosity front that moves toward the intact region during the delamination process. The

velocity of the porosity front corresponds to the rate of breaking the interfacial bonds

and is approximately 1.50 mm/hr after extrapolated to a longer time (see Figure 6-16).

This value is slightly smaller than that of the potential front, but still larger than the

experimental result of coated steel. [14] The discrepancy between the simulation and

experimental rates can be attributed to the use of the equilibrium pH-porosity relation,

which yields to the upper limit to the propagation rate.

6.2.5 Delamination Kinetics

Following the approach taken by Leng [15] and William [51], the delamination kinetics

was analyzed by plotting the delaminated distance as a function of elapsed time. The

propagation distances determined by the potential and the porosity fronts are presented

in Figures 6-17(a) and 6-17(b), respectively, as a function of time in a double-logarithmic

plot with cation type as a parameter. The calculated reaction order is approximately 0.56

for the potential front and 0.6 for the porosity front. The slopes seen in Figures 6-17(a)

and 6-17(b) are independent of the cation types, and the values are in close agreement

with the reaction order of 0.52 to 0.59 determined by Stratmann et al. [10] for polymer

coated electrogalvanized steel (Figure 6-17(c)). These results indicate that the overall
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Figure 6-16. Instantaneous velocity of porosity front, calculated from the time-dependent
position of the maxima given in Figure 6-15.

Table 6-2. Diffusion coefficients of cations [70, 75]

Type of Di in bulk
cation electrolyte (cm2/s)
Li+ 1.25×10−5

Na+ 1.47×10−5

K+ 1.84×10−5

Cs+ 2.10×10−5

delamination process is primarily limited by the mass transport of ions from the defect

to the delamination front. Due to the co-existence of the potential and concentration

gradients, the transport of ions represents the contributions by migration as well as

diffusion.

6.2.5.1 Influence of Cation Type on Delamination Rate

The influence of cation type on the delamination rate can be seen in Figure 6-18,

where the delaminated distance calculated based on the potential and porosity fronts are

plotted as a function of square root of time. A linear relation between the delaminated

distance and
√

time is observed for all of the cation types. The rate of the propagation

decreases in the order of Cs+ > K+ > Na+ > Li+ for both potential and porosity

fronts, and this result is correlated to the mobility of the cations in an aqueous medium

(Table 6-2). The result indicates that, with the chemical and physical assumptions, the
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(a) (b)

(c)

Figure 6-17. Delaminated distance as a function of elapsed time in double-logarithmic
scale with cation type as a parameter. The concentration of the electrolyte at
the defect is 0.5 M. a) Delaminated distance determined by potential front;
b) Delaminated distance determined by porosity front; and c) Experimental
results obtained from coated electrogalvanized steel samples. Data taken from
Stratmann et al. [11] with permission of Corrosion Science.
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(a) (b)

(c)

Figure 6-18. Delaminated distance as a function of square root of time with cation type as
a parameter. The concentration of the electrolyte at the defect is 0.5 M. a)
Delaminated distance determined by potential front; b) Delaminated distance
determined by porosity front; and c) Experimental results obtained from
coated steel samples. Data taken from Stratmann et al. [15] with permission
of Corrosion Science.
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Table 6-3. Diffusion coefficients of anions [75]

Type of Di in bulk
anion electrolyte (cm2/s)
Br− 1.25×10−5

Cl− 1.47×10−5

F− 1.84×10−5

ClO−
4 2.10×10−5

delamination predicted from the model is principally controlled by the transport of cations

along the metal-coating interface and the rate of this process scales with the mobility

of the cations. This result is qualitatively consistent with experimental measurements

reported for coated steel and coated zinc systems (Figure 6-18(c)). [10, 15]

6.2.5.2 Influence of Anion Type on Delamination Rate

The influence of anion type on the delamination rate was also examined in the

simulation. The resulting propagation distances determined by both potential and porosity

fronts are presented in Figure 6-19 as a function of square root of time. It is clear that

the delamination rate does not vary with the anion types even though their mobilities

in aqueous electrolyte are different (Table 6-3). The production of OH− ions under the

degraded coating attract the cation at the defect, resulting in movements of the cation

from the defect toward the intact region. Consequently, the cathodic delamination is more

sensitive to the cation type than the anion type. The experimental observations by Leng

and Stratmann [11, 15], given in Figure 6-19(c), shows that the anion types influence

slightly on the delamination rate, but the variations of the propagation rate between the

anion types is much less significant than those between the cation types.

6.2.5.3 Influence of Electrolyte Concentration on Delamination Rate

As reported by Leng and Stratmann [15], the concentration of the electrolyte placed

at the defect is also a factor that influences the delamination rate. Figure 6-20 gives the

delaminated distance as a function of square root of time with electrolyte concentration

as a parameter. The higher concentration at the threshold provides a larger driving

force to couple galvanically the intact and the defect zones; therefore, the propagation
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(a) (b)

(c)

Figure 6-19. Delaminated distance as a function of square root of time with anion type as
a parameter. The concentration of the electrolyte at the defect is 0.5 M. a)
Delaminated distance determined by potential front; b) Delaminated distance
determined by porosity front; and c) Experimental results obtained from
coated steel samples. Data taken from Stratmann et al. [15] with permission
of Corrosion Science.
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(a) (b)

(c)

Figure 6-20. Delaminated distance as a function of square root of time with electrolyte
concentration as a parameter. a) Delaminated distance determined by
potential front; b) Delaminated distance determined by porosity front; and c)
Experimental results obtained from coated steel samples. Data taken from
Stratmann et al. [15] with permission of Corrosion Science.
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rates determined by both potential and porosity fronts increase with the electrolyte

concentration. From the kinetic analysis presented above, one important conclusion is that

the rate-determining step of the cathodic delamination is driven by the transport of the

cations from the defect to the front region, and that the propagation rate scales with the

ionic strength and the mobility of the cations. This conclusion is in agreement with the

interpretation published by Leng and Stratmann for coated steel. [15]

6.3 Kinetic Porosity-pH Relationship

The use of the equilibrium pH-porosity relation presented above assumed spontaneously

that the chemical reactions associated with breaking interfacial bonds occur rapidly. This

assumption becomes invalid when the time constants for the bond-breaking reactions

are large compared to those for diffusion and migration processes. The investigation for

non-equilibrium pH-porosity relation is necessary.

6.3.1 Potential Front and Porosity Front

To explore the role of finite rates of bond breakage, the equilibrium relationship

between porosity and pH, given as equation (4–5), was replaced by

∂ε

∂t
= kneq(ε− εeq) (6–1)

where kneq is a rate constant that reflects the time constants of bond-breakage reactions,

and εeq is obtained from equation (4–5). Different values of kneq were examined in the

simulations, but only the results for kneq = 0.1 and 0.001 s−1 are presented here.

The resulting distributions of interfacial potential for kneq = 0.1 and 0.001 s−1 are

shown in Figure 6-21 as a function of position with elapsed time as a parameter. The

features seen in Figure 6-21 were similar to those observed in Figure 6-6, which were

obtained using the equilibrium pH-porosity relation. The distributions of the potential

gradient dV /dx for kneq = 0.1 and 0.001 s−1 are shown in Figure 6-22 as functions

of position with elapsed time as a parameter. Again, the trends associated with the

dV /dx plot for non-equilibrium pH-porosity relation are similar to those found using the
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(a) (b)

Figure 6-21. Calculated distribution of interfacial potential along the metal-coating
interface a) kneq = 0.1 s−1; and b) kneq = 0.001 s−1.

(a) (b)

Figure 6-22. Calculated distribution of interfacial potential gradient dV /dx along the
metal-coating interface a) kneq = 0.1 s−1; and b) kneq = 0.001 s−1.
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(a) (b)

Figure 6-23. Calculated distribution of porosity gradient dε/dx along the metal-coating
interface a) kneq = 0.1 s−1; and b) kneq = 0.001 s−1.

equilibrium relation. The delamination rate determined by Figures 6-22(a) and 6-22(b),

after extrapolated to longer time, were 1.63 mm/hr and 1.55 mm/hr for kneq = 0.1 and

0.001 s−1, respectively. These values are slightly smaller than the equilibrium delamination

rate (1.66 mm/hr), indicating that the use of the kinetic pH-porosity relation within the

model influenced the velocity of the potential front.

The propagation of the potential front is then compared with that of the porosity

front. The resulting distributions of dε/dx for kneq = 0.1 and 0.001 s−1 are presented

in Figure 6-23 as functions of position with elapsed time as a parameter. The trends

associated with in Figure 6-23 are similar to those observed in Figure 6-15, which were

obtained using the equilibrium pH-porosity relation. The velocity of the porosity front

evidently decreases from 1.37 mm/hr for kneq=0.1 s−1 to 0.93 mm/hr for kneq=0.001

s−1. The propagation rate for kneq=0.001 s−1 is much smaller than the equilibrium

porosity front rate (1.5 mm/hr) and the value is in good agreement with the experimental

observation of 0.8 mm/hr for coated galvanized steel. [15]

From the analysis presented above, it is evident that the rate of breaking interfacial

bonds in the cathodic delamination process is controlled by the rate constant kneq, but
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(a) (b)

Figure 6-24. Calculated distribution of pH gradient along the metal-coating interface a)
kneq = 0.1 s−1; and b) kneq = 0.001 s−1.

the velocity of the potential front is not. Thus, the next question to be addressed is;

what properties can be correlated to the propagation of the potential front? Figure 6-24

gives the pH gradient distributions for kneq = 0.1 and 0.001 s−1 as functions of position

with elapsed time as parameter. The shape and the features within the pH gradient

distributions are similar to those seen in dV /dx and dε/dx plots. The location of the

deflection point in Figures 6-24(a) and 6-24(b), termed pH front, are approximately equal

to the position of the potential fronts in Figures 6-22(a) and 6-22(b), respectively. The

velocity of the pH front changes from 1.63 mm/hr to 1.55 mm/hr when kneq decreases

from 0.1 to 0.001 s−1. This result suggests that the change of pH along the metal-coating

interface is an important factor that influences the movement of the potential front.

The influence of the rate constant kneq on the velocity of potential front, porosity

front and pH front is summarized in Table 6-4. When kneq decreased from infinity to

10−4 s−1, the rate of the potential front decreased from 1.66 mm/hr to 1.26 mm/hr, and

the rate of the porosity front decreases from 1.50 mm/hr to 0.73 mm/hr. The comparison

between the potential and pH front rates confirms that the movement of the potential

front depends on the pH front. The change of the front velocities indicates that the values
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Table 6-4. Calculated velocities of potential, porosity and pH front

rate constants velocity of potential front velocity of porosity front velocity of pH front
(kneq / s−1) mm/hr mm/hr mm/hr

∞ 1.66 1.50 1.69
10−1 1.63 1.37 1.61
10−2 1.60 1.26 1.60
10−3 1.55 0.93 1.55
10−4 1.26 0.73 1.25

Figure 6-25. Calculated distributions of dε/dx along the metal-coating interface with
elapsed time as a parameter.

of kneq influence the propagation of all fronts, but the influence is much more evident on

the porosity front.

As observed in Table 6-4, the velocity difference between the potential and porosity

fronts increases with decreasing kneq. The production of OH− ions in the faster potential

front creates a driving force for the bond-breakage reactions that are limited by the

finite rate constant. As a result, the disbondment occur in a broad region when the

bond-breakage reactions are sufficiently slow. The distribution of porosity for kneq = 10−4

s−1 is presented in Figure 6-25 as a function of position with elapsed time as a parameter.

Due to the limitation of the finite rate constant, the well-defined porosity front seen

in Figure 6-14 becomes less distinguishable in Figure 6-25. Instead, the change of the

porosity takes place in a broad region and this region expands with increasing time.
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(a) (b)

Figure 6-26. Delaminated distance as a function of delamination time in
double-logarithmic scale with cation type as a parameter. a) Delaminated
distance determined by the potential front; and b) Delaminated distance
determined by the porosity front.

6.3.2 Delamination Kinetics

Figure 6-26(a) gives the propagation distance determined by the potential front as

a function of time with kneq as a parameter. When the rate constant kneq changes from

infinity to 10−4 s−1, the slopes of the lines change slightly from 0.57 to 0.59. The slight

change in the slope demonstrates that the rate constant kneq does not have significant

impacts on the rate-determining step of the overall delamination process. Figure 6-26(b)

gives propagation distance determined by the porosity fronts as a function of time

with kneq as a parameter. The slope is approximately equal to 0.6 for the equilibrium

pH-porosity relation but increases to 0.74 for kneq=10−4 s−1. The change in the slope is

an indication that the delamination mechanism shifts from a mass-transfer controlled to

a mixed-control mechanism when the bond-breakage reactions are sufficiently slow. The

transition is consistent with the experimental results reported by Stratmann et al. [10]

that the overall delamination process is limited by kinetics when the delamination rate is

sufficiently small.
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CHAPTER 7
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

Electrochemical Impedance Spectroscopy (EIS) is a small-signal technique in which

a sinusoidal current or potential perturbation is imposed on tested systems and the

corresponding potential or current response is measured (see Figure 7-1). Comparison of

the input and output signals provides the impedance at a given perturbation frequency.

The influence of a particular phenomenon on impedance response is, in principle,

determined by the time scale of that process. [27] For example, the time constant for

mass-transfer effects is relatively large because the diffusivity of ionic species in aqueous

medium is small. Therefore, mass-transfer effects are usually apparent at low frequencies;

whereas kinetic and double-layer effects are more important at high frequencies. An

advantage of EIS is that, with a single experimental procedure encompassing a sufficiently

broad range of frequency, the governing chemical and physical phenomena can be

distinguished at a given potential.

Figure 7-1. Schematic representation for theory of Electrochemical Impedance
Spectroscopy (EIS) where E is potential and I is area-averaged current.
Impedance is defined as the ratio of potential difference between working and
reference electrodes to surface-averaged current.
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Experimental impedance spectra are typically interpreted in terms of circuit models

that consist of combinations of passive circuit elements. While equivalent circuit models

are useful for understanding the physical processes or chemical mechanisms that occur in

electrochemical systems, observed impedance spectra frequently show a dispersion that

cannot be fitted using simple elements. The dispersion typically reflects a distribution of

reactivity that is commonly represented in equivalent electrical circuits as a constant-phase

element (CPE). The distributed reactivity may arise from variation of properties either

along the area of electrode (2-D) or along the axis normal to electrode surface (3-D). A

2-D distribution could be associated with geometry-induced current/potential distributions

or surface heterogeneity such as grain boundaries, crystal faces or other variations in

surface properties. A 3-D distribution may arise from changes in the conductivity of oxide

layer [35] or from porosity or surface roughness. [37, 38]

The recent development of local electrochemical impedance spectroscopy (LEIS)

[54, 77] makes it possible to distinguish CPE behavior that has an origin with a 3-D

distribution from one that arises from a 2-D distribution of properties along the surface

of the electrode. [40] In LEIS, similar with traditional impedance methods, a sinusoidal

current or potential perturbation is imposed on tested systems and the corresponding

potential or current response is measured. The local impedance technique consists of a

probe with two micro-electrodes allowing measurements of potential at two positions.

Under the assumption that the Ohmic impedance between the two probes is given by a

constant, the current density at the probe can be estimated from the measured potential

difference 4Vprobe by

iprobe = Vprobe
κ

d
(7–1)

where d is the distance between the potential sensing electrodes and κ is the conductivity

of the electrolyte. The local impedance can then be calculated from the ratio of the

electrode potential measured relative to a reference electrode far away from the surface to

the local current density iprobe.
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(a) (b) (c)

Figure 7-2. Passive elements that serve as components of an electrical circuit. a) Resistor;
b) Capacitor; and c) Inductor.

The subsequent sections provide basic concepts involved in electrochemical impedance

spectroscopy. Detailed discussions of technical and theoretical issues associated with EIS is

available elsewhere. [25, 28, 29, 78]

7.1 Passive Electrical Circuits

Experimental impedance spectra are typically compared to that of known electrical

circuits. Electrical circuits can be constructed from the passive elements shown in Figure

7-2. [25, 28, 29]

The impedance of a passive circuit element is defined as the ratio of the potential

difference between the element clamps to the current flowing through the element, i.e.

Z =
4V

4I
(7–2)

and has units Ohms Ω. For a pure resistor, equation 7–2 yields

Zresistor = R (7–3)

whereas, for a capacitor

Zcapacitor =
1

jωC
(7–4)

and for an inductor, the impedance is

Zinductor = jωL (7–5)
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(a)

(b)

Figure 7-3. Combinations of passive elements that serve as components of an electrical
circuit: a) in series b) in parallel.

For two passive elements in series, the same current must flow through the two

elements, and the overall potential difference is the sum of the potential difference for each

element. Thus, the impedance for the series arrangement shown in Figure 7-3(a) is given

by

Z = Z1 + Z2 (7–6)

For two passive elements in parallel, the overall current is the sum of the current flowing

in each element, and the potential difference is the same for each dipole. Therefore, the

overall impedance for the parallel arrangement shown in Figure 7-3(b) is given by

Z = [
1

Z1

+
1

Z2

]−1 (7–7)
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Impedance contributions are additive for elements in series; whereas, the inverse of the

impedance is additive for elements in parallel.

It is important to note that different circuit analog models possessing the same

number of time constants can yield a mathematically equivalent frequency response.

[25, 28, 29] The lack of uniqueness of the circuit models creates ambiguity when

interpreting impedance results. A good fit to experimental data does not guarantee that

the model describes correctly the physics of the given system. Additional experimental

observations are needed to verify a proposed model and to avoid ambiguities when

interpreting impedance data.

7.2 Constant-Phase Element (CPE)

Experimental impedance results for a solid electrode/electrolyte interface often revel

a time-constant dispersion that cannot be described by simple elements. To characterize

this time-constant dispersion, the interfacial capacitance is often expressed in equivalent

circuits in terms of a constant-phase element (CPE). [25, 28, 29]

CPE typically reflects a non-ideal double-layer capacitance and is usually related to a

pure capacitor by

Q = C0(jω)1−α (7–8)

where the parameters α and Q are constants. When α = 1, Q has units of a capacitor and

represents the capacity of the interface. When α 6= 1, the system shows behavior that can

be attributed to distributed properties on electrode surface. The value of α may change

from -1 to +1; in this sense, the CPE is treated as an extremely flexible fitting element

and its meaning in terms of a distribution of time constants is less clear.

7.2.1 Origin of CPE

Numerous research efforts have been made in literature to study the origin of the

CPE behavior. Pajkossy [38, 79] modeled rough electrodes by surfaces of fractal geometry

with processes dilatational symmetry. The theoretical calculations yielded CPE behavior

with a fractional exponent depending on the fractal dimension. The experiments by
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Pajkossy and Kerner [38, 79] showed that the time-constant dispersion on solid electrode

was due to surface disorder (on the atomic scale) rather than geometric roughness (larger

than atomic scale).

De Levie [80, 81] modeled the impedance of porous electrodes under the assumption

that the concentration was uniform and the pores were ideal cylinders. Lasia [82] later

replaced the double layer capacitance on pore walls with a CPE. The results reported by

Lasia [82] showed that mass transfer and pore geometry influenced the shape of impedance

spectrum. The models proposed by de Levie and Lasia considered only a single pore

dimension. Song et al. [83] developed a model to predict the effect of pore size distribution

on the impedance response of porous electrodes.

Pajkossy et al. [84–87] proposed that the time-constant dispersion arose from the

adsorption of molecules or anions on gold electrodes. The capacitance dispersion observed

in the presence of specific adsorption can be assigned to either a slow diffusion or slow

adsorption processes within the double layer or electrode surface.[87]

Newman and Nisancioglu [41, 42, 45] studied the influence of nonuniform current

and potential distribution on the impedance response of a disk electrode. Their results

indicated the geometry-induced potential and current distribution induced a high-frequency

dispersion that distorted the impedance response. Nisancioglu [45] showed the extent

to which this frequency dispersion leads to an error in the values for charge-transfer

resistance and interfacial capacitance obtained from impedance data.

7.2.2 2-D and 3-D Distributions

The explanations of CPE behavior presented above suggest that two kinds of

distributions can be distinguished. A 2-D distribution could be associated with geometry-induced

current/potential distributions or surface heterogeneity such as grain boundaries, crystal

faces or other variations in surface properties. CPE behavior may also arise from changes

in the conductivity of oxide layer [35] or from porosity or surface roughness. [37, 38] This
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Figure 7-4. Schematic representation of an impedance distribution for a blocking disk
electrode where Re represents the Ohmic resistance, C0 represents the
interfacial capacitance, and z0 represents an interfacial impedance
corresponding to CPE a) 2-dimensional distribution of blocking components in
terms of resistors and capacitors; and b) 3-dimensional distribution of blocking
components in terms of resistors and constant-phase elements.

can be described as being associated with a 3-D distribution, with the third direction

being the direction normal to the electrode surface.

A schematic representation of a 2-D distribution for an ideally-polarized blocking

disk electrode is presented in Figure 7-4(a). For a 2-D distribution, the capacitance and

Ohmic resistance could be a function of radial position along the electrode. Integration

of the admittance associated with these circuit elements would yield a global admittance

with a CPE behavior,

Y = Z−1 =

∫

A

z−1dA (7–9)

where A is the electrode area, Y is the global admittance, Z is the global impedance, and

z is the local impedance. The local impedance, in the case of a 2-D distribution would,

however, show ideal behavior. A 3-D distribution of blocking components in terms of

resistors and constant-phase elements is presented in Figure 7-4(b). Such a system will

yield a local impedance with a CPE behavior, even in the absence of a 2-D distribution of

surface properties. If the 3-D system shown schematically in Figure 7-4(b) is influenced

by a 2-D distribution, the local impedance should reveal a variation of CPE coefficients

along the surface of the electrode. Thus, local impedance measurements can be used to
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distinguish whether the origin of the CPE behavior arises from a 2-D distribution, from a

3-D distribution, or from a combined 2-D and 3-D distribution.

7.3 Current and Potential Distributions on Disk Electrode

Current and potential distributions on electrode surface play an essential role in

electrochemical fabrication technologies [88] and in interpretation of electrochemical

processes. [89] The geometry of an electrode often constrains the distributions of

current and potential on the electrode surface in such a way that both cannot be

simultaneously uniform. Newman [46] developed analytical solutions for current and

potential distributions on a disk geometry, and the development is reviewed in this section.

In a bulk of a well-stirred electrolytic solution where concentration gradients are

negligible within the electrolyte, potential is governed by Laplace’s equation, i.e.[46]

∇2Φ = 0 (7–10)

where Φ is the solution potential. The current density i can then be expressed as

i = −κ∇Φ (7–11)

Under the assumption that concentrations are uniform in the electrolyte, the passage of

current through the interface is limited by Ohmic resistance in the electrolyte and by

charge-transfer resistance associated with reaction kinetics. The primary distribution

applies when the flow of current is dominated by the Ohmic resistance and kinetic

resistance can be neglected. The secondary distribution applies when both Ohmic and

kinetic resistances are controlling.

7.3.1 Primary Current Distribution

In the absence of mass-transfer limitations and Faradaic reactions, the primary

current distribution of a disk electrode requires solution of Laplace’s equation with a

charging boundary condition at the electrode surface. The primary resistance can be
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expressed in the form of [46]

Re =
πr0

4κ
(7–12)

The primary current density distribution associated with a disk electrode surface follows

[46]

i

< i >
=

1

2

√
1−

(
r
r0

)2
(7–13)

where r0 is the radius of the disk and < i > is the area-averaged current density on the

electrode. A graph of i/< i > as a function of dimensionless position r/r0 is presented in

Figure 7-5. The normalized current density is fairly well behaved near the center of the

electrode, but it approaches infinity at the edge of the electrode. As a result, the primary

current distribution is highly non-uniform for a disk electrode.

7.3.2 Secondary Current Distribution

The secondary current distribution is a consequence of the balance between electrolyte

resistance and charge-transfer resistance. For this case, the distribution requires solution

of Laplace’s equation with a boundary condition at the electrode surface that is associated

with both Faradaic reactions and charge of double-layer capacity. The ratio of these two

contributions is, in general, expressed in terms of a dimensionless parameter J

J =
4

π

Re

Rt

(7–14)

Large values of J are seen when the Ohmic resistance dominates over the charge-transfer

resistance, and small values of J are seen when the charge-transfer resistance is more

important. The secondary current density distribution on a disk electrode is presented in

Figure 7-6 as a function of the normalized position with J as a parameter. The current

is uniformly distributed when J is sufficiently small and the distribution becomes more

nonuniform as J increases. The curve for J=∞ represents the primary distribution seen in

Figure 7-5 in which the current distribution is primarily controlled by Ohm’s law.

89



Figure 7-5. Primary current distribution at a disk electrode.

Figure 7-6. Secondary current density distribution at a disk electrode with J as a
parameter.

90



7.4 Objective

The studies by Nisancioglu [45] and by Newman [41, 42] demonstrated that the

geometry-induced current and potential distributions cause a high-frequency dispersion

that distorts the impedance response on a disk electrode. However, their discussions did

not address the dispersion in terms of CPE. Moreover, none of the work developed to date

addresses the coupling of 2-D and 3-D distributions, and none of the previous work relates

global impedance response with local impedance.

The objective of this work was to explore, from first principle, the role of nonuniform

current and potential distributions on the global and the local impedance response of a

disk electrode. The electrochemical systems under study included an ideally-polarized

blocking electrode, an electrode exhibiting a local CPE behavior, and an electrode

exhibiting a single Faradaic reaction. The theoretical development and calculation results

of the work are presented in Chapter 8, Chapter 9, and Chapter 10, respectively.
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CHAPTER 8
IDEALLY POLARIZED BLOCKING DISK ELECTRODE

This chapter presents the theoretical development and calculation results for the

impedance response of an ideally-polarized blocking electrode. [32] There are several types

of impedance at play; their definitions and notations are also provided in this chapter.

8.1 Theoretical Development

In the absence of mass-transfer effects, the transient response of a disk electrode

requires Laplace’s equation with flux conditions at the electrode surface. Following

Newman’s approach, [42] Laplace’s equation in cylindrical coordinates was expressed in

rotational elliptic coordinates, i.e.

y = r0ξη (8–1)

and

r = r0

√
(1 + ξ2)(1− η2) (8–2)

where 0 ≤ ξ ≤ ∞ and 0 ≤ η ≤ 1. The coordinate transformation can be seen more clearly

in Figure 8-1. Within the rotational elliptic coordinate system, the electrode surface at y

= 0 and r ≤ r0 can be found at ξ = 0 and 0 ≤ η ≤ 1. The reference electrode and counter

electrode located at y → ∞ can be found at ξ → ∞. The insulating surface of the disk at

y = 0 and r > r0 is located at η = 1 and 0 < ξ ≤ ∞, and the center line at y > 0 and r =

0 is located at η = 0 and 0 < ξ ≤ ∞.

Lapace’s equation can be expressed in rotational elliptic coordinates as

∂

∂ξ

[
(1 + ξ2)

∂Φ

∂ξ

]
+

∂

∂η

[
(1− η2)

∂Φ

∂η

]
= 0 (8–3)

The potential was separated into steady and oscillating parts as

Φ = Φ̄ + Φ̃ exp(jωt) (8–4)
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Figure 8-1. Coordinate transformation from a cylindrical coordinate to a rotational elliptic
coordinate. The griding in the rotation epiotic coordinate is not drawn to
scale.

where Φ̄ is the steady-state solution for potential and Φ̃ is the complex oscillating

potential. Thus, equation (8–3) could be written as

2ξ
∂Φ̃r

∂ξ
+ (1 + ξ2)

∂2Φ̃r

∂ξ2
− 2η

∂Φ̃r

∂η
+ (1− η2)

∂2Φ̃r

∂η2
= 0 (8–5)

and

2ξ
∂Φ̃j

∂ξ
+ (1 + ξ2)

∂2Φ̃j

∂ξ2
− 2η

∂Φ̃j

∂η
+ (1− η2)

∂2Φ̃j

∂η2
= 0 (8–6)

where Φ̃r and Φ̃j refer to the real and imaginary parts of the complex potential,

respectively.

For a blocking electrode, the current passes from the electrode to the electrolyte by a

means of charging the double-layer capacity. The flux boundary condition at the electrode

surface (ξ = 0 and 0 ≤ η ≤ 1) was expressed as

i = C0
∂(V − Φ0)

∂t
= −κ

∂Φ

∂y

∣∣∣∣
y=0

= − κ

r0η

∂Φ

∂ξ

∣∣∣∣
ξ=0

(8–7)
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where C0 is the interfacial capacitance and κ is the electrolyte conductivity. Equation

(8–7) was written in frequency domain as

KΦ̃j = −1

η

∂Φ̃r

∂ξ

∣∣∣∣∣
ξ=0

(8–8)

and

KṼr −KΦ̃r = −1

η

∂Φ̃j

∂ξ

∣∣∣∣∣
ξ=0

(8–9)

where Ṽr represents the imposed perturbation in the electrode potential referred to an

electrode at infinity and K is the dimensionless frequency

K =
ωC0r0

κ
(8–10)

At η = 0 and η = 1, for all ξ>0, zero-flux conditions impose that

∂Φ̃r

∂η
= 0 (8–11)

and

∂Φ̃j

∂η
= 0 (8–12)

At the far boundary condition (ξ →∞ and 0 ≤ η ≤ 1),

Φ̃r = 0 (8–13)

and

Φ̃j = 0 (8–14)

The equations were solved under the assumption of a uniform capacitance C0 using

the collocation package PDE2D developed by Swell. [90] To ensure the accuracy of the

calculations, a series of error analysis was performed to verify that the mesh size used in

the program was sufficiently small and the domain size is sufficiently large. Calculations

were performed for different domain sizes, and the results presented here were obtained by

extrapolation to an infinite domain.
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Figure 8-2. The location of current and potential terms that make up definitions of global
and local impedance.

8.2 Definition of Impedance

The calculation results presented in the subsequent sections involve several type

of impedance. The notations and the definitions of the impedance are presented in this

section.

A schematic representation of the electrode-electrolyte interface for an ideally-polarized

blocking electrode is given as Figure 8-2, where the block used to represent the Ohmic

impedance reflects the complex character of the Ohmic contribution to the local

impedance response. The impedance definitions presented in Table 8-1 differ in the

potential and current used to calculate the impedance. To avoid confusion with local

impedance values, the symbol y is used to designate the axial position in cylindrical

coordinates.

8.2.1 Global Impedance

The global impedance is defined to be

Z =
Ṽ

Ĩ
(8–15)

where the complex current contribution is given by

Ĩ =

∫ r0

0

ı̃(r)2πrdr (8–16)
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Table 8-1. Notation proposed for local impedance variables[39]

Symbol meaning units
Z global impedance Ω or Ωcm2

Zr real part of global impedance Ω or Ωcm2

Zj imaginary part of global impedance Ω or Ωcm2

Z0 global interfacial impedance Ω or Ωcm2

Z0,r real part of global interfacial impedance Ω or Ωcm2

Z0,j imaginary part of global interfacial impedance Ω or Ωcm2

Ze global Ohmic impedance Ω or Ωcm2

Ze,r real part of global Ohmic impedance Ω or Ωcm2

Ze,j imaginary part of global Ohmic impedance Ω or Ωcm2

z local impedance Ωcm2

zr real part of local impedance Ωcm2

zj imaginary part of local impedance Ωcm2

z0 local interfacial impedance Ωcm2

z0,r real part of local interfacial impedance Ωcm2

z0,j imaginary part of local interfacial impedance Ωcm2

ze local Ohmic impedance Ωcm2

ze,r real part of local Ohmic impedance Ωcm2

ze,j imaginary part of local Ohmic impedance Ωcm2

〈Φ〉 spatial average of potential V
Φ time average or steady-state value of potential V
〈i〉 spatial average of current density A/cm2

ı time average or steady-state value of current density A/cm2

y axial position variable cm
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The use of an upper-case letter signifies that Z is a global value. The global impedance

has real and imaginary components designated as Zr and Zj, respectively. The total

current can also be represented by Ĩ = πr2
0 < ı̃(r) > where the brackets signify the

area-average of the current density. [39]

8.2.2 Local Impedance

The term local impedance traditionally involves the potential of the electrode

measured relative to a reference electrode far from the electrode surface. [91, 92] Thus, the

local impedance is given by

z =
Ṽ

ı̃(r)
(8–17)

The use of a lower-case letter signifies that z is a local value. The local impedance may

have real and imaginary values designated as zr and zj, respectively. [39]

The global impedance can be expressed in terms of the local impedance as

Z =

〈
1

z

〉−1

(8–18)

Equation (8–18) is consistent with the treatment of Brug et al. [30] in which the

admittance of the disk electrode was obtained by integration of a local admittance

over the area of the disk.

8.2.3 Local Interfacial Impedance

The local interfacial impedance involves the potential of the electrode measured

relative to a reference electrode Φ0(r) located at the outer limit of the diffuse double layer.

Thus, the local interfacial impedance is given by

z0 =
Ṽ − Φ̃0(r)

ı̃(r)
(8–19)

The use of a lower-case letter again signifies that z0 is a local value, and the subscript 0

signifies that z0 represents a value associated only with the surface. The local interfacial

impedance may have real and imaginary values designated as z0,r and z0,j, respectively.

[39]
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8.2.4 Local Ohmic Impedance

The local Ohmic impedance involves the potential of a reference electrode Φ0(r)

located at the outer limit of the diffuse double layer and the potential of a reference

electrode located far from the electrode Φ̃(∞) = 0 (see Figure 8-2). Thus, the local Ohmic

impedance is given by

ze =
Φ̃0(r)

ı̃(r)
(8–20)

The use of a lower-case letter again signifies that ze is a local value, and the subscript

e signifies that ze represents a value associated only with the Ohmic character of the

electrolyte. The local Ohmic impedance may have real and imaginary values designated as

ze,r and ze,j, respectively. The local impedance

z = z0 + ze (8–21)

can be represented by the sum of local interfacial and local Ohmic impedances. [39]

8.2.5 Global Interfacial Impedance

The global interfacial impedance is defined to be

Z0 = 2π

[∫ r0

0

1

z0(r)
rd(r)

]−1

(8–22)

or

Z0 = 〈 1

z0(r)
〉−1 (8–23)

The use of an upper-case letter signifies that Z0 is a global value. The global interfacial

impedance may have real and imaginary values designated as Z0,r and Z0,j, respectively.

8.2.6 Global Ohmic Impedance

The global Ohmic impedance is defined to be

Ze = Z − Z0 (8–24)
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(a) (b)

Figure 8-3. Calculated Nyquist representation of the impedance response for an ideally
polarized disk electrode. a) linear plot showing effect of dispersion at
frequencies K>1; and b) logarithmic scale showing agreement with the
calculations of Newman.

The use of an upper-case letter signifies that Z is a global value. The global Ohmic

impedance may have real and imaginary values designated as Ze,r and Ze,j, respectively.

8.3 Results and Discussion

The calculated results for global, local, local interfacial, and both local and global

Ohmic impedance are presented in this section. The results are believed to be incorrect for

frequencies K > 100 due to the presence of a singular perturbation problem that arises at

the periphery of the electrode at high frequencies. [42]

8.3.1 Global Impedance

The global impedance response presented in Figure 8-3(a) in Nyquist format shows

the influence of time-constant dispersion at frequencies K > 1. The impedance was made

dimensionless according to Zκ/r0π in which the units of impedance Z were scaled by unit
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(a) (b)

Figure 8-4. Calculated representation of the impedance response for an ideally polarized
disk electrode. a) real part; and b) imaginary part showing agreement with the
calculations and asymptotic formula of Newman.

area, Ωcm2. The expanded logarithmic representation presented in Figure 8-3(b) shows

good agreement with the numerical solutions presented by Newman. [42]

The comparison with Newman’s calculations is seen more clearly in the representation

of the real and imaginary parts of the impedance response shown in Figures 8-4(a) and

8-4(b), respectively. As stated by Orazem et al. [78], the slope of log(Zjκ/r0π) with

respect to log(K) gives the exponent of the CPE, −α. The change in the slope of the lines

presented in Figure 8-4(b) shows that the impedance response transitions from ideal ReC0

behavior at low frequencies to a CPE-like behavior at frequencies K > 1. A deviation from

Newman’s results is seen for frequencies K > 100. This error is attributed to a singular

perturbation problem, identified by Newman, that arises at the periphery of the electrode

at high frequencies. [42]

The change of −α is presented in Figure 8-5 as a function of dimensionless frequency

K. The system behaves as an ideal capacitor at low frequencies with α = 1. At

frequencies K > 1, the value of α changes to roughly α = 0.85 at K > 10. As the
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Figure 8-5. The slope of log(Zjκ/r0π) with respect to log(K) (Figure 8-4(b)) as a function
of log(K). The results were calculated by the collocation method. The value of
this slope is equal to −α.

slope is not independent of frequency, the frequency dispersion seen at K > 1 does not

represent true CPE behavior.

The frequency K = 1 at which the current distribution influences the impedance

response can be expressed as

f =
κ

2πC0r0

(8–25)

As shown in Figure 8-6, this characteristic frequency can be well within the range

of experimental measurements. The value κ/C0 = 104 cm/s can be obtained for a

capacitance C0 = 1 µF/cm2 (corresponding to an oxide layer) and conductivity κ =

0.01 S/cm (corresponding to a 0.1 M NaCl solution). The value κ/C = 103 cm/s can be

obtained for a capacitance C0 = 10 µF/cm2 (corresponding to the double layer on an

inert metal electrode) and conductivity κ = 0.01 S/cm (corresponding to a 0.1 M NaCl

solution). Figure 8-6 can be used to show that, by using an electrode that is sufficiently

small, the experimentalist may be able to avoid the frequency range that is influenced by

current and potential distributions.

8.3.2 Local Interfacial Impedance

The calculated local interfacial impedance is presented in Figure 8-7(a) as a function
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Figure 8-6. The frequency K=1 at which the current distribution influences the impedance
response with κ/C0 as a parameter.

(a) (b)

Figure 8-7. Calculated imaginary part of the local interfacial impedance: a) as a function
of frequency with position as a parameter; and b) as a function of position
with frequency as a parameter.
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Figure 8-8. The local impedance in Nyquist format with radial position as a parameter.

of frequency with position as a parameter and in Figure 8-7(b) as a function of position

with frequency as a parameter. The results presented in Figure 8-7 show that the local

interfacial impedance is purely associated with a capacitive behavior. At all frequencies,

z0,jκK/r0π = 1/π as is expected for an ideal capacitance. The real part of the local

interfacial impedance, not shown here, was equal to zero within computational accuracy.

8.3.3 Local Impedance

The calculated local impedance response is presented in Figure 8-8 in Nyquist format

with normalized radial position as a parameter. The dimensionless impedance is scaled to

the disk area πr2
0 in order to compare with the asymptotic value of 0.25 for the real part

of the dimensionless global impedance. The impedance is largest at the center of the disk

and smallest at the periphery, reflecting the greater accessibility of the periphery of the

disk electrode. Inductive loops, which are not shown in the global impedance, are seen at

high frequencies in local impedance.
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(a) (b)

Figure 8-9. Calculated local impedance with radial position as a parameter: a) real part;
and b) imaginary part.

The real and imaginary parts of the local impedance are presented in Figures 8-9(a)

and 8-9(b), respectively, with radial position as a parameter. The real part of the local

impedance presented in Figure 8-9(a) reaches asymptotic values at K → 0 and K → ∞.

The imaginary part presented in Figure 8-9(b) shows the change of sign associated with

the inductive features in Figure 8-8. The changes in sign occur at frequencies below

K = 100, showing that the inductive loop cannot be attributed to calculation artifacts.

The radial distribution of the real and imaginary impedance is presented in Figures

8-10(a) and 8-10(b), respectively, with dimensionless frequency K as a parameter. At high

frequencies, e.g. K = 100, the calculated radial distribution of the real part of the local

impedance follows the expression

zrκ

r0π
(r) = 0.5

√
1−

(
r

r0

)2

(8–26)

derived from equation (8–27) using the expression for the primary resistance

Re =
πr0

4κ
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(a) (b)

Figure 8-10. Calculated local impedance as a function of radial position: a) real part; and
b) imaginary part multiplied by dimensionless frequency K.

Similarly, for frequencies K > 1 the imaginary part of the local impedance deviates from

that expected for an ideal capacitive electrode.

8.3.4 Local Ohmic Impedance

Following equation (8–21), the local Ohmic impedance ze accounts for the difference

between the local interfacial and local impedances. The calculated local Ohmic impedance

is presented in Figure 8-11 in Nyquist format with radial position as a parameter.

The shape of the diagrams are strongly dependent on the position on the electrode. At

the periphery of the electrode, two time constants (inductive and capacitive loops) are

seen; whereas, at the electrode center only an inductive loop is evident. These loops

are distributed around the asymptotic value of 1/4. The calculated values for real and

imaginary parts of the local Ohmic impedance are presented in Figures 8-12(a) and

8-12(b), respectively, as a function of frequency with radial position as a parameter. The

local Ohmic impedance has only real values at K → 0 and K → ∞, but in the frequency

range 10−2 < K < 100, ze has both real and imaginary components. Figure 8-12(a) clearly

shows the asymptotic behavior in the low frequency range with values distributed around

1/4.

105



Figure 8-11. The local Ohmic impedance in Nyquist format with radial position as a
parameter.

(a) (b)

Figure 8-12. Calculated values for local Ohmic impedance as a function of frequency with
radial position as a parameter: a) real part; and b) imaginary part.
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Figure 8-13. The imaginary part of the global Ohmic impedance, calculated from equation
(8–28), as a function of dimensionless frequency.

8.3.5 Global Interfacial and Global Ohmic Impedance

The local interfacial impedance is associated with a pure capacitance that is

independent of radial position. Thus, the global interfacial impedance should also be

a pure capacitance C0 in units of µF/cm2. The global Ohmic impedance Ze is obtained

from the global impedance Z by the expression

Ze = Z − 1

jC0ω
(8–27)

or, in the dimensionless terms used in the present work,

Zeκ

r0π
=

Zκ

r0π
− 1

jπK
(8–28)

The real part of Ze is equal to the real part of Z as given in Figure 8-4(a). The imaginary

part of Ze is given in Figure 8-13 as a function of dimensionless frequency K. In the

low frequency range Ze is a pure resistance equal to 1.08Re, and, in the high frequency

range, Ze tends towards Re. The imaginary part of the global Ohmic impedance shows

a non-zero value in the frequency range that is influenced by the current and potential

distributions. Figures 8-4(a) and 8-13 show that all the effect of the current and potential

distribution appears in the global Ohmic impedance.
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CHAPTER 9
BLOCKING DISK ELECTRODE WITH LOCAL CPE

In Chapter 8, it has been shown that the nonuniform current and potential

distributions influence the global and local impedances of an ideally-blocking disk

electrode. The objective of this chapter is to explore the influence of current and potential

distribution on the impedance responses of a blocking electrode exhibiting a local CPE

behavior. In this sense, the goal is to explore the role of coupled 2D and 3D distributions

on the impedance responses of a disk electrode. This chapter presents the theoretical

development and results for the impedance calculations. [39] Experimental validation

provided by Vivier is also presented in this chapter. [39, 93]

9.1 Theoretical Development

The mathematical development presented in this chapter followes that presented

in Chapter 8. Laplace’s equation in cylindrical coordinates was expressed in rotational

elliptic coordinates as equations (8–5) and (8–6) for real and imaginary parts, respectively.

The modification made here was the substitution of the capacitor at electrode surface

(ξ=0) by a constant phase element CPE, i.e.

i = Q
∂(V − Φ0)

∂t
= −κ

∂Φ

∂y

∣∣∣∣
y=0

= − κ

r0η

∂Φ

∂ξ

∣∣∣∣
ξ=0

(9–1)

where Q can be related to the interfacial capacitance C0 by equation (7–8). The flux

boundary condition at the electrode surface ξ = 0 was written in frequency-domain as

K
{

(Ṽr − Φr) cos
απ

2
+ Φj sin

απ

2

}
= − 1

η

∂Φr

∂ξ

∣∣∣∣
ξ=0

(9–2)

and

K
{

(Ṽr sin
απ

2
− Φj cos

απ

2
− Φr sin

απ

2

}
= − 1

η

∂Φj

∂ξ

∣∣∣∣
ξ=0

(9–3)

where Ṽr represents the imposed perturbation in the electrode potential and K is the

dimensionless frequency

K =
Qωαr0

κ
(9–4)
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As seen in equation (9–4), the dimensionless frequency K includes the CPE coefficient Q,

the frequency ω raised to the power of the CPE exponent α, the disk radius r0, and the

electrolyte conductivity κ.

At η = 0 and η = 1, zero-flux conditions impose that

∂Φ̃r

∂η
= 0 (9–5)

and

∂Φ̃j

∂η
= 0 (9–6)

At the far boundary condition ξ →∞,

Φ̃r = 0 (9–7)

and

Φ̃j = 0 (9–8)

The equations were solved under assumption of uniform CPE parameters Q and

α. The simulations were performed using the collocation package PDE2D developed by

Sewell. [90] The calculations were performed for differing domain sizes and the results

reported here were obtained by extrapolation to an infinite domain size. As discussed in

the previous chapater, the calculated results are believed to be incorrect for frequencies

K > 100 due to the presence of a singular perturbation problem that arises at the

periphery of the electrode at high frequencies. [42]

9.2 Results and Discussion

The calculated results for global, local, local interfacial, and both local and global

Ohmic impedances are presented in this section. A list of symbols for the impedance used

in the subsequent sections is provided in Table 8-1.

9.2.1 Global Impedance

The calculated dimensionless impedance response is presented in Figure 9-1 in

Nyquist format with α as a parameter. The representation given in Figure 9-1 applies for
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Figure 9-1. Nyquist representation for the calculated impedance response of a blocking
disk electrode with a local CPE with α as a parameter.
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(a) (b)

Figure 9-2. Calculated impedance response for a blocking disk electrode with a local CPE
as a function of dimensionless frequency K: a) real part; and b) imaginary
part.

all values of electrolyte conductivity κ and disk radius r0, but different values are obtained

for different values of α. The impedance was made dimensionless according to Zκ/r0π

in which the units of impedance Z are assumed to be scaled by area and having units of

Ωcm2.

The frequency dependence of the impedance response can be seen more clearly

in Figures 9-2(a) and 9-2(b), where the real and imaginary parts of the impedance,

respectively, are presented as functions of dimensionless frequency K with α as a

parameter. The real part of the dimensionless impedance, plotted in Figure 9-2(a),

approaches the expected theoretical value of 1/4 at high frequency. [42] The low-frequency

behavior depends slightly on the value of α. When plotted against dimensionless frequency

K, the values of the dimensionless imaginary impedance in Figure 9-2(b) superpose for all

values of α. This superposition is made possible by the inclusion of α in the definition of

frequency K in equation (9–4).

Orazem et al. [78] cited the utility of logarithmic plots of imaginary impedance as a

function of frequency to identify CPE behavior. The calculated slope of log(Zjκ/r0π) with
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Figure 9-3. The calculated slope of log(Zjκ/r0π) with respect to log(K) (Figure 9-2(b)) as
a function of log(K) with α as a parameter.

respect to log(K) (Figure 9-2(b)) is presented in Figure 9-3. with α as a parameter. Due

to the definition of K, the slope at low frequencies of the logarithmic plots of imaginary

impedance as a function of K is equal to −1. At frequencies K > 1, the slope increases

to approximately −0.85. When expressed in terms of these dimensionless parameters, the

low-frequency response is independent of α, but the results obtained at higher frequencies

depend on α.

The calculation of effective CPE coefficient Qeff provides further evidence that the

low-frequency behavior is unaffected by the current and potential distribution. The

effective CPE coefficient Qeff for an electrochemical system can be obtained from the

imaginary part of the impedance by

Qeff = sin
(απ

2

) −1

Zj(ω)ωα
(9–9)

The effective CPE coefficient obtained from equation (9–9) scaled by the input value is

presented in Figure 9-4 as a function of frequency with α as a parameter. Equation (9–9)

yields the input value for the CPE coefficient at low frequencies, but this calculation is

influenced by the current distributions at frequencies K > 1.
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Figure 9-4. Effective scaled CPE coefficient as a function of frequency with α as a
parameter.

9.2.2 Local Interfacial Impedance

The calculated local interfacial impedance at α = 0.8 is presented in Figure 9-5 in

Nyquist format with normalized position as a parameter. All of the lines are superposed

indicating that the local interfacial is independent of position. The real and imaginary of

the local interfacial impedance at α = 0.8 are presented, respectively, in Figures 9-6(a)

and 9-6(b) as a function of frequency with normalized radial position as a parameter. All

the lines are superposed and the slopes seen in both real and imaginary impedance plots

are equal to −1. This idealized character of the local interfacial impedance is seen more

clearly in Figure 9-7 in which the impedance is scaled by the dimensionless frequency and

given as a function of radial position with frequency as a parameter. At all frequencies,

the scaled real part of the local interfacial impedance follows

z0,rκK

r0π
=

1

π
cos(απ/2) (9–10)

and the imaginary part of the local interfacial impedance follows

−z0,jκK

r0π
=

1

π
sin(απ/2) (9–11)
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Figure 9-5. Nyquist representation for the calculated local interfacial impedance response
of a blocking disk electrode with a local CPE with normalized radial position
as a parameter.

(a) (b)

Figure 9-6. Calculated local interfacial impedance as a function of frequency with position
as a parameter: a) imaginary part; and b) real part.
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(a) (b)

Figure 9-7. Calculated local interfacial impedance as a function of position with frequency
as a parameter: a) imaginary part; and b) real part.

The results presented in Figures 9-6 and 9-7 show that the calculated local interfacial

impedance is independent of 2-D distributions.

9.2.3 Local Impedance

The calculated local impedance response for α = 0.8 is presented in Figure 9-8 with

normalized radial position as a parameter. The dimensionless impedance is scaled to the

disk area πr2
0 to show the comparison with the high-frequency asymptotic value in Figure

9-1. The impedance is largest at the center of the disk and smallest at the periphery,

reflecting the greater accessibility of the periphery of the disk electrode. Inductive loops,

which are not shown in the global impedance, are seen at high frequencies in local

impedance for all the radial positions.

The real and imaginary parts of the local impedance are presented in Figures 9-9(a)

and 9-9(b), respectively, with radial position as a parameter. The real and imaginary

parts of the local impedance presented in Figure 9-9 show a pure CPE behavior at low

frequencies and a geometry-induced dispersion at high frequencies. The imaginary part

presented in Figure 9-9(b) shows the change of sign associated with the inductive features
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Figure 9-8. The local impedance in Nyquist format with radial position as a parameter.

(a) (b)

Figure 9-9. Calculated local impedance: a) real part; and b) imaginary part.
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Figure 9-10. The local Ohmic impedance in Nyquist format with radial position as a
parameter.

seen in Figure 9-8. The changes in sign occur at frequencies well below K = 100, showing

that the inductive loop cannot be ascribed to calculation artifacts.

9.2.4 Local Ohmic Impedance

The local Ohmic impedance ze accounts for the difference between the local interfacial

and the local impedances. The calculated Ohmic impedance for α = 0.8 is presented in

Figure 9-10 in Nyquist format with radial position as a parameter. The results obtained

here for the local Ohmic impedance are very similar to those reported for the ideally

polarized electrode. At the periphery of the electrode, two time constants (inductive

and capacitive loops) are seen; whereas, at the electrode center only an inductive loop is

evident. These loops are distributed around the asymptotic real value of 1/4.

9.2.5 Global Interfacial and Global Ohmic Impedance

The local interfacial impedance has shown to be associated with an ideal CPE

behavior and to be independent of radial position. Thus, the global interfacial impedance

is given by

Z0 =
1

(jω)αQ
(9–12)

The global Ohmic impedance Ze is obtained from the global impedance Z by the

expression

Ze = Z − Z0
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(a) (b)

Figure 9-11. Calculated values for global Ohmic impedance as a function of frequency with
α as a parameter: a) real part; and b) imaginary part.

or, in the dimensionless terms used here,

Zeκ

r0π
=

Zκ

r0π
− 1

jαπK
(9–13)

The real part of Ze is given in Figure 9-11(a), and the imaginary part of Ze is given in

Figure 9-11(b) as functions of dimensionless frequency K with α as a parameter. In the

low frequency range Zeκ/r0π is a pure resistance equal to 0.27, and, in the high frequency

range, Zeκ/r0π tends towards 1/4. The imaginary part of the global Ohmic impedance

shows a non-zero value in the frequency range that is influenced by the current and

potential distributions. Figure 9-11 shows that all the effect of the current and potential

distribution appears in the global Ohmic impedance.

9.3 Experiments

The predictions made by the calculations can be compared to experimental

observations. Vivier [39] conducted impedance measurements on a glassy carbon disk

electrode to compare with the calculation results. Local impedance measurements were

as well performed on a stainless steel disk to demonstrate that the inductive features

predicted by the simulations are apparent in experiments.
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(a) (b)

Figure 9-12. Complex-impedance-plane plots for the response of a glassy carbon disk in
KCl electrolytes with concentration as a parameter. a) for frequency values
between 100 kHz and 10 mHz; and b) zoomed region showing only
high-frequency data.

9.3.1 Global Impedance of Glassy-Carbon Electrode

The global impedance measurements were made at three different concentrations of

KCl. The results obtained in 0.5 M, 0.06 M and 0.0065 M KCl are presented in Figure

9-12 with concentration as a parameter. The differences among the results are most

apparent at high frequencies, as shown in Figure 9-12(b). The results are consistent with

a blocking, but not ideally polarized, electrode. The agreement also suggests that there is

a local capacity dispersion on the glassy carbon disk electrode. A high-frequency feature

is evident in Figure 9-12(b), and this feature appears at lower frequencies for the smaller

concentration.

The dimensionless imaginary part of the impedance is presented in Figure 9-13(a) as

a function of dimensionless frequency. The superposition of data for the three values of

conductivity is in excellent agreement with the calculations (see Figure 9-2(b)), and the

change in slope from a value of −1 appears at frequencies higher than K = 1.

The derivative of the logarithm of the dimensionless imaginary impedance with

respect to the logarithm of dimensionless frequency is presented in Figure 9-13(b). The
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(a) (b)

Figure 9-13. Dimensionless analysis for the impedance response of a graphite disk in KCl
electrolytes with concentration as a parameter. a) Dimensionless imaginary
part of the impedance as a function of dimensionless frequency
(corresponding to Figure 9-2(b)); and b) Derivative of the logarithm of the
dimensionless imaginary part of the impedance with respect to the logarithm
of dimensionless frequency (corresponding to Figure 9-3).

dispersion of the data apparent in Figure 9-13(b) can be attributed to the fact that

the derivative calculations were performed on experimental data. The superposition of

data for the three values of conductivity is in excellent agreement with Figure 9-3 with

α = 0.9, and the transitional frequency between low and high-frequency response is in

good agreement with the theoretical value of K = 1.

9.3.2 Local Impedance of Stainless Steel Electrode

The local impedance measurements were performed on a Fe-17Cr stainless steel disk

electrode in 0.05 M KCl + 0.005 M Na2SO4 electrolyte. The local impedance and local

interfacial obtained at the center of the disk (r/r0 = 0) are presented in Figure 9-14.

[93] As predicted from the calculations, the local impedance exhibits inductive loops at

high frequency; whereas, the local interfacial impedance shows expected behavior for a

local CPE within all frequency range. The characteristic transition frequency at which

the geometry plays a role locates approximately at K=0.52, which is consistent with the

theoretical prediction K=1. The local interfacial impedance exhibits an ideal local CPE
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Figure 9-14. Experimental local impedance, local interfacial impedance, and local Ohmic
impedance in Nyquist format of a stainless steel disk electrode at the center
of the electrode (r/r0 = 0). [93]

behavior, which agrees with the perdition from Figure 9-5. The local Ohmic impedance,

the difference between the local and local interfacial impedance, is given in the rectangle

box in the figure. The shape of the local impedance at r/r0=0 is consistent with that seen

in Figure 9-10.

The local impedance shows CPE behavior at low frequencies and a change in

sign in the imaginary part of the impedance at high frequencies. This appearance of

high-frequency inductive loops is consistent with the calculated local impedance presented

in Figure 9-9(b). The agreement between the model presented here and the experimental

results obtained from the steel electrode illustrates the utility of the model for describing

features of systems that exhibit CPE behavior over a range of frequency.
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CHAPTER 10
DISK ELECTRODE WITH SINGLE FARADAIC REACTION

The results presented in chapters 8 and 9 illustrate that the current and potential

distributions associated with disk electrodes induce an apparent CPE behavior on

the impedance of blocking electrodes. This chapter explores the influence of current

distribution on impedance response of a disk electrode subject to a single Faradaic

reaction. [31]

10.1 Theoretical Development

The mathematical development presented in this chapter followed those presented

in Chapters 8 and 9. Lapace’s equation written in the rotational elliptic coordinates

(equations (8–5) and (8–6)) remained as the governing equations. The key difference

between the present work and those described in the previous chapters was the boundary

condition applied at the electrode surface.

The problem was solved for two kinetic regimes. Under linear kinetics, following

Newman [42] and Nisancioglu [43, 44], the current density at the electrode surface was

expressed as

i = C0
∂(V − Φ0)

∂t
+

(αa + αc) i0F

RT

(
V̄ − Φ̄0

)
= −κ

∂Φ

∂y

∣∣∣∣
y=0

= − κ

r0η

∂Φ

∂ξ

∣∣∣∣
ξ=0

(10–1)

The assumption of linear kinetics applies for ı̄ << i0. Under assumption of Tafel kinetics,

the current density at the electrode surface was expressed as

i = C0
∂(V − Φ0)

∂t
− i0 exp−

(
αcF

RT

(
V̄ − Φ̄0

))
= −κ

∂Φ

∂y

∣∣∣∣
y=0

= − κ

r0η

∂Φ

∂ξ

∣∣∣∣
ξ=0

(10–2)

where the current in the Tafel regime was assumed to be cathodic. A similar expression

can be developed under assumption of anodic currents. The results presented here are

general because the impedance results do not depend on whether the current is anodic or

cathodic.
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The flux boundary conditions (10–1) or (10–2) apply at the electrode surface (ξ = 0).

The boundary conditions (10–1) or (10–2) were written in frequency domain as

KΦ̃j + J
(
Ṽr − Φ̃0,r

)
= −1

η

∂Φ̃r

∂ξ

∣∣∣∣∣
ξ=0

(10–3)

and

K
(
Ṽr − Φ̃0,r

)
+ JΦ̃0,j = −1

η

∂Φ̃j

∂ξ

∣∣∣∣∣
ξ=0

(10–4)

for real and imaginary components, respectively. Here Ṽr represents the imposed

perturbation in the electrode potential referenced to an electrode at infinity and K is

the dimensionless frequency, defined as

K =
ωC0r0

κ
(10–5)

Under the assumption of linear kinetics, valid for ı̄ << i0, the parameter J was defined to

be

J =
(αa + αc) Fi0r0

RTκ
(10–6)

For Tafel kinetics, valid for ı̄ >> i0, the parameter J was defined to be a function of radial

position on the electrode surface as

J(η) =
αcF ı̄(η)r0

RTκ
(10–7)

where ı̄(η) was obtained from the steady-state solution as

ı̄ = i0 exp

(
αcF

RT

(
V̄ − Φ̄0

))
(10–8)

The local charge-transfer resistance for linear kinetics can be expressed in terms of

parameters used in equation (10–6) as

Rt =
RT

i0F (αa + αc)
(10–9)
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The local charge-transfer resistance for Tafel kinetics can be expressed in terms of

parameters used in equation (10–7) as

Rt =
RT

ī(η)Fαc

(10–10)

For linear kinetics, Rt was independent of radial position, but, under Tafel kinetics,

as shown in equation (10–10), Rt depended on radial position. From a mathematical

perspective, the principle difference between the linear and Tafel cases was that J and

Rt were held constant for the linear polarization; whereas, for the Tafel kinetics, J and

Rt were functions of radial position determined by solution of the nonlinear steady-state

problem.

The relationship between the parameter J and the charge-transfer and Ohmic

resistances can be established using the high-frequency limit for the Ohmic resistance to a

disk electrode obtained by Newman, [94] i.e.

Re =
πr0

4κ
(10–11)

where Re has units of Ωcm2. The parameter J can therefore be expressed in terms of the

Ohmic resistance Re and charge transfer resistance Rt as

J =
4

π

Re

Rt

(10–12)

Large values of J are seen when the Ohmic resistance is much larger than the charge-transfer

resistance, and small values of J are seen when the charge-transfer resistance dominates.

The equations were solved under assumption of a uniform capacitance C0 using the

collocation package PDE2D developed by Sewell. [90] Calculations were performed for

differing domain sizes, and the results reported here were obtained by extrapolation to an

infinite domain size.
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Figure 10-1. Schematic representation of an impedance distribution for a disk electrode
where ze represents the local Ohmic impedance, C0 represents the interfacial
capacitance, and Rt represents the charge-transfer resistance.

10.2 Results and Discussion

The nature of the metal-electrolyte interface of an electrode exhibiting a Faradaic

reaction can be understood in the schematic representation given as Figure 10-1. Under

linear kinetics, both C0 and Rt were independent of radial position; whereas, for Tafel

kinetics, 1/Rt varied with radial position in accordance with the current distribution

presented in Figure 7-6.

The calculated results for global, local, local interfacial, and local Ohmic impedances

are presented in this section. A list of symbols for local and global impedances used is

provided in Table 8-1.

10.2.1 Global Impedance

The calculated global impedance response is presented in Figure 10-2(a) for J = 0.1

and in Figure 10-2(b) for J = 1.0 with dimensionless frequency K as a parameter. The real

and imaginary components are presented in dimensionless form to eliminate the influence

of electrolyte conductivity κ and disk radius r0. The impedance results for linear kinetics

at J = 0.1 match closely with the impedance response

Zκ

πr0

=
1

4
+

1

π

1/J

1 + jK/J
(10–13)
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(a)

(b)

Figure 10-2. Calculated Nyquist representation of the impedance response for a disk
electrode under assumptions of Tafel and linear kinetics. Open symbols
represent the result calculated by Newman. [42] a) J = 0.1; and b) J = 1.0.
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(a) (b)

Figure 10-3. Calculated representation of the impedance response for a disk electrode
under assumptions of Tafel and linear kinetics and with with J as a
parameter. Open symbols represent the result calculated by Newman. [42] a)
real part; and b) imaginary part.

derived in the absence of current distribution effects. The impedance response for Tafel

kinetics differs because the charge-transfer resistance is a function of radial position.

The comparison between the impedance for linear kinetics and equation (10–13) for

J = 1 shows the distortion of the high-frequency impedance response associated with the

influence of current and potential distributions.

The calculated results for linear kinetics in Figure 10-2 show good agreement to

the corresponding numerical values obtained by Newman. [42] The comparison with

Newman’s calculations is seen more clearly in the representation of the real and imaginary

parts of the impedance response shown in Figures 10-3(a) and 10-3(b), respectively. At

low frequencies, values for the real part of the impedance differ for impedance calculated

under the assumptions of linear and Tafel kinetics; whereas, the values of the imaginary

impedance calculated under the assumptions of linear and Tafel kinetics are superposed

for all frequencies. The slope of the lines presented in Figure 10-3(b) are equal to 1 at low

frequencies but differ from −1 at high frequencies. As stated by Orazem et al. [78], the

slope of these lines can be related to the exponent α used in models for CPE behavior.
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Figure 10-4. The calculated derivative of log(Zjκ/r0π) with respect to log(K) (taken from
Figure 10-3(b)) as a function of K with J as a parameter.

The calculated derivative of log(Zjκ/r0π) with respect to log(K) is presented in

Figure 10-4 as a function of K with J as a parameter. At large frequencies, the quantity

d log(Zjκ/r0π)/d log(K) can be considered to be equal to -α where α is the exponent

used for models of CPE behavior. The characteristic frequency at which the value of

slope deviates from unity increases with the dimensionless parameter J . The transition

frequencies correspond to the inverse of the RtC0 time constant and overlap when given as

a function of

K

J
=

ωC0RT

ı̄αcF
= ωRtC0 (10–14)

The functional dependence of d log(Zjκ/r0π)/d log(K) was independent of assumption of

either linear or Tafel kinetics.

When d log(Zjκ/r0π)/d log(K) was plotted as a function of log(K/J), given in Figure

10-5, all the curves for K < 1 are superimposed. The characteristic frequency K/J=1 is

associated with the RtC0 time constant for the Faradaic reaction and the characteristic

frequency for the effect of the current and potential distributions at K=1 is associated

with the capacitance and the Ohmic resistance.
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Figure 10-5. The calculated derivative of log(Zjκ/r0π) with respect to log(K/J) (taken
from Figure 10-3(b)) as a function of K with J as a parameter.

10.2.2 Local Interfacial Impedance

The calculated local interfacial impedance for Tafel kinetics with J = 1 is presented in

Figure 10-6 as a function of frequency with normalized radial position as a parameter. At

low frequencies, the local interfacial impedance, for both real and imaginary, is smallest at

the periphery and largest at the center of the disk. The variation at low frequencies is less

distinguishable for smaller values of J . All the curves in Figures 10-6(a) and 10-6(b) are

superposed at frequencies K > 1.

For the linear kinetics calculation, where J is independent of radial position, the

scaled real part of the local interfacial impedance follows

z0,rκ

r0π
=

J

π(J2 + K2)
(10–15)

and the imaginary part of the local interfacial impedance follows

z0,jκ

r0π
=

−K

π(J2 + K2)
(10–16)

Plots similar to Figure 10-7 were obtained for the local interfacial impedance calculated

under assumption of linear kinetics, but for linear kinetics the local interfacial impedance

was independent of radial position.
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(a) (b)

Figure 10-6. Calculated representation of the local interfacial impedance response for a
disk electrode as a function of dimensionless frequency K under assumptions
of Tafel kinetics with J = 1.0: a) real part; and b) imaginary part.

The local interfacial impedance for Tafel kinetics with J = 1 is presented in

Figure 10-7 as a function of normalized radial position with dimensionless frequency

as a parameter. Under the Tafel kinetics assumption that J is a function of radial

position, as shown in Figure 10-7, the real and imaginary parts of the local interfacial

impedance change around the values given in equations (10–15) and (10–16) and have

minimum values at the periphery of the disk. The dependence of both real and imaginary

of the local interfacial impedance is more evident at low frequency than high frequency.

10.2.3 Local Impedance

The calculated local impedance for Tafel and linear kinetics with J = 1 is presented

in Figure 10-8 in Nyquist format with radial position as a parameter. In both cases, the

impedance is largest at the center of the disk and smallest at the periphery, reflecting

the greater accessibility of the periphery of the disk electrode. Similar results are also

obtained for J = 0.1, but the differences between radial positions are much less significant.

Inductive loops are observed at high frequencies and these are seen in both Tafel and

linear calculations for J = 0.1 and J = 1.0.
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(a) (b)

Figure 10-7. Calculated representation of the local interfacial impedance response for a
disk electrode as a function of radial position under assumptions of Tafel
kinetics with J = 1.0: a) real part; and b) imaginary part.

The real and imaginary parts of the local impedance for Tafel kinetics with J = 1.0

are presented in Figures 10-9(a) and 10-9(b), respectively. The real part of the local

impedance presented in Figure 10-9(a) reaches asymptotic values at K → 0 and K → 100.

The absolute value of the imaginary part presented in Figure 10-9(b) shows the change

of sign associated with the inductive features seen in Figure 10-8(a). The changes in sign

occur at frequencies below K=100, indicating that the inductive loop cannot be attributed

to calculation artifacts.

10.2.4 Local Ohmic Impedance

The local Ohmic impedance ze accounts for the difference between the local interfacial

and the local impedances. The calculated Ohmic impedance for Tafel kinetics with J = 1.0

are presented in Figure 10-10 in Nyquist format with normalized radial position as a

parameter. The results obtained here for the local Ohmic impedance are very similar

to those reported for the ideally polarized electrode and for the blocking electrode with

local CPE behavior. At the periphery of the electrode, two time constants (inductive
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(a)

(b)

Figure 10-8. Calculated representation of the local impedance response for a disk electrode
as a function of dimensionless frequency K under assumptions of Tafel
kinetics with J = 1.0. a) Tafel kinetics; and b) linear kinetics.

132



(a) (b)

Figure 10-9. Calculated representation of the local impedance response for a disk electrode
as a function of dimensionless frequency K with J = 1.0. a) real part; and b)
imaginary part.

Figure 10-10. Calculated representation of the local Ohmic impedance response for a disk
electrode as a function of dimensionless frequency K under assumptions of
Tafel kinetics with J = 1.0
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(a) (b)

Figure 10-11. Calculated representation of the local Ohmic impedance response for a disk
electrode as a function of dimensionless frequency K under assumptions of
Tafel kinetics with J = 1.0. a) real part; and b) imaginary part.

and capacitive loops) are seen; whereas, at the electrode center only an inductive loop is

evident. These loops are distributed around the asymptotic real value of 1/4.

The calculated values for real and imaginary parts of the local Ohmic impedance are

presented in Figures 10-11(a) and 10-11(b), respectively, as a function of frequency with

radial position as a parameter. The local Ohmic impedance has only real values at K → 0

and K → ∞, but in the frequency range 10−2 < K < 100, ze has both real and imaginary

components. This range of dimensionless frequency was not dependent on the value of J .

The local Ohmic impedance obtained for linear kinetics and for different J were similar to

the results reported here.

The representation of an Ohmic impedance as a complex number represents a

departure from standard practice. As shown in previous sections, the local impedance has

inductive features that are not seen in the local interfacial impedance. These inductive

features are implicit in the local Ohmic impedance. As similar results were obtained for

ideally polarized and blocking electrodes with local CPE behavior, the result cannot be
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(a) (b)

Figure 10-12. Calculated global Ohmic impedance response for a disk electrode as a
function of dimensionless frequency for linear kinetics with J as a
parameter. a) real part; and b) imaginary part.

attributed to Faradaic reactions and can be attributed only to the Ohmic contribution of

the electrolyte.

10.2.5 Global Interfacial and Global Ohmic Impedance

The global interfacial impedance for linear kinetics is independent of radial position

and is given by

Z0 =
Rt

1 + jωC0Rt

(10–17)

The global Ohmic impedance Ze is obtained from the global impedance Z by the

expression

Ze = Z − Z0 (10–18)

The real part and imaginary parts of Ze, obtained for linear kinetics are given in Figures

10-12(a) and 10-12(b), respectively, as functions of dimensionless frequency K with J as a

parameter. In the low frequency range Zeκ/r0π is a pure resistance with numerical values

that decreases with increasing J . All curves superimpose in the high frequency range

toward asymptotic value of 1/4. The imaginary part of the global Ohmic impedance shows
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a nonzero value in the frequency range that is influenced by the current and potential

distributions.

At high and low frequency limits, the global Ohmic impedance defined in the present

work is consistent with the accepted understanding of the Ohmic resistance to current

flow to a disk electrode. The global Ohmic impedance approaches, at high frequencies,

the primary resistance for a disk electrode (equation(10–11)) described by Newman. [94]

This result was obtained as well for ideally polarized (Chapter 8) and blocking electrodes

with local CPE behavior (Chapter 9). The complex nature of both global and local Ohmic

impedances is seen at intermediate frequencies. This complex value is the origin of the

inductive features seen in the local impedance and the origin of the CPE-like behavior

found in the global impedance.

10.3 Interpretation of Impedance Results

Nisancioglu [43] estimated the error caused by frequency dispersion in evaluating

physical properties such as charge transfer resistance and capacitance. A parallel analysis

is presented here in terms of the commonly used CPE models.

10.3.1 Determination of Charge Transfer Resistance

The impedance response of a disk electrode in the absence of current distribution

effects can be expressed by equation (10–13). The corresponding charge-transfer resistance

evident at low frequencies is given by

Rtκ

πr0

=
1

πJ
(10–19)

The effective global charge-transfer resistance can be estimated from the calculated

impedance according to

Reffκ

πr0

=
Zrκ

πJ

∣∣∣∣
K=0

− 1

4
(10–20)

The value of Reff/Rt is presented in Figure 10-13 as a function of J under the assumption

of linear kinetics. The results are full agreement with those presented in different format

by Nisancioglu [43]. The influence of the frequency dispersion is greatest when J is large,
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Figure 10-13. The apparent value of Reff/Rt obtained from the calculated impedance
response at low frequencies as a function of J .

i.e. when the Ohmic resistance dominates over the charge transfer resistance. At J = 100,

an error of 75 percent is seen in the estimation of the charge-transfer resistance.

10.3.2 Determination of Capacitance

The evaluation of interfacial capacitance is perhaps better done in terms of the CPE.

The values of α and 1-α obtained from Figure 10-4 are presented in Figure 10-14 as

functions of J . The value of α ranges from 0.98 for J = 0.01 to 0.87 for J = 10, which

demonstrates that nonuniform current and potential distributions on a disk electrode can

yield high-frequency CPE-like behavior. As J becomes small, i.e. as the charge-transfer

resistance dominates over the Ohmic resistance, α tends toward unity. It is significant

that the calculated value of α shown in Figure 10-14 corresponds to a range of α that is

frequently observed in experiments.

As shown in equation (9–9), the effective CPE coefficient Qeff for electrochemical

systems follows

Qeff = sin
(απ

2

) −1

Zj(ω)ωα
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Figure 10-14. The apparent value of 1-α obtained from the calculated impedance response
at high frequencies as a function of J .

The value of effective CPE coefficient, scaled by the interfacial capacitance, is presented

in Figure 10-15 as a function of J . The frequencies reported in Figure 10-15 are limited

to those that are one decade larger than the characteristic frequency because, in this

frequency range, the value of α is well-defined. Figure 10-15 was developed taking

into account the observation, seen in Figure 10-4, that the value of α is dependent on

the frequency at which the slope is evaluated. Thus, the value of Qeff reported is that

corresponding to the value of α at a given frequency K.

While the dimensions are not exactly that of a capacitance, the CPE coefficient

is often assumed to have approximately the same numerical value as the interfacial

capacitance. The value of Qeff presented in Figure 10-15 is a function of frequency. At

high-frequencies, where frequency dispersion plays a significant role, the effective CPE

coefficient Qeff provides an inaccurate estimate for the interfacial capacitance, even

for small values of J where α is close to unity. The errors in estimating the interfacial

capacitance are on the order of 500 percent at K = 100.
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Figure 10-15. Effective CPE coefficient scaled by the interfacial capacitance as a function
of J .

A number of researchers have explored the relationship between CPE parameters and

the interfacial capacitance. Hsu and Mansfeld [95] proposed

Ceff = Q(ωmax)
α−1 = Q

(
κK

C0r0

)α−1

max

(10–21)

where ωmax (or Kmax) is the characteristic frequency at which the imaginary part of the

impedance reaches its maximum value and Ceff is the estimated interfacial capacitance.

Equation (10–21) is tested against the input value of interfacial capacitance in Figure

10-16 where C0 is the known interfacial capacitance which was independent of radial

position. As described above, Figure 10-16 was developed using local frequency-dependent

values of α and Qeff . The frequencies reported in Figure 10-16 are limited to those that

are one decade larger than the characteristic frequency ωmax. While equation (10–21)

represents an improvement as compared to direct use of the CPE coefficient Qeff , the

errors in estimating the interfacial capacitance depend on both J and K and range

between −70 to +100 percent.
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Figure 10-16. Effective capacitance calculated from equation (10–21) and normalized by
the input interfacial capacitance for a disk electrode as a function of
dimensionless frequency K with J as a parameter. (See Hsu and Mansfeld
[95])

Brug et al. [30] developed a relationship for a blocking electrode between the

interfacial capacitance and the CPE coefficient Q as

Ceff =
[
QR(1−α)

e

]1/α
(10–22)

A similar relationship between the interfacial capacitance and the CPE coefficient Q was

developed for a Faradaic system as

Ceff =

[
Q

(
1

Re

+
1

Rt

)(α−1)
]1/α

=

[
Q

(
1

Re

(
1 +

πJ

4

))(α−1)
]1/α

(10–23)

Equations (10–22) and (10–23) are compared to the expected value of interfacial

capacitance in Figures 10-17(a) and 10-17(b), respectively. Figures 10-17(a) and 10-17(b)

were developed using local frequency-dependent values of α and Qeff over the same

frequency range as is reported in Figures 10-15 and 10-16. The frequencies reported

in Figure 10-17 are limited to those that are one decade larger than the characteristic

frequency ωmax. The error in equation (10–22) is a function of both frequency K and
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(a) (b)

Figure 10-17. Normalized effective capacitance calculated from relationships presented by
Brug et al. [30] for a disk electrode as a function of dimensionless frequency
K with J as a parameter. a) with correction for Ohmic resistance Re

(equation (10–22)); and b) with correction for both Ohmic resistance Re and
charge-transfer resistance Rt (equation (10–23)).

J . The dependence on J is reduced significantly when both the Ohmic resistance Re

and charge-transfer resistance Rt are taken into account, and the errors in estimating

interfacial capacitance are less than 20 percent. Of the relationships tested, equation

(10–23) provides the best means for estimating interfacial capacitance when frequency

dispersion is significant. The capacitance analysis presented here shows that, for

determining interfacial capacitance, the influence of current and potential distributions on

the impedance response cannot be neglected, even if the apparent CPE exponent α has

values close to unity.
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CHAPTER 11
CONCLUSION AND RECOMMENDATION

This dissertation covers two research topics that are important to corrosion of metal.

The conclusion associated with the delamination model is presented in Section 11.1, and

that associated with the impedance calculation is presented in Section 11.2.

11.1 Mathematical Models for Cathodic Delamination of Coated Metal

A one-dimensional, transient mathematical model was developed that simulates the

delamination of polymeric coating from a zinc surface. The model included simultaneously

multiple electrochemical reactions, homogeneous reactions, and formation of corrosion

products. The calculation results are in agreement with the experimental observations

reported by Stratmann et al. [9–11, 14–16] for coated steel and coated zinc. The

consistency with experimental observations supports the hypotheses proposed by Allahar

that the porosity and polarization kinetics can be treated as functions of pH.

The simulated results obtained using the equilibrium ε-pH relationship demonstrate

that the overall delamination process is preliminary governed by the transport of the

cations from the defect to the front region. The rate of the delamination depends on the

mobility and the concentration of the cations. The anions, on the other hand, have no

significant influence on the delamination rate.

The computational results obtained using a non-equilibrium ε-pH relationship

indicate that, when the bond-breaking reactions take place at a sufficiently slow rate,

the potential front and the porosity front become distinguishable. The movement of the

potential front follows the change of pH along the metal-coating interface; whereas, the

movement of the porosity front is limited by the bond-breaking reactions. The kinetic

analysis of the non-equilibrium results also shows that the delamination mechanism

shifts from a mass-controlled mechanism to a mixed controlled mechanism when the

bond-braking reactions are sufficiently slow.
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The mathematical model presented here provides a framework for advanced models

in which complex parameters, such as coating property and surface treatments, can be

included. The expansion of the one-dimensional model to a two-dimensional delaminated

zone is recommended in the future. The influence of the expansion on delamination rate or

delamination kinetics will be interesting.

A coupling of a two-dimensional defect with the delaminated zone is also recommended

for a more sophisticated model. This combination will relax the boundary conditions at

the location shared by the defect and the delaminated zone. The coupling will also

account explicitly for the galvanic couple formed between anodic and cathodic sites. The

development of the jointed model might be difficult because of the geometry of the system

and the complex phenomena in the domain. A commercial program, such as COMSOL

Multiphysics, is recommended for the development.

11.2 Influence of Geometry-Induced Current And Potential Distribution of
Disk Electrodes on Impedance Response

The results presented from Chapters 8 to 10 have shown that the geometry-induced

current and potential distributions induce a high-frequency dispersion that distorts the

impedance response of a disk electrode. In all electrochemical systems under study, the

local interfacial impedance exhibits the expected ideal behavior through all frequencies.

The local impedance only shows ideal behavior at low frequency but non-ideal behavior

at high frequency. The inductive loops observed in local impedance is influenced by local

Ohmic impedance, which has imaginary component about the dimensionless frequency

K=1. The complex value of the local Ohmic impedance is the origin of the inductive

features in the local impedance and the origin of the CPE-like behavior in the global

impedance.

The calculated results presented in Chapters 8 to 10 are compared with literature

and experiments. For the ideally blocking electrode and electrode exhibiting Faradaic

reactions, the calculated global impedance is in excellent agreement with those obtained
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by Newman. The high-frequency dispersion seen in the global impedance has an

appearance of a constant-phase element (CPE), but it can be considered to be only a

quasi-CPE because the CPE exponent α is not independent of frequency. The impedance

experiments performed on a glassy carbon disk and stainless steel disk electrode exhibit

good consistency with the calculation results for a blocking electrode subject to coupled

2-D and 3-D distributions. The characteristic transition frequency at which the geometry

plays a role is within experimental range. This geometry effect, however, could possibly be

avoided by changing the size of the electrode or the concentration of the electrolyte.

The work explores the role of the current and potential distributions associated with

a disk electrode on both local and global impedance. This is also the first work to express

the geometric effect on impedance response in terms of CPE. The calculated results

illustrate that the use of local impedance spectroscopy is able to distinguish CPE behavior

that has an origin with a 3-D distribution from one that arises from a 2-D distribution.

The electrochemical systems investigated so far did not consider the influence of

convective diffusion that enhances mass transfer in electrochemical systems. It will be

interesting to explore the effect of current and potential distributions on the impedance

response of a disk electrode in the presence of mass-transfer effects. Moreover, multiple

heterogeneous reactions can be included in the calculation in the future. Surface coverage

might need to be incorporated when multiple electrochemical reactions take place

simultaneously. It will be interesting to investigate the relation between global and

local impedances when the surface coverage plays a role in the calculation.
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APPENDIX A
PROGRAM LISTING FOR THE CATHODIC DELAMINATION

This appendix presents the program listing for the cathodic delamination model. The

program was developed using Microsoft Visual Fortran, Version 9.0 with double precision

accuracy.

A.1 Main Program Listing
implicit double precision(a-h,o-z)

implicit integer(i-n)

common/ca/height,F,frt,vapp,tbetazn,excurzn,thick_gel,thickness,&

& total_time,t_step,z(9),diff(9),fzd(9),curolim,h,hh(2001),mm,rate_k

common/cb/a(11,11),b(11,11),c(11,2001),d(11,23),g(11),x(11,11),y(11,11),n,nj

common/cc/ii,conc(9,2001),phi(2001),por(2001),d_phi(2001),&

& dd_phi(2001),diff_phi(2001),d_c(9,2001),dd_c(9,2001),&

& d_flux(9,2001),flux(9,2001),curzn(2001),curo(2001),&

& c_aver(9,2001),g_eq(9,2001),c_ini(9,2001),d_aa(2001)

common/cd/del_len,fro_len,sem_len,tac_len,c_ohdel,c_nadel,c_cldel,&

& c_ohfro,c_nafro,c_clfro,c_ohsem,c_nasem,c_clsem,c_ohint,&

& c_naint,c_clint,jdel,jfro,jsem,b1_pro,b2_pro,b3_pro,&

& b4_pro,b5_pro,b6_pro,b7_pro,b1_sur,b2_sur,b3_sur,b4_sur,&

& b5_sur,b6_sur,b7_sur,b1_blo,b2_blo,b3_blo,b4_blo,b5_blo,&

& b6_blo,b7_blo,b8_blo,b1_poi,b2_poi,b3_poi,b4_poi,b5_poi,&

& b6_poi,b7_poi,ph(2001),por_ini(2001),aa(2001),sur_cov(2001),&

& bb(2001),block(2001),poi(2001),b8,b9,b10,b11

common/ce/flux_mig(9,2001),flux_dif(9,2001),curnet(2001),d_por(2001),&

& d_v(2001),total_current

!Read input data and discretize delamination zone

call input

!Initialize the concentration distributions

call initial(j)

call setup(j)

!Time-stepping routine

call cal_conc(j)

stop

end

A.2 Subroutine Program Listing

! subroutine that reads input data from input file

subroutine input

implicit double precision(a-h,o-z)

implicit integer(i-n)

common/ca/height,F,frt,vapp,tbetazn,excurzn,thick_gel,thickness,&
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& total_time,t_step,rate_k,z_oh,z_na,z_cl,z_zn,z_h,z_znoh,&

& z_hzno2,z_zno2,z_znoh2,diff_oh,diff_na,diff_cl,diff_zn,&

& diff_h,diff_znoh,diff_hzno2,diff_zno2,diff_znoh2,z(9),&

& diff(9),fzd(9),curolim,h,hh(2001),mm

common/cb/a(11,11),b(11,11),c(11,2001),d(11,23),g(11),x(11,11),&

& y(11,11),n,nj

character name*40

open(unit=101,file="input_cd_2.txt",status=’unknown’)

rewind 101

read(101,110)name,n ! # of variables

read(101,110)name,nj ! # of mesh points

read(101,120)name,height ! length cm

read(101,130)name,F ! Faraday Constant

read(101,130)name,frt ! F/(RT) J/mole

read(101,120)name,vapp ! metal potential V

read(101,120)name,tbetazn ! Tafel slope of Zn dissolution

read(101,120)name,excurzn ! exchange current density of Zn

read(101,120)name,thick_gel ! gel thickness

read(101,120)name,thickness ! coating thickness

read(101,120)name,total_time ! total time

read(101,120)name,t_step ! time step

read(101,120)name,rate_k ! rate constant of forming Zn(Oh)2

read(101,120)name,z_oh ! charge number for OH-

read(101,120)name,z_na ! charge number for Na+

read(101,120)name,z_cl ! charge number for Cl-

read(101,120)name,z_zn ! charge number for Zn2+

read(101,120)name,z_h ! charge number for H+

read(101,120)name,z_znoh ! charge number for ZnOH+

read(101,120)name,z_hzno2 ! charge number for HZnO2-

read(101,120)name,z_zno2 ! charge number for ZnO22-

read(101,120)name,z_znoh2 ! charge number for Zn(OH)2

read(101,120)name,diff_oh ! charge number for OH-

read(101,120)name,diff_na ! charge number for Na+

read(101,120)name,diff_cl ! charge number for Cl-

read(101,120)name,diff_zn ! charge number for Zn2+

read(101,120)name,diff_h ! charge number for H+

read(101,120)name,diff_znoh ! charge number for ZnOH+

read(101,120)name,diff_hzno2 ! charge number for HZnO2-

read(101,120)name,diff_zno2 ! charge number for ZnO22-

read(101,120)name,diff_znoh2 ! charge number for Zn(OH)2

110 format(a20,i6)

120 format(a20,f12.10)
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130 format(a20,f16.6)

! Limiting current density of oxygen reduction in a

! metal-electrolyte medium

curolim=4*F*(1.9d-5)*(1.26d-6)

! Calculate grid size

h=height/(nj-1)

! Calculate number of time loops

mm=total_time/t_step

do i= 1,n

fzd(i)= frt*z(i)*diff(i)

enddo

do j=1,nj

hh(j+1)=hh(j)+h

enddo

return

end

! subroutine that calculates initial concentration and potential

! distributions

subroutine initial(j)

implicit double precision(a-h,o-z)

implicit integer(i-n)

common/cb/a(11,11),b(11,11),c(11,2001),d(11,23),g(11),x(11,11),&

& y(11,11),n,nj

common/cd/del_len,fro_len,sem_len,tac_len,c_ohdel,c_nadel,c_cldel,&

& c_ohfro,c_nafro,c_clfro,c_ohsem,c_nasem,c_clsem,c_ohint,&

& c_naint,c_clint,jdel,jfro,jsem,b1_pro,b2_pro,b3_pro,&

& b4_pro,b5_pro,b6_pro,b7_pro,b1_sur,b2_sur,b3_sur,b4_sur,&

& b5_sur,b6_sur,b7_sur,b1_blo,b2_blo,b3_blo,b4_blo,b5_blo,&

& b6_blo,b7_blo,b8_blo,b1_poi,b2_poi,b3_poi,b4_poi,b5_poi,&

& b6_poi,b7_poi,ph(2001),por_ini(2001),aa(2001),sur_cov(2001),&

& bb(2001),block(2001),poi(2001),b8,b9,b10,b11

character name*40

open(unit=20,file="initial_cd_0.01M.txt",status=’unknown’)

rewind 20

open(unit=35,file=’c_ini.text’)

open(unit=45,file=’parameters_ini.text’)

read(20,210)name,del_len ! length delaminated region

read(20,210)name,fro_len ! length front region

read(20,210)name,sem_len ! length semi-intact region
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read(20,210)name,tac_len ! length fully-intact region

read(20,210)name,c_ohdel ! c_OH in the delaminated zone

read(20,210)name,c_nadel ! c_Na in the delaminated zone

read(20,210)name,c_cldel ! c_Cl in the delaminated zone

read(20,210)name,c_ohfro ! c_OH in the front region

read(20,210)name,c_nafro ! c_Na in the front region

read(20,210)name,c_clfro ! c_Cl in the front region

read(20,210)name,c_ohsem ! c_OH in the sem-intact region

read(20,210)name,c_nasem ! c_Na in the sem-intact region

read(20,210)name,c_clsem ! c_OH in the sem-intact region

read(20,210)name,c_ohint ! c_OH in the fully-intact region

read(20,210)name,c_naint ! c_Na in the fully-intact region

read(20,210)name,c_clint ! c_Cl in the fully-intact region

read(20,210)name,b1_pro ! parameter for porosity

read(20,210)name,b2_pro ! parameter for porosity

read(20,210)name,b3_pro ! parameter for porosity

read(20,210)name,b4_pro ! parameter for porosity

read(20,210)name,b1_blo ! parameter for blocking factor

read(20,210)name,b2_blo ! parameter for blocking factor

read(20,210)name,b3_blo ! parameter for blocking factor

read(20,210)name,b4_blo ! parameter for blocking factor

read(20,210)name,b5_blo ! parameter for blocking factor

read(20,210)name,b6_blo ! parameter for blocking factor

read(20,210)name,b7_blo ! parameter for blocking factor

read(20,210)name,b1_poi ! parameter for poisoning factor

read(20,210)name,b2_poi ! parameter for poisoning factor

read(20,210)name,b3_poi ! parameter for poisoning factor

read(20,210)name,b4_poi ! parameter for poisoning factor

210 format(a20,f16.6)

411 format(1x,i4,1x,e13.5,5e13.5)

412 format(1x,i4,e13.5,1x,4e13.5)

413 format(1x,a4,6x,a5,7x,a7,3(6x,a7),8x,a3)

414 format(1x,a4,6x,a5,7x,a7,4x,a10,3x,a9,5x,a7)

jdel=(nj-1)/4 ! set length in the delaminated region

jfro=(nj-1)*5/32 ! set length in the front

jsem=(nj-1)*3/16 ! set length points in the semi-intact region

cc=1/b4_blo

b8= exp(b2_pro*(17-b3_pro))

b9= b2_pro/2.3026d0

b10=exp(b5_pro*(17-b6_pro))

b11=b5_pro/2.3026d0
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! set nodal points in the domain

do j=1,nj

if(j.le.jdel) call cini_del(j)

if((j.gt.jdel).and.(j.le.jfro)) call cini_fro(j)

if((j.gt.jfro).and.(j.le.jsem)) call cini_sem(j)

if(j.gt.jsem) call cini_int(j)

enddo

do j=1,nj

! Calculate assumed initial pH distribution

ph(j)= -log10(1.0d-17/c_ini(1,j))

! Calculate assumed initial porosity distribution

por_ini(j)=b1_pro/(1+exp(b2_pro*(ph(j)-b3_pro)))+&

& b4_pro/(1+exp(b5_pro*(ph(j)-b6_pro)))+b7_pro

aa(j)= por_ini(j)**1.5

! Calculate assumed initial blocking factor distribution

bb(j)=b1_blo*exp(-b2_blo*(ph(j)-b3_blo))

block(j)=((bb(j)/(1+bb(j)))+b7_blo)*&

& ((1/(cc+exp(-b5_blo*(ph(j)-b6_blo))))+b8_blo)

! Calculate assumed initial poisoning factor distribution

poi(j)=b1_poi/(1+exp(b2_poi*(ph(j)-b3_poi)))+&

& b4_poi/(1+exp(b5_poi*(ph(j)-b6_poi)))+b7_poi

enddo

return

end

subroutine cini_del(j)

implicit double precision(a-h,o-z)

implicit integer(i-n)

common/cc/ii,conc(9,2001),phi(2001),por(2001),d_phi(2001),&

& dd_phi(2001),diff_phi(2001),d_c(9,2001),dd_c(9,2001),&

& d_flux(9,2001),flux(9,2001),curzn(2001),curo(2001),&

& c_aver(9,2001),g_eq(9,2001),c_ini(9,2001),d_aa(2001)

common/cd/del_len,fro_len,sem_len,tac_len,c_ohdel,c_nadel,c_cldel,&

& c_ohfro,c_nafro,c_clfro,c_ohsem,c_nasem,c_clsem,c_ohint,&

& c_naint,c_clint,jdel,jfro,jsem,b1_pro,b2_pro,b3_pro,&

& b4_pro,b5_pro,b6_pro,b7_pro,b1_sur,b2_sur,b3_sur,b4_sur,&

& b5_sur,b6_sur,b7_sur,b1_blo,b2_blo,b3_blo,b4_blo,b5_blo,&

& b6_blo,b7_blo,b8_blo,b1_poi,b2_poi,b3_poi,b4_poi,b5_poi,&

& b6_poi,b7_poi,ph(2001),por_ini(2001),aa(2001),sur_cov(2001),&

& bb(2001),block(2001),poi(2001),b8,b9,b10,b11

! OH-

c_ini(1,j)= c_ohdel+(c_ohfro-c_ohdel)*(j-1)*h/del_len

! Na+

c_ini(2,j)= c_nadel+(c_nafro-c_nadel)*(j-1)*h/del_len
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! Cl-

c_ini(3,j)= c_cldel+(c_clfro-c_cldel)*(j-1)*h/del_len

! Zn2+

c_ini(4,j)=0.5*(c_ini(1,j)-c_ini(2,j)+c_ini(3,j))

! H+

c_ini(5,j)= 0.0d0

! ZnOH+

c_ini(6,j)= 0.0d0

! HZnO2-

c_ini(7,j)= 0.0d0

! ZnO22-

c_ini(8,j)= 0.0d0

! Zn(OH)2

c_ini(9,j)= 0.0d0

return

end

subroutine cini_fro(j)

implicit double precision(a-h,o-z)

implicit integer(i-n)

common/cc/ii,conc(9,2001),phi(2001),por(2001),d_phi(2001),&

& dd_phi(2001),diff_phi(2001),d_c(9,2001),dd_c(9,2001),&

& d_flux(9,2001),flux(9,2001),curzn(2001),curo(2001),&

& c_aver(9,2001),g_eq(9,2001),c_ini(9,2001),d_aa(2001)

common/cd/del_len,fro_len,sem_len,tac_len,c_ohdel,c_nadel,c_cldel,&

& c_ohfro,c_nafro,c_clfro,c_ohsem,c_nasem,c_clsem,c_ohint,&

& c_naint,c_clint,jdel,jfro,jsem,b1_pro,b2_pro,b3_pro,&

& b4_pro,b5_pro,b6_pro,b7_pro,b1_sur,b2_sur,b3_sur,b4_sur,&

& b5_sur,b6_sur,b7_sur,b1_blo,b2_blo,b3_blo,b4_blo,b5_blo,&

& b6_blo,b7_blo,b8_blo,b1_poi,b2_poi,b3_poi,b4_poi,b5_poi,&

& b6_poi,b7_poi,ph(2001),por_ini(2001),aa(2001),sur_cov(2001),&

& bb(2001),block(2001),poi(2001),b8,b9,b10,b11

! OH-

c_ini(1,j)= c_ohfro*exp((hh(j)-del_len)*log(c_ohsem/c_ohfro)/fro_len)

! Na+

c_ini(2,j)= c_nafro*exp((hh(j)-del_len)*log(c_nasem/c_nafro)/fro_len)

! Cl-

c_ini(3,j)= c_clfro*exp((hh(j)-del_len)*log(c_clsem/c_clfro)/fro_len)

! Zn2+

c_ini(4,j)=0.5*(c_ini(1,j)-c_ini(2,j)+c_ini(3,j))

! H+

c_ini(5,j)= 0.0d0

! ZnOH+

c_ini(6,j)= 0.0d0
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! HZnO2-

c_ini(7,j)= 0.0d0

! ZnO22-

c_ini(8,j)= 0.0d0

! Zn(OH)2

c_ini(9,j)= 0.0d0

return

end

subroutine cini_sem(j)

implicit double precision(a-h,o-z)

implicit integer(i-n)

common/cc/ii,conc(9,2001),phi(2001),por(2001),d_phi(2001),&

& dd_phi(2001),diff_phi(2001),d_c(9,2001),dd_c(9,2001),&

& d_flux(9,2001),flux(9,2001),curzn(2001),curo(2001),&

& c_aver(9,2001),g_eq(9,2001),c_ini(9,2001),d_aa(2001)

common/cd/del_len,fro_len,sem_len,tac_len,c_ohdel,c_nadel,c_cldel,&

& c_ohfro,c_nafro,c_clfro,c_ohsem,c_nasem,c_clsem,c_ohint,&

& c_naint,c_clint,jdel,jfro,jsem,b1_pro,b2_pro,b3_pro,&

& b4_pro,b5_pro,b6_pro,b7_pro,b1_sur,b2_sur,b3_sur,b4_sur,&

& b5_sur,b6_sur,b7_sur,b1_blo,b2_blo,b3_blo,b4_blo,b5_blo,&

& b6_blo,b7_blo,b8_blo,b1_poi,b2_poi,b3_poi,b4_poi,b5_poi,&

& b6_poi,b7_poi,ph(2001),por_ini(2001),aa(2001),sur_cov(2001),&

& bb(2001),block(2001),poi(2001),b8,b9,b10,b11

! OH-

c_ini(1,j)= c_ohsem*exp((hh(j)-del_len-fro_len)*&

& log(c_ohint/c_ohsem)/sem_len)

! Na+

c_ini(2,j)= c_nasem*exp((hh(j)-del_len-fro_len)*&

& log(c_naint/c_nasem)/sem_len)

! Cl-

c_ini(3,j)= c_clsem*exp((hh(j)-del_len-fro_len)*&

& log(c_clint/c_clsem)/sem_len)

! Zn2+

c_ini(4,j)=0.5*(c_ini(1,j)-c_ini(2,j)+c_ini(3,j))

! H+

c_ini(5,j)= 0.0d0

! ZnOH+

c_ini(6,j)= 0.0d0

! HZnO2-

c_ini(7,j)= 0.0d0

! ZnO22-

c_ini(8,j)= 0.0d0

! Zn(OH)2

c_ini(9,j)= 0.0d0
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return

end

subroutine cini_int(j)

implicit double precision(a-h,o-z)

implicit integer(i-n)

common/cc/ii,conc(9,2001),phi(2001),por(2001),d_phi(2001),&

& dd_phi(2001),diff_phi(2001),d_c(9,2001),dd_c(9,2001),&

& d_flux(9,2001),flux(9,2001),curzn(2001),curo(2001),&

& c_aver(9,2001),g_eq(9,2001),c_ini(9,2001),d_aa(2001)

common/cd/del_len,fro_len,sem_len,tac_len,c_ohdel,c_nadel,c_cldel,&

& c_ohfro,c_nafro,c_clfro,c_ohsem,c_nasem,c_clsem,c_ohint,&

& c_naint,c_clint,jdel,jfro,jsem,b1_pro,b2_pro,b3_pro,&

& b4_pro,b5_pro,b6_pro,b7_pro,b1_sur,b2_sur,b3_sur,b4_sur,&

& b5_sur,b6_sur,b7_sur,b1_blo,b2_blo,b3_blo,b4_blo,b5_blo,&

& b6_blo,b7_blo,b8_blo,b1_poi,b2_poi,b3_poi,b4_poi,b5_poi,&

& b6_poi,b7_poi,ph(2001),por_ini(2001),aa(2001),sur_cov(2001),&

& bb(2001),block(2001),poi(2001),b8,b9,b10,b11

!OH-

c_ini(1,j)= c_ohint

!Na+

c_ini(2,j)= c_naint

!Cl-

c_ini(3,j)= c_clint

!Zn2+

c_ini(4,j)=0.5*(c_ini(1,j)-c_ini(2,j)+c_ini(3,j))

!H+

c_ini(5,j)= 0.0d0

!ZnOH+

c_ini(6,j)= 0.0d0

!HZnO2-

c_ini(7,j)= 0.0d0

!ZnO22-

c_ini(8,j)= 0.0d0

!Zn(OH)2

c_ini(9,j)= 0.0d0

return

end

!subroutine that records initial guesses

subroutine setup(j)

implicit double precision(a-h,o-z)

implicit integer(i-n)

common/cc/ii,conc(9,2001),phi(2001),por(2001),d_phi(2001),&

& dd_phi(2001),diff_phi(2001),d_c(9,2001),dd_c(9,2001),&
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& d_flux(9,2001),flux(9,2001),curzn(2001),curo(2001),&

& c_aver(9,2001),g_eq(9,2001),c_ini(9,2001),d_aa(2001)

common/cd/del_len,fro_len,sem_len,tac_len,c_ohdel,c_nadel,c_cldel,&

& c_ohfro,c_nafro,c_clfro,c_ohsem,c_nasem,c_clsem,c_ohint,&

& c_naint,c_clint,jdel,jfro,jsem,b1_pro,b2_pro,b3_pro,&

& b4_pro,b5_pro,b6_pro,b7_pro,b1_sur,b2_sur,b3_sur,b4_sur,&

& b5_sur,b6_sur,b7_sur,b1_blo,b2_blo,b3_blo,b4_blo,b5_blo,&

& b6_blo,b7_blo,b8_blo,b1_poi,b2_poi,b3_poi,b4_poi,b5_poi,&

& b6_poi,b7_poi,ph(2001),por_ini(2001),aa(2001),sur_cov(2001),&

& bb(2001),block(2001),poi(2001),b8,b9,b10,b11

do j=1,nj

phi(j)=-0.05

conc(1,j)=1.0d-4

conc(2,j)=1.0d-6

conc(3,j)=1.0d-6

conc(4,j)=0.5d-4

conc(5,j)=1.0d-16

conc(6,j)=1.0d-20

conc(7,j)=1.0d-25

conc(8,j)=1.0d-30

conc(9,j)=1.0d-20

por(j)=0.1d0

enddo

return

end

!subroutine for calculating conc. and solution potential

subroutine cal_conc(j)

implicit double precision(a-h,o-z)

implicit integer(i-n)

common/cb/a(11,11),b(11,11),c(11,2001),d(11,23),g(11),x(11,11),&

& y(11,11),n,nj

common/ca/height,F,frt,vapp,tbetazn,excurzn,thick_gel,thickness,&

& total_time,t_step,rate_k,z_oh,z_na,z_cl,z_zn,z_h,z_znoh,&

& z_hzno2,z_zno2,z_znoh2,diff_oh,diff_na,diff_cl,diff_zn,&

& diff_h,diff_znoh,diff_hzno2,diff_zno2,diff_znoh2,z(9),&

& diff(9),fzd(9),curolim,h,hh(2001),mm

common/cc/ii,conc(9,2001),phi(2001),por(2001),d_phi(2001),&

& dd_phi(2001),diff_phi(2001),d_c(9,2001),dd_c(9,2001),&

& d_flux(9,2001),flux(9,2001),curzn(2001),curo(2001),&

& c_aver(9,2001),g_eq(9,2001),c_ini(9,2001),d_aa(2001)

common/cd/del_len,fro_len,sem_len,tac_len,c_ohdel,c_nadel,c_cldel,&

& c_ohfro,c_nafro,c_clfro,c_ohsem,c_nasem,c_clsem,c_ohint,&

& c_naint,c_clint,jdel,jfro,jsem,b1_pro,b2_pro,b3_pro,&
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& b4_pro,b5_pro,b6_pro,b7_pro,b1_sur,b2_sur,b3_sur,b4_sur,&

& b5_sur,b6_sur,b7_sur,b1_blo,b2_blo,b3_blo,b4_blo,b5_blo,&

& b6_blo,b7_blo,b8_blo,b1_poi,b2_poi,b3_poi,b4_poi,b5_poi,&

& b6_poi,b7_poi,ph(2001),por_ini(2001),aa(2001),sur_cov(2001),&

& bb(2001),block(2001),poi(2001),b8,b9,b10,b11

open(unit=102,file=’g1.txt’)

200 format(11(e10.2))

300 format(/,a7,i4)

do ii=1,mm

do i=1,n

do k =1,n

x(i,k)=0.0

y(i,k)=0.0

enddo

enddo

j=0

do l=1,40

if (ii.eq.mm) write(102,300) "jcount=", l

50 j=j+1

do i=1,n

g(i)=0.0d0

do k=1,n

a(i,k)=0.0d0

b(i,k)=0.0d0

d(i,k)=0.0d0

enddo

enddo

if(j.eq.1) call bc_1(j)

if((ii.eq.mm).and.(j.eq.1)) write(102,200) (g(k),k=1,n)

if((j.gt.1).and.(j.lt.nj)) call body(j)

if((ii.eq.mm).and.(j.eq.2)) write(102,200) (g(k),k=1,n)

if((ii.eq.mm).and.(j.eq.(nj-1)/8)) write(102,200) (g(k),k=1,n)

if((ii.eq.mm).and.(j.eq.(nj-1)/4)) write(102,200) (g(k),k=1,n)

if((ii.eq.mm).and.(j.eq.nj-1)) write(102,200) (g(k),k=1,n)

if(j.eq.nj) call bc_2(j)

if((ii.eq.mm).and.(j.eq.nj)) write(102,200) (g(k),k=1,n)

call band(j)

if (j.ne.nj) go to 50

do 100 j=1,nj
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! Set boundaries for values of concentrations and solution

! potential

if (c(1,j).lt.-0.5) c(1,j)=-0.50d0

if (c(1,j).gt.0.5) c(1,j)=0.50d0

if (c(2,j).lt.(-0.999*conc(1,j))) c(2,j)=-0.999*conc(1,j)

if (c(2,j).gt.(1000.0*conc(1,j))) c(2,j)=1000.0*conc(1,j)

if (c(3,j).lt.(-0.999*conc(2,j))) c(3,j)=-0.999*conc(2,j)

if (c(3,j).gt.(1000.0*conc(2,j))) c(3,j)=1000.0*conc(2,j)

if (c(4,j).lt.(-0.999*conc(3,j))) c(4,j)=-0.999*conc(3,j)

if (c(4,j).gt.(1000.0*conc(3,j))) c(4,j)=1000.0*conc(3,j)

if (c(5,j).lt.(-0.999*conc(4,j))) c(5,j)=-0.999*conc(4,j)

if (c(5,j).gt.(1000.0*conc(4,j))) c(5,j)=1000.0*conc(4,j)

if (c(6,j).lt.-0.5) c(6,j)=-0.50d0

if (c(6,j).gt.0.5) c(6,j)=0.50d0

if (c(7,j).lt.(-0.999*conc(5,j))) c(7,j)=-0.999*conc(5,j)

if (c(7,j).gt.(1000.0*conc(5,j))) c(7,j)=1000.0*conc(5,j)

if (c(8,j).lt.(-0.999*conc(6,j))) c(8,j)=-0.999*conc(6,j)

if (c(8,j).gt.(1000.0*conc(6,j))) c(8,j)=1000.0*conc(6,j)

if (c(9,j).lt.(-0.999*conc(7,j))) c(9,j)=-0.999*conc(7,j)

if (c(9,j).gt.(1000.0*conc(7,j))) c(9,j)=1000.0*conc(7,j)

if(c(10,j).lt.(-0.999*conc(8,j))) c(10,j)=-0.999*conc(8,j)

if(c(10,j).gt.(1000.0*conc(8,j))) c(10,j)=1000.0*conc(8,j)

if(c(11,j).lt.(-0.999*conc(9,j))) c(11,j)=-0.999*conc(9,j)

if(c(11,j).gt.(1000.0*conc(9,j))) c(11,j)=1000.0*conc(9,j)

! update new values

phi(j) = phi(j)+c(1,j)

conc(1,j) = conc(1,j)+c(2,j)

conc(2,j) = conc(2,j)+c(3,j)

conc(3,j) = conc(3,j)+c(4,j)

conc(4,j) = conc(4,j)+c(5,j)

por(j) = por(j)+c(6,j)

conc(5,j) = conc(5,j)+c(7,j)

conc(6,j) = conc(6,j)+c(8,j)

conc(7,j) = conc(7,j)+c(9,j)

conc(8,j) = conc(8,j)+c(10,j)

conc(9,j) = conc(9,j)+c(11,j)

100 continue

call cal_porosity(j) ! update the hypothesized parameters

if(l.eq.40) then

call cal_flux(j) ! calculate flux and current values

call results(j) ! output files

endif

j=0
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enddo

do i=1,n-2

do j=1,nj

c_ini(i,j)=conc(i,j)

por_ini(j)=por(j)

enddo

enddo

enddo

return

end

!subroutine of BAND(J) algorithm

SUBROUTINE BAND(J)

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

IMPLICIT INTEGER (I-N)

DOUBLE PRECISION E(11,12,2001)

common/cb/a(11,11),b(11,11),c(11,2001),d(11,23),g(11),x(11,11),&

& y(11,11),n,nj

SAVE E,NP1

101 FORMAT (/15H DETERM=0 AT J=,I4)

IF((J-2).LT.0) GO TO 1

IF((J-2).EQ.0) GO TO 6

IF((J-2).GT.0) GO TO 8

1 NP1= N + 1

DO 2 I=1,N

D(I,2*N+1)= G(I)

DO 2 L=1,N

LPN= L + N

2 D(I,LPN)= X(I,L)

CALL MATINV (N,2*N+1,DETERM)

IF (DETERM) 4,3,4

3 PRINT 101, J

4 DO 5 K=1,N

E(K,NP1,1)= D(K,2*N+1)

DO 5 L=1,N

E(K,L,1)= - D(K,L)

LPN= L + N

5 X(K,L)= - D(K,LPN)

RETURN

6 DO 7 I=1,N

DO 7 K=1,N

DO 7 L=1,N

7 D(I,K)= D(I,K) + A(I,L)*X(L,K)
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8 IF (J-NJ) 11,9,9

9 DO 10 I=1,N

DO 10 L=1,N

G(I)= G(I) - Y(I,L)*E(L,NP1,J-2)

DO 10 M=1,N

10 A(I,L)= A(I,L) + Y(I,M)*E(M,L,J-2)

11 DO 12 I=1,N

D(I,NP1)= - G(I)

DO 12 L=1,N

D(I,NP1)= D(I,NP1) + A(I,L)*E(L,NP1,J-1)

DO 12 K=1,N

12 B(I,K)= B(I,K) + A(I,L)*E(L,K,J-1)

CALL MATINV (N,NP1,DETERM)

IF (DETERM) 14,13,14

13 PRINT 101, J

14 DO 15 K=1,N

DO 15 M=1,NP1

15 E(K,M,J)= - D(K,M)

IF (J-NJ) 20,16,16

16 DO 17 K=1,N

17 C(K,J)= E(K,NP1,J)

DO 18 JJ=2,NJ

M= NJ - JJ + 1

DO 18 K=1,N

C(K,M)= E(K,NP1,M)

DO 18 L=1,N

18 C(K,M)= C(K,M) + E(K,L,M)*C(L,M+1)

DO 19 L=1,N

DO 19 K=1,N

19 C(K,1)= C(K,1) + X(K,L)*C(L,3)

20 RETURN

END

!************************ MAtrix inverse**************************

SUBROUTINE MATINV(N,M,DETERM)

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

IMPLICIT INTEGER (I-N)

common/cb/a(11,11),b(11,11),c(11,2001),d(11,23)

INTEGER ID(6)

DETERM=1.0d0

DO 1 I=1,N

1 ID(I)=0

DO 18 NN=1,N

BMAX=1.1
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DO 6 I=1,N

IF(ID(I).NE.0) GO TO 6

BNEXT=0.0

BTRY=0.0

DO 5 J=1,N

IF(ID(J).NE.0) GO TO 5

IF(ABS(B(I,J)).LE.BNEXT) GO TO 5

BNEXT=ABS(B(I,J))

IF(BNEXT.LE.BTRY) GO TO 5

BNEXT=BTRY

BTRY=ABS(B(I,J))

JC=J

5 CONTINUE

IF(BNEXT.GE.BMAX*BTRY) GO TO 6

BMAX=BNEXT/BTRY

IROW=I

JCOL=JC

6 CONTINUE

IF(ID(JC).EQ.0) GO TO 8

DETERM=0.0

RETURN

8 ID(JCOL)=1

IF(JCOL.EQ.IROW) GO TO 12

DO 10 J=1,N

SAVE=B(IROW,J)

B(IROW,J)=B(JCOL,J)

10 B(JCOL,J)=SAVE

DO 11 K=1,M

SAVE=D(IROW,K)

D(IROW,K)=D(JCOL,K)

11 D(JCOL,K)=SAVE

12 F=1.0/B(JCOL,JCOL)

DO 13 J=1,N

13 B(JCOL,J)=B(JCOL,J)*F

DO 14 K=1,M

14 D(JCOL,K)=D(JCOL,K)*F

DO 18 I=1,N

IF(I.EQ.JCOL) GO TO 18

F=B(I,JCOL)

DO 16 J=1,N

16 B(I,J)=B(I,J)-F*B(JCOL,J)

DO 17 K=1,M

17 D(I,K)=D(I,K)-F*D(JCOL,K)

18 CONTINUE

RETURN
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END

! subroutine for the boundary sharing with defect

subroutine bc_1(j)

implicit double precision(a-h,o-z)

implicit integer(i-n)

common/ca/height,F,frt,vapp,tbetazn,excurzn,thick_gel,thickness,&

& total_time,t_step,rate_k,z_oh,z_na,z_cl,z_zn,z_h,z_znoh,&

& z_hzno2,z_zno2,z_znoh2,diff_oh,diff_na,diff_cl,diff_zn,&

& diff_h,diff_znoh,diff_hzno2,diff_zno2,diff_znoh2,z(9),&

& diff(9),fzd(9),curolim,h,hh(2001),mm

common/cb/a(11,11),b(11,11),c(11,2001),d(11,23),g(11),x(11,11),&

& y(11,11),n,nj

common/cc/ii,conc(9,2001),phi(2001),por(2001),d_phi(2001),&

& dd_phi(2001),diff_phi(2001),d_c(9,2001),dd_c(9,2001),&

& d_flux(9,2001),flux(9,2001),curzn(2001),curo(2001),&

& c_aver(9,2001),g_eq(9,2001),c_ini(9,2001),d_aa(2001)

common/cd/del_len,fro_len,sem_len,tac_len,c_ohdel,c_nadel,c_cldel,&

& c_ohfro,c_nafro,c_clfro,c_ohsem,c_nasem,c_clsem,c_ohint,&

& c_naint,c_clint,jdel,jfro,jsem,b1_pro,b2_pro,b3_pro,&

& b4_pro,b5_pro,b6_pro,b7_pro,b1_sur,b2_sur,b3_sur,b4_sur,&

& b5_sur,b6_sur,b7_sur,b1_blo,b2_blo,b3_blo,b4_blo,b5_blo,&

& b6_blo,b7_blo,b8_blo,b1_poi,b2_poi,b3_poi,b4_poi,b5_poi,&

& b6_poi,b7_poi,ph(2001),por_ini(2001),aa(2001),sur_cov(2001),&

& bb(2001),block(2001),poi(2001),b8,b9,b10,b11

common/ce/flux_mig(9,2001),flux_dif(9,2001),curnet(2001),d_por(2001),&

& d_v(2001),total_current

ophi=0.402-tbetao*log10(excuro)

znphi=-0.763-tbetazn*log10(excurzn)

ff1=(por(j)*b7_pro)**1.5

ff2=(por(j)**1.5)*thickness+(b7_pro**1.5)*thick_gel

ff=ff1/ff2

diff_phi(j)=vapp-phi(j)

! current density due to zinc dissolution

curzn(j)=(10**((vapp-phi(j)-znphi)/tbetazn))*sur_cov(j)*poi(j)

! current density due to oxygen reduction

curo(j)=-curolim*sur_cov(j)*block(j)*ff

dd=b1_pro*b8*b9

ee=b4_pro*b10*b11

! solution potential

g(1)= phi(j)+0.1

b(1,1)= -1.0d0

! OH-
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g(2)= conc(1,j)-1.0d-3

b(2,2)= -1.0d0

! Na+

g(3)= conc(2,j)-1.0d-3

b(3,3)= -1.0d0

! Cl-

g(4)= conc(3,j)-5.0d-4

b(4,4)= -1.0d0

! Zn2+

g(5)= conc(4,j)-2.5d-4

b(5,5)= -1.0d0

! porosity

g(6)= por(j)-b1_pro/(1+b8*(conc(1,j)**b9))-&

& b4_pro/(1+b10*(conc(1,j)**b11))-b7_pro

b(6,2)=-dd*(conc(1,j)**(b9-1))/((1+b8*(conc(1,j)**b9))**2)&

& -ee*(conc(1,j)**(b11-1))/((1+b10*(conc(1,j)**b11))**2)

b(6,6)= -1.0d0

! H+ H2O --> OH+ +OH-

g(7)=conc(1,j)*conc(5,j)-1.0d-20

b(7,2)= -conc(5,j)

b(7,7)= -conc(1,j)

! ZnOH+ Zn2+ + OH- --> ZnOH+

g(8)= conc(6,j)-(10.0**1.33)*conc(1,j)*conc(4,j)

b(8,2)= (10.0**1.33)*conc(4,j)

b(8,5)= (10.0**1.33)*conc(1,j)

b(8,8)= -1.0d0

! HZnO2- ZnOH+ +2OH- --> HZnO2- + H2O

g(9)= conc(7,j)-(10.0**4.03)*conc(6,j)*(conc(1,j)**2)

b(9,2)= 2*(10.0**4.03)*conc(6,j)*conc(1,j)

b(9,8)= (10.0**4.03)*(conc(1,j)**2)

b(9,9)= -1.0d0

! ZnO22- HZnO2- + OH- --> ZnO22- + H2O

g(10)= conc(8,j)-(10.0**(-2.17))*conc(1,j)*conc(7,j)

b(10,2)= (10.0**(-2.17))*conc(7,j)

b(10,9)= (10.0**(-2.17))*conc(1,j)

b(10,10)= -1.0d0

! Zn(OH)2 Zn2+ + 2OH- --> Zn(OH)2

g(11)= (por(j)*conc(9,j)-por_ini(j)*c_ini(9,j))/t_step-&

& rate_k*(conc(1,j)*conc(1,j)*conc(4,j)-3.0d-26)

b(11,2)= 2*rate_k*conc(1,j)*conc(4,j)

b(11,5)= rate_k*conc(1,j)*conc(1,j)

b(11,6)= -conc(9,j)/t_step

b(11,11)= -por(j)/t_step

return

end
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!subroutine for non-boundary points

subroutine body(j)

implicit double precision(a-h,o-z)

implicit integer(i-n)

common/ca/height,F,frt,vapp,tbetazn,excurzn,thick_gel,thickness,&

& total_time,t_step,rate_k,z_oh,z_na,z_cl,z_zn,z_h,z_znoh,&

& z_hzno2,z_zno2,z_znoh2,diff_oh,diff_na,diff_cl,diff_zn,&

& diff_h,diff_znoh,diff_hzno2,diff_zno2,diff_znoh2,z(9),&

& diff(9),fzd(9),curolim,h,hh(2001),mm

common/cb/a(11,11),b(11,11),c(11,2001),d(11,23),g(11),x(11,11),&

& y(11,11),n,nj

common/cc/ii,conc(9,2001),phi(2001),por(2001),d_phi(2001),&

& dd_phi(2001),diff_phi(2001),d_c(9,2001),dd_c(9,2001),&

& d_flux(9,2001),flux(9,2001),curzn(2001),curo(2001),&

& c_aver(9,2001),g_eq(9,2001),c_ini(9,2001),d_aa(2001)

common/cd/del_len,fro_len,sem_len,tac_len,c_ohdel,c_nadel,c_cldel,&

& c_ohfro,c_nafro,c_clfro,c_ohsem,c_nasem,c_clsem,c_ohint,&

& c_naint,c_clint,jdel,jfro,jsem,b1_pro,b2_pro,b3_pro,&

& b4_pro,b5_pro,b6_pro,b7_pro,b1_sur,b2_sur,b3_sur,b4_sur,&

& b5_sur,b6_sur,b7_sur,b1_blo,b2_blo,b3_blo,b4_blo,b5_blo,&

& b6_blo,b7_blo,b8_blo,b1_poi,b2_poi,b3_poi,b4_poi,b5_poi,&

& b6_poi,b7_poi,ph(2001),por_ini(2001),aa(2001),sur_cov(2001),&

& bb(2001),block(2001),poi(2001),b8,b9,b10,b11

common/ce/flux_mig(9,2001),flux_dif(9,2001),curnet(2001),d_por(2001),&

& d_v(2001),total_current

dd=b1_pro*b8*b9

ee=b4_pro*b10*b11

d_aa(j)= (aa(j+1)-aa(j-1))/(2*h)

d_phi(j)= (phi(j+1)-phi(j-1))/(2*h)

dd_phi(j)= (phi(j+1)-2*phi(j)+phi(j-1))/(h*h)

diff_phi(j)= vapp-phi(j)

do i=1,n-2

d_c(i,j)= (conc(i,j+1)-conc(i,j-1))/(2*h)

dd_c(i,j)= (conc(i,j+1)-2*conc(i,j)+conc(i,j-1))/(h*h)

d_flux(i,j)= (-fzd(i)*conc(i,j)*dd_phi(j)-fzd(i)*d_c(i,j)*&

& d_phi(j)-diff(i)*dd_c(i,j))*aa(j)+&

& d_aa(j)*(-fzd(i)*conc(i,j)*d_phi(j)-diff(i)*d_c(i,j))

g_eq(i,j)= (conc(i,j)*por(j)-c_ini(i,j)*por_ini(j))/t_step+d_flux(i,j)

enddo

ophi=0.402-tbetao*log10(excuro)

znphi=-0.763-tbetazn*log10(excurzn)
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ff1=(por(j)*b7_pro)**1.5

ff2=(por(j)**1.5)*thickness+(b7_pro**1.5)*thick_gel

ff=ff1/ff2

! calculate current densities due to electrochemical reactions

curzn(j)=(10**((diff_phi(j)-znphi)/tbetazn))*sur_cov(j)*poi(j)

curo(j)=-curolim*sur_cov(j)*block(j)*ff

! solution potential(electroneutrality)

g(1)= z(1)*conc(1,j)+z(2)*conc(2,j)+z(3)*conc(3,j)+z(4)*conc(4,j)+&

& z(5)*conc(5,j)+z(6)*conc(6,j)+z(7)*conc(7,j)+z(8)*conc(8,j)

b(1,2)= -z(1)

b(1,3)= -z(2)

b(1,4)= -z(3)

b(1,5)= -z(4)

b(1,7)= -z(5)

b(1,8)= -z(6)

b(1,9)= -z(7)

b(1,10)= -z(8)

! OH-

g(2)=g_eq(1,j)+curo(j)/(F*thickness)-g_eq(5,j)-g_eq(4,j)+&

& curzn(j)/(2*F*thickness)+2*g_eq(7,j)+3*g_eq(8,j)-&

& (por(j)*conc(9,j)-por_ini(j)*c_ini(9,j))/t_step

a(2,1)= (fzd(1)*conc(1,j)/(h*h)-fzd(1)*d_c(1,j)/(2*h))*aa(j)-&

& d_aa(j)*fzd(1)*conc(1,j)/(2*h)-&

& (fzd(5)*conc(5,j)/(h*h)-fzd(5)*d_c(5,j)/(2*h))*aa(j)+&

& d_aa(j)*fzd(5)*conc(5,j)/(2*h)-&

& (fzd(4)*conc(4,j)/(h*h)-fzd(4)*d_c(4,j)/(2*h))*aa(j)+&

& d_aa(j)*fzd(4)*conc(4,j)/(2*h)+&

& 2*(fzd(7)*conc(7,j)/(h*h)-fzd(7)*d_c(7,j)/(2*h))*aa(j)-&

& 2*d_aa(j)*fzd(7)*conc(7,j)/(2*h)+&

& 3*(fzd(8)*conc(8,j)/(h*h)-fzd(8)*d_c(8,j)/(2*h))*aa(j)-&

& 3*d_aa(j)*fzd(8)*conc(8,j)/(2*h)

b(2,1)=-2*fzd(1)*conc(1,j)*aa(j)/(h*h)+&

& 2*fzd(5)*conc(5,j)*aa(j)/(h*h)+&

& 2*fzd(4)*conc(4,j)*aa(j)/(h*h)+&

& log(10.0)*curzn(j)/(2*F*tbetazn*thickness)-&

& 4*fzd(7)*conc(7,j)*aa(j)/(h*h)-&

& 6*fzd(8)*conc(8,j)*aa(j)/(h*h)

d(2,1)= (fzd(1)*conc(1,j)/(h*h)+fzd(1)*d_c(1,j)/(2*h))*aa(j)+&

& d_aa(j)*fzd(1)*conc(1,j)/(2*h)-&

& (fzd(5)*conc(5,j)/(h*h)+fzd(5)*d_c(5,j)/(2*h))*aa(j)-&

& d_aa(j)*fzd(5)*conc(5,j)/(2*h)-&

& (fzd(4)*conc(4,j)/(h*h)+fzd(4)*d_c(4,j)/(2*h))*aa(j)-&

& d_aa(j)*fzd(4)*conc(4,j)/(2*h)+&

& 2*(fzd(7)*conc(7,j)/(h*h)+fzd(7)*d_c(7,j)/(2*h))*aa(j)+&
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& 2*d_aa(j)*fzd(7)*conc(7,j)/(2*h)+&

& 3*(fzd(8)*conc(8,j)/(h*h)+fzd(8)*d_c(8,j)/(2*h))*aa(j)+&

& 3*d_aa(j)*fzd(8)*conc(8,j)/(2*h)

a(2,2)= (-fzd(1)*d_phi(j)/(2*h)+diff(1)/(h*h))*aa(j)-&

& d_aa(j)*diff(1)/(2*h)

b(2,2)= -por(j)/t_step+(fzd(1)*dd_phi(j)-2*diff(1)/(h*h))*aa(j)&

& +d_aa(j)*fzd(1)*d_phi(j)

d(2,2)= (fzd(1)*d_phi(j)/(2*h)+diff(1)/(h*h))*aa(j)+&

& d_aa(j)*diff(1)/(2*h)

a(2,5)= -(-fzd(4)*d_phi(j)/(2*h)+diff(4)/(h*h))*aa(j)+&

& d_aa(j)*diff(4)/(2*h)

b(2,5)= por(j)/t_step-(fzd(4)*dd_phi(j)-2*diff(4)/(h*h))*aa(j)&

& -d_aa(j)*fzd(4)*d_phi(j)

d(2,5)= -(fzd(4)*d_phi(j)/(2*h)+diff(4)/(h*h))*aa(j)-&

& d_aa(j)*diff(4)/(2*h)

a(2,6)=(-fzd(1)*conc(1,j)*d_phi(j)-diff(1)*d_c(1,j))*&

& (1.5d0*(por(j-1)**0.5d0))/(2*h)-&

& (-fzd(5)*conc(5,j)*d_phi(j)-diff(5)*d_c(5,j))*&

& (1.5d0*(por(j-1)**0.5d0))/(2*h)-&

& (-fzd(4)*conc(4,j)*d_phi(j)-diff(4)*d_c(4,j))*&

& (1.5d0*(por(j-1)**0.5d0))/(2*h)+&

& 2*(-fzd(7)*conc(7,j)*d_phi(j)-diff(7)*d_c(7,j))*&

& (1.5d0*(por(j-1)**0.5d0))/(2*h)+&

& 3*(-fzd(8)*conc(8,j)*d_phi(j)-diff(8)*d_c(8,j))*&

& (1.5d0*(por(j-1)**0.5d0))/(2*h)

b(2,6)=-conc(1,j)/t_step-1.5*(por(j)**0.5)*(-fzd(1)*conc(1,j)*&

& dd_phi(j)-fzd(1)*d_c(1,j)*d_phi(j)-diff(1)*dd_c(1,j))+&

& (1.5d0*(por(j)**0.5)*(b7_pro**1.5)/ff2-&

& ff1*1.5d0*(por(j)**0.5)*thickness/(ff2**2))*&

& curolim/(F*thickness)+&

& conc(5,j)/t_step+1.5*(por(j)**0.5)*(-fzd(5)*conc(5,j)*&

& dd_phi(j)-fzd(5)*d_c(5,j)*d_phi(j)-diff(5)*dd_c(5,j))+&

& conc(4,j)/t_step+1.5*(por(j)**0.5)*(-fzd(4)*conc(4,j)*&

& dd_phi(j)-fzd(4)*d_c(4,j)*d_phi(j)-diff(4)*dd_c(4,j))-&

& 2*conc(7,j)/t_step-3.0*(por(j)**0.5)*(-fzd(7)*conc(7,j)*&

& dd_phi(j)-fzd(7)*d_c(7,j)*d_phi(j)-diff(7)*dd_c(7,j))-&

& 3*conc(8,j)/t_step-4.5*(por(j)**0.5)*(-fzd(8)*conc(8,j)*&

& dd_phi(j)-fzd(8)*d_c(8,j)*d_phi(j)-diff(8)*dd_c(8,j))+&

& conc(9,j)/t_step

d(2,6)=(-fzd(1)*conc(1,j)*d_phi(j)-diff(1)*d_c(1,j))*&

& (-1.5d0*(por(j+1)**0.5d0))/(2*h)-&

& (-fzd(5)*conc(5,j)*d_phi(j)-diff(5)*d_c(5,j))*&

& (-1.5d0*(por(j+1)**0.5d0))/(2*h)-&

& (-fzd(4)*conc(4,j)*d_phi(j)-diff(4)*d_c(4,j))*&

& (-1.5d0*(por(j+1)**0.5d0))/(2*h)+&
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& 2*(-fzd(7)*conc(7,j)*d_phi(j)-diff(7)*d_c(7,j))*&

& (-1.5d0*(por(j+1)**0.5d0))/(2*h)+&

& 3*(-fzd(8)*conc(8,j)*d_phi(j)-diff(8)*d_c(8,j))*&

& (-1.5d0*(por(j+1)**0.5d0))/(2*h)

a(2,7)= -(-fzd(5)*d_phi(j)/(2*h)+diff(5)/(h*h))*aa(j)+&

& d_aa(j)*diff(5)/(2*h)

b(2,7)= por(j)/t_step-(fzd(5)*dd_phi(j)-2*diff(5)/(h*h))*aa(j)&

& -d_aa(j)*fzd(5)*d_phi(j)

d(2,7)= -(fzd(5)*d_phi(j)/(2*h)+diff(5)/(h*h))*aa(j)-&

& d_aa(j)*diff(5)/(2*h)

a(2,9)= 2*(-fzd(7)*d_phi(j)/(2*h)+diff(7)/(h*h))*aa(j)-&

& 2*d_aa(j)*diff(7)/(2*h)

b(2,9)= -2*por(j)/t_step+2*(fzd(7)*dd_phi(j)-2*diff(7)/(h*h))*aa(j)&

& +2*d_aa(j)*fzd(7)*d_phi(j)

d(2,9)= 2*(fzd(7)*d_phi(j)/(2*h)+diff(7)/(h*h))*aa(j)+&

& 2*d_aa(j)*diff(7)/(2*h)

a(2,10)= 3*(-fzd(8)*d_phi(j)/(2*h)+diff(8)/(h*h))*aa(j)-&

& 3*d_aa(j)*diff(8)/(2*h)

b(2,10)= -3*por(j)/t_step+3*(fzd(8)*dd_phi(j)-2*diff(8)/(h*h))*aa(j)&

& +3*d_aa(j)*fzd(8)*d_phi(j)

d(2,10)= 3*(fzd(8)*d_phi(j)/(2*h)+diff(8)/(h*h))*aa(j)+&

& 3*d_aa(j)*diff(8)/(2*h)

b(2,11)= por(j)/t_step

! Na+ and Cl-

do i=2,3

g(i+1)= g_eq(i,j)

a(i+1,1)=(fzd(i)*conc(i,j)/(h*h)-fzd(i)*d_c(i,j)/(2*h))*aa(j)-&

& d_aa(j)*fzd(i)*conc(i,j)/(2*h)

b(i+1,1)=-2*fzd(i)*conc(i,j)*aa(j)/(h*h)

d(i+1,1)=(fzd(i)*conc(i,j)/(h*h)+fzd(i)*d_c(i,j)/(2*h))*aa(j)+&

& d_aa(j)*fzd(i)*conc(i,j)/(2*h)

a(i+1,i+1)=(-fzd(i)*d_phi(j)/(2*h)+diff(i)/(h*h))*aa(j)-&

& d_aa(j)*diff(i)/(2*h)

b(i+1,i+1)=-por(j)/t_step+(fzd(i)*dd_phi(j)-2*diff(i)/(h*h))*aa(j)&

& +d_aa(j)*fzd(i)*d_phi(j)

d(i+1,i+1)=(fzd(i)*d_phi(j)/(2*h)+diff(i)/(h*h))*aa(j)+&

& d_aa(j)*diff(i)/(2*h)

a(i+1,6)=(-fzd(i)*conc(i,j)*d_phi(j)-diff(i)*d_c(i,j))*&

& (1.5d0*(por(j-1)**0.5d0))/(2*h)

b(i+1,6)=-conc(i,j)/t_step-1.5*(por(j)**0.5)*(-fzd(i)*conc(i,j)*&

& dd_phi(j)-fzd(i)*d_c(i,j)*d_phi(j)-diff(i)*dd_c(i,j))

d(i+1,6)=(-fzd(i)*conc(i,j)*d_phi(j)-diff(i)*d_c(i,j))*&

& (-1.5d0*(por(j+1)**0.5d0))/(2*h)

enddo

! Zn2+
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g(5)=g_eq(4,j)-curzn(j)/(2*F*thickness)+g_eq(6,j)+g_eq(7,j)+&

& g_eq(8,j)-(por(j)*conc(9,j)-por_ini(j)*c_ini(9,j))/t_step

a(5,1)= (fzd(4)*conc(4,j)/(h*h)-fzd(4)*d_c(4,j)/(2*h))*aa(j)-&

& d_aa(j)*fzd(4)*conc(4,j)/(2*h)+&

& (fzd(6)*conc(6,j)/(h*h)-fzd(6)*d_c(6,j)/(2*h))*aa(j)-&

& d_aa(j)*fzd(6)*conc(6,j)/(2*h)+&

& (fzd(7)*conc(7,j)/(h*h)-fzd(7)*d_c(7,j)/(2*h))*aa(j)-&

& d_aa(j)*fzd(7)*conc(7,j)/(2*h)+&

& (fzd(8)*conc(8,j)/(h*h)-fzd(8)*d_c(8,j)/(2*h))*aa(j)-&

& d_aa(j)*fzd(8)*conc(8,j)/(2*h)

b(5,1)= -2*fzd(4)*conc(4,j)*aa(j)/(h*h)&

& -log(10.0)*curzn(j)/(2*F*tbetazn*thickness)&

& -2*fzd(6)*conc(6,j)*aa(j)/(h*h)&

& -2*fzd(7)*conc(7,j)*aa(j)/(h*h)&

& -2*fzd(8)*conc(8,j)*aa(j)/(h*h)

d(5,1)= (fzd(4)*conc(4,j)/(h*h)+fzd(4)*d_c(4,j)/(2*h))*aa(j)+&

& d_aa(j)*fzd(4)*conc(4,j)/(2*h)+&

& (fzd(6)*conc(6,j)/(h*h)+fzd(6)*d_c(6,j)/(2*h))*aa(j)+&

& d_aa(j)*fzd(6)*conc(6,j)/(2*h)+&

& (fzd(7)*conc(7,j)/(h*h)+fzd(7)*d_c(7,j)/(2*h))*aa(j)+&

& d_aa(j)*fzd(7)*conc(7,j)/(2*h)+&

& (fzd(8)*conc(8,j)/(h*h)+fzd(8)*d_c(8,j)/(2*h))*aa(j)+&

& d_aa(j)*fzd(8)*conc(8,j)/(2*h)

a(5,5)= (-fzd(4)*d_phi(j)/(2*h)+diff(4)/(h*h))*aa(j)-&

& d_aa(j)*diff(4)/(2*h)

b(5,5)= -por(j)/t_step+(fzd(4)*dd_phi(j)-2*diff(4)/(h*h))*aa(j)&

& +d_aa(j)*fzd(4)*d_phi(j)

d(5,5)= (fzd(4)*d_phi(j)/(2*h)+diff(4)/(h*h))*aa(j)+&

& d_aa(j)*diff(4)/(2*h)

a(5,6)=(-fzd(4)*conc(4,j)*d_phi(j)-diff(4)*d_c(4,j))*&

& (1.5d0*(por(j-1)**0.5d0))/(2*h)+&

& (-fzd(6)*conc(6,j)*d_phi(j)-diff(6)*d_c(6,j))*&

& (1.5d0*(por(j-1)**0.5d0))/(2*h)+&

& (-fzd(7)*conc(7,j)*d_phi(j)-diff(7)*d_c(7,j))*&

& (1.5d0*(por(j-1)**0.5d0))/(2*h)+&

& (-fzd(8)*conc(8,j)*d_phi(j)-diff(8)*d_c(8,j))*&

& (1.5d0*(por(j-1)**0.5d0))/(2*h)

b(5,6)=-conc(4,j)/t_step-1.5*(por(j)**0.5)*(-fzd(4)*conc(4,j)*&

& dd_phi(j)-fzd(4)*d_c(4,j)*d_phi(j)-diff(4)*dd_c(4,j))-&

& conc(6,j)/t_step-1.5*(por(j)**0.5)*(-fzd(6)*conc(6,j)*&

& dd_phi(j)-fzd(6)*d_c(6,j)*d_phi(j)-diff(6)*dd_c(6,j))-&

& conc(7,j)/t_step-1.5*(por(j)**0.5)*(-fzd(7)*conc(7,j)*&

& dd_phi(j)-fzd(7)*d_c(7,j)*d_phi(j)-diff(7)*dd_c(7,j))-&

& conc(8,j)/t_step-1.5*(por(j)**0.5)*(-fzd(8)*conc(8,j)*&
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& dd_phi(j)-fzd(8)*d_c(8,j)*d_phi(j)-diff(8)*dd_c(8,j))+&

& conc(9,j)/t_step

d(5,6)=(-fzd(4)*conc(4,j)*d_phi(j)-diff(4)*d_c(4,j))*&

& (-1.5d0*(por(j+1)**0.5d0))/(2*h)+&

& (-fzd(6)*conc(6,j)*d_phi(j)-diff(6)*d_c(6,j))*&

& (-1.5d0*(por(j+1)**0.5d0))/(2*h)+&

& (-fzd(7)*conc(7,j)*d_phi(j)-diff(7)*d_c(7,j))*&

& (-1.5d0*(por(j+1)**0.5d0))/(2*h)+&

& (-fzd(8)*conc(8,j)*d_phi(j)-diff(8)*d_c(8,j))*&

& (-1.5d0*(por(j+1)**0.5d0))/(2*h)

a(5,8)= (-fzd(6)*d_phi(j)/(2*h)+diff(6)/(h*h))*aa(j)-&

& d_aa(j)*diff(6)/(2*h)

b(5,8)= -por(j)/t_step+(fzd(6)*dd_phi(j)-2*diff(6)/(h*h))*aa(j)&

& +d_aa(j)*fzd(6)*d_phi(j)

d(5,8)= (fzd(6)*d_phi(j)/(2*h)+diff(6)/(h*h))*aa(j)+&

& d_aa(j)*diff(6)/(2*h)

a(5,9)= (-fzd(7)*d_phi(j)/(2*h)+diff(7)/(h*h))*aa(j)-&

& d_aa(j)*diff(7)/(2*h)

b(5,9)= -por(j)/t_step+(fzd(7)*dd_phi(j)-2*diff(7)/(h*h))*aa(j)&

& +d_aa(j)*fzd(7)*d_phi(j)

d(5,9)= (fzd(7)*d_phi(j)/(2*h)+diff(7)/(h*h))*aa(j)+&

& d_aa(j)*diff(7)/(2*h)

a(5,10)= (-fzd(8)*d_phi(j)/(2*h)+diff(8)/(h*h))*aa(j)-&

& d_aa(j)*diff(8)/(2*h)

b(5,10)= -por(j)/t_step+(fzd(8)*dd_phi(j)-2*diff(8)/(h*h))*aa(j)&

& +d_aa(j)*fzd(8)*d_phi(j)

d(5,10)= (fzd(8)*d_phi(j)/(2*h)+diff(8)/(h*h))*aa(j)+&

& d_aa(j)*diff(8)/(2*h)

b(5,11)= por(j)/t_step

! Porosity

g(6)= por(j)-b1_pro/(1+b8*(conc(1,j)**b9))-&

& b4_pro/(1+b10*(conc(1,j)**b11))-b7_pro

b(6,2)= -dd*(conc(1,j)**(b9-1))/((1+b8*(conc(1,j)**b9))**2)&

& -ee*(conc(1,j)**(b11-1))/((1+b10*(conc(1,j)**b11))**2)

b(6,6)= -1.0d0

! H+ H2O --> H+ +OH-

g(7)=conc(1,j)*conc(5,j)-1.0d-20

b(7,2)= -conc(5,j)

b(7,7)= -conc(1,j)

! ZnOH+ Zn2+ +OH- --> ZnOH+

g(8)= conc(6,j)-(10.0**1.33)*conc(1,j)*conc(4,j)

b(8,2)= (10.0**1.33)*conc(4,j)

b(8,5)= (10.0**1.33)*conc(1,j)

b(8,8)= -1.0d0
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! HZnO2- ZnOH+ +2OH- --> HZnO2- + H2O

g(9)= conc(7,j)-(10.0**4.03)*conc(6,j)*(conc(1,j)**2)

b(9,2)= 2*(10.0**4.03)*conc(6,j)*conc(1,j)

b(9,8)= (10.0**4.03)*(conc(1,j)**2)

b(9,9)= -1.0d0

! ZnO22- HZnO2- + OH- --> ZnO22- + H2O

g(10)= conc(8,j)-(10.0**(-2.17))*conc(1,j)*conc(7,j)

b(10,2)= (10.0**(-2.17))*conc(7,j)

b(10,9)= (10.0**(-2.17))*conc(1,j)

b(10,10)= -1.0d0

! Zn(OH)2 Zn2+ + 2OH- --> Zn(OH)2

g(11)= (por(j)*conc(9,j)-por_ini(j)*c_ini(9,j))/t_step-&

& rate_k*(conc(1,j)*conc(1,j)*conc(4,j)-3.0d-26)

b(11,2)= 2*rate_k*conc(1,j)*conc(4,j)

b(11,5)= rate_k*conc(1,j)*conc(1,j)

b(11,6)= -conc(9,j)/t_step

b(11,11)= -por(j)/t_step

return

end

! subroutine for the boundary in the fully-intact region

subroutine bc_2(j)

implicit double precision(a-h,o-z)

implicit integer(i-n)

common/ca/height,F,frt,vapp,tbetazn,excurzn,thick_gel,thickness,&

& total_time,t_step,rate_k,z_oh,z_na,z_cl,z_zn,z_h,z_znoh,&

& z_hzno2,z_zno2,z_znoh2,diff_oh,diff_na,diff_cl,diff_zn,&

& diff_h,diff_znoh,diff_hzno2,diff_zno2,diff_znoh2,z(9),&

& diff(9),fzd(9),curolim,h,hh(2001),mm

common/cb/a(11,11),b(11,11),c(11,2001),d(11,23),g(11),x(11,11),&

& y(11,11),n,nj

common/cc/ii,conc(9,2001),phi(2001),por(2001),d_phi(2001),&

& dd_phi(2001),diff_phi(2001),d_c(9,2001),dd_c(9,2001),&

& d_flux(9,2001),flux(9,2001),curzn(2001),curo(2001),&

& c_aver(9,2001),g_eq(9,2001),c_ini(9,2001),d_aa(2001)

common/cd/del_len,fro_len,sem_len,tac_len,c_ohdel,c_nadel,c_cldel,&

& c_ohfro,c_nafro,c_clfro,c_ohsem,c_nasem,c_clsem,c_ohint,&

& c_naint,c_clint,jdel,jfro,jsem,b1_pro,b2_pro,b3_pro,&

& b4_pro,b5_pro,b6_pro,b7_pro,b1_sur,b2_sur,b3_sur,b4_sur,&

& b5_sur,b6_sur,b7_sur,b1_blo,b2_blo,b3_blo,b4_blo,b5_blo,&

& b6_blo,b7_blo,b8_blo,b1_poi,b2_poi,b3_poi,b4_poi,b5_poi,&

& b6_poi,b7_poi,ph(2001),por_ini(2001),aa(2001),sur_cov(2001),&

& bb(2001),block(2001),poi(2001),b8,b9,b10,b11

common/ce/flux_mig(9,2001),flux_dif(9,2001),curnet(2001),d_por(2001),&

& d_v(2001),total_current
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dd=b1_pro*b8*b9

ee=b4_pro*b10*b11

d_aa(j)=(aa(j)-aa(j-1))/h

d_phi(j)= (phi(j)-phi(j-1))/h

diff_phi(j)=vapp-phi(j)

ophi=0.402-tbetao*log10(excuro)

znphi=-0.763-tbetazn*log10(excurzn)

ff1=(por(j)*b7_pro)**1.5

ff2=(por(j)**1.5)*thickness+(b7_pro**1.5)*thick_gel

ff=ff1/ff2

! calculate current densities due to electrochemical reactions

curzn(j)=(10**((vapp-phi(j)-znphi)/tbetazn))*sur_cov(j)*poi(j)

curo(j)=-curolim*sur_cov(j)*block(j)*ff

do i=1,n-2

c_aver(i,j)= (conc(i,j-1)+conc(i,j))/2

d_c(i,j)= (conc(i,j)-conc(i,j-1))/h

flux(i,j)= -fzd(i)*c_aver(i,j)*d_phi(j)-diff(i)*d_c(i,j)

g_eq(i,j)= (conc(i,j)*por(j)-c_ini(i,j)*por_ini(j))/t_step-&

& aa(j)*2*flux(i,j)/h+flux(i,j)*d_aa(j)/2

enddo

! solution potential (Electroneturality)

g(1)= z(1)*conc(1,j)+z(2)*conc(2,j)+z(3)*conc(3,j)+z(4)*conc(4,j)+&

& z(5)*conc(5,j)+z(6)*conc(6,j)+z(7)*conc(7,j)+z(8)*conc(8,j)

b(1,2)= -z(1)

b(1,3)= -z(2)

b(1,4)= -z(3)

b(1,5)= -z(4)

b(1,7)= -z(5)

b(1,8)= -z(6)

b(1,9)= -z(7)

b(1,10)= -z(8)

! OH-

g(2)= g_eq(1,j)-g_eq(5,j)-g_eq(4,j)+2*g_eq(7,j)+3*g_eq(8,j)-&

& (por(j)*conc(9,j)-por_ini(j)*c_ini(9,j))/t_step

a(2,1)= fzd(1)*c_aver(1,j)*aa(j)*2/(h*h)-&

& fzd(1)*c_aver(1,j)*d_aa(j)/(2*h)-&

& fzd(5)*c_aver(5,j)*aa(j)*2/(h*h)+&

& fzd(5)*c_aver(5,j)*d_aa(j)/(2*h)-&

& fzd(4)*c_aver(4,j)*aa(j)*2/(h*h)+&

& fzd(4)*c_aver(4,j)*d_aa(j)/(2*h)+&

& 2*fzd(7)*c_aver(7,j)*aa(j)*2/(h*h)-&

& 2*fzd(7)*c_aver(7,j)*d_aa(j)/(2*h)+&

& 3*fzd(8)*c_aver(8,j)*aa(j)*2/(h*h)-&
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& 3*fzd(8)*c_aver(8,j)*d_aa(j)/(2*h)

b(2,1)= -fzd(1)*c_aver(1,j)*aa(j)*2/(h*h)+&

& fzd(1)*c_aver(1,j)*d_aa(j)/(2*h)+&

& fzd(5)*c_aver(5,j)*aa(j)*2/(h*h)-&

& fzd(5)*c_aver(5,j)*d_aa(j)/(2*h)+&

& fzd(4)*c_aver(4,j)*aa(j)*2/(h*h)-&

& fzd(4)*c_aver(4,j)*d_aa(j)/(2*h)-&

& 2*fzd(7)*c_aver(7,j)*aa(j)*2/(h*h)+&

& 2*fzd(7)*c_aver(7,j)*d_aa(j)/(2*h)-&

& 3*fzd(8)*c_aver(8,j)*aa(j)*2/(h*h)+&

& 3*fzd(8)*c_aver(8,j)*d_aa(j)/(2*h)

a(2,2)= -(fzd(1)*d_phi(j)/2-diff(1)/h)*2*aa(j)/h+&

& (fzd(1)*d_phi(j)/2-diff(1)/h)*d_aa(j)/2

b(2,2)= -por(j)/t_step-(fzd(1)*d_phi(j)/2+diff(1)/h)*2*aa(j)/h+&

& (fzd(1)*d_phi(j)/2+diff(1)/h)*d_aa(j)/2

a(2,5)= (fzd(4)*d_phi(j)/2-diff(4)/h)*2*aa(j)/h-&

& (fzd(4)*d_phi(j)/2-diff(4)/h)*d_aa(j)/2

b(2,5)= por(j)/t_step+(fzd(4)*d_phi(j)/2+diff(4)/h)*2*aa(j)/h-&

& (fzd(4)*d_phi(j)/2+diff(4)/h)*d_aa(j)/2

a(2,6)= flux(1,j)*1.5d0*(por(j-1)**0.5)/(2*h)-&

& flux(5,j)*1.5d0*(por(j-1)**0.5)/(2*h)-&

& flux(4,j)*1.5d0*(por(j-1)**0.5)/(2*h)+&

& 2*flux(7,j)*1.5d0*(por(j-1)**0.5)/(2*h)+&

& 3*flux(8,j)*1.5d0*(por(j-1)**0.5)/(2*h)

b(2,6)= -conc(1,j)/t_step+2*1.5d0*flux(1,j)/h-&

& flux(1,j)*1.5d0*(por(j)**0.5)/(2*h)+&

& conc(5,j)/t_step-2*1.5d0*flux(5,j)/h+&

& flux(5,j)*1.5d0*(por(j)**0.5)/(2*h)+&

& conc(4,j)/t_step-2*1.5d0*flux(4,j)/h+&

& flux(4,j)*1.5d0*(por(j)**0.5)/(2*h)-&

& 2*conc(7,j)/t_step+4*1.5d0*flux(7,j)/h-&

& 2*flux(7,j)*1.5d0*(por(j)**0.5)/(2*h)-&

& 3*conc(8,j)/t_step+6*1.5d0*flux(8,j)/h-&

& 3*flux(8,j)*1.5d0*(por(j)**0.5)/(2*h)+&

& conc(9,j)/t_step

a(2,7)= (fzd(5)*d_phi(j)/2-diff(5)/h)*2*aa(j)/h-&

& (fzd(5)*d_phi(j)/2-diff(5)/h)*d_aa(j)/2

b(2,7)= por(j)/t_step+(fzd(5)*d_phi(j)/2+diff(5)/h)*2*aa(j)/h-&

& (fzd(5)*d_phi(j)/2+diff(5)/h)*d_aa(j)/2

a(2,9)= -2*(fzd(7)*d_phi(j)/2-diff(7)/h)*2*aa(j)/h+&

& 2*(fzd(7)*d_phi(j)/2-diff(7)/h)*d_aa(j)/2

b(2,9)= -2*por(j)/t_step-2*(fzd(7)*d_phi(j)/2+diff(7)/h)*2*aa(j)/h+&

& 2*(fzd(7)*d_phi(j)/2+diff(7)/h)*d_aa(j)/2

a(2,10)= -3*(fzd(8)*d_phi(j)/2-diff(8)/h)*2*aa(j)/h+&

& 3*(fzd(8)*d_phi(j)/2-diff(8)/h)*d_aa(j)/2
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b(2,10)= -3*por(j)/t_step-2*(fzd(8)*d_phi(j)/2+diff(8)/h)*2*aa(j)/h+&

& 3*(fzd(8)*d_phi(j)/2+diff(8)/h)*d_aa(j)/2

b(2,11)= por(j)/t_step

! Na+ and Cl-

do i=2,3

g(i+1)= g_eq(i,j)

a(i+1,1)= fzd(i)*c_aver(i,j)*aa(j)*2/(h*h)-&

& fzd(i)*c_aver(i,j)*d_aa(j)/(2*h)

b(i+1,1)=-fzd(i)*c_aver(i,j)*aa(j)*2/(h*h)+&

& fzd(i)*c_aver(i,j)*d_aa(j)/(2*h)

a(i+1,i+1)=-(fzd(i)*d_phi(j)/2-diff(i)/h)*2*aa(j)/h+&

& (fzd(i)*d_phi(j)/2-diff(i)/h)*d_aa(j)/2

b(i+1,i+1)=-por(j)/t_step-(fzd(i)*d_phi(j)/2+diff(i)/h)*2*aa(j)/h+&

& (fzd(i)*d_phi(j)/2+diff(i)/h)*d_aa(j)/2

a(i+1,6)= flux(i,j)*1.5d0*(por(j-1)**0.5)/(2*h)

b(i+1,6)= -conc(i,j)/t_step+2*1.5d0*flux(i,j)/h-&

& flux(i,j)*1.5d0*(por(j)**0.5)/(2*h)

enddo

! Zn2+

g(5)= g_eq(4,j)+g_eq(6,j)+g_eq(7,j)+g_eq(8,j)-&

& (por(j)*conc(9,j)-por_ini(j)*c_ini(9,j))/t_step

a(5,1)= fzd(4)*c_aver(4,j)*aa(j)*2/(h*h)-&

& fzd(4)*c_aver(4,j)*d_aa(j)/(2*h)+&

& fzd(6)*c_aver(6,j)*aa(j)*2/(h*h)-&

& fzd(6)*c_aver(6,j)*d_aa(j)/(2*h)+&

& fzd(7)*c_aver(7,j)*aa(j)*2/(h*h)-&

& fzd(7)*c_aver(7,j)*d_aa(j)/(2*h)+&

& fzd(8)*c_aver(8,j)*aa(j)*2/(h*h)-&

& fzd(8)*c_aver(8,j)*d_aa(j)/(2*h)

b(5,1)= -fzd(4)*c_aver(4,j)*aa(j)*2/(h*h)+&

& fzd(4)*c_aver(4,j)*d_aa(j)/(2*h)-&

& fzd(6)*c_aver(6,j)*aa(j)*2/(h*h)+&

& fzd(6)*c_aver(6,j)*d_aa(j)/(2*h)-&

& fzd(7)*c_aver(7,j)*aa(j)*2/(h*h)+&

& fzd(7)*c_aver(7,j)*d_aa(j)/(2*h)-&

& fzd(8)*c_aver(8,j)*aa(j)*2/(h*h)+&

& fzd(8)*c_aver(8,j)*d_aa(j)/(2*h)

a(5,5)= -(fzd(4)*d_phi(j)/2-diff(4)/h)*2*aa(j)/h+&

& (fzd(4)*d_phi(j)/2-diff(4)/h)*d_aa(j)/2

b(5,5)= -por(j)/t_step-(fzd(4)*d_phi(j)/2+diff(4)/h)*2*aa(j)/h+&

& (fzd(4)*d_phi(j)/2+diff(4)/h)*d_aa(j)/2

a(5,6)= flux(4,j)*1.5d0*(por(j-1)**0.5)/(2*h)+&

& flux(6,j)*1.5d0*(por(j-1)**0.5)/(2*h)+&

& flux(7,j)*1.5d0*(por(j-1)**0.5)/(2*h)+&

& flux(8,j)*1.5d0*(por(j-1)**0.5)/(2*h)
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b(5,6)= -conc(4,j)/t_step+2*1.5d0*flux(4,j)/h-&

& flux(4,j)*1.5d0*(por(j)**0.5)/(2*h)-&

& conc(6,j)/t_step+2*1.5d0*flux(6,j)/h-&

& flux(6,j)*1.5d0*(por(j)**0.5)/(2*h)-&

& conc(7,j)/t_step+2*1.5d0*flux(7,j)/h-&

& flux(7,j)*1.5d0*(por(j)**0.5)/(2*h)-&

& conc(8,j)/t_step+2*1.5d0*flux(8,j)/h-&

& flux(8,j)*1.5d0*(por(j)**0.5)/(2*h)+&

& conc(9,j)/t_step

a(5,8)= -(fzd(6)*d_phi(j)/2-diff(6)/h)*2*aa(j)/h+&

& (fzd(6)*d_phi(j)/2-diff(6)/h)*d_aa(j)/2

b(5,8)= -por(j)/t_step-(fzd(6)*d_phi(j)/2+diff(6)/h)*2*aa(j)/h+&

& (fzd(6)*d_phi(j)/2+diff(6)/h)*d_aa(j)/2

a(5,9)= -(fzd(7)*d_phi(j)/2-diff(7)/h)*2*aa(j)/h+&

& (fzd(7)*d_phi(j)/2-diff(7)/h)*d_aa(j)/2

b(5,9)= -por(j)/t_step-(fzd(7)*d_phi(j)/2+diff(7)/h)*2*aa(j)/h+&

& (fzd(7)*d_phi(j)/2+diff(7)/h)*d_aa(j)/2

a(5,10)= -(fzd(8)*d_phi(j)/2-diff(8)/h)*2*aa(j)/h+&

& (fzd(8)*d_phi(j)/2-diff(8)/h)*d_aa(j)/2

b(5,10)= -por(j)/t_step-(fzd(8)*d_phi(j)/2+diff(8)/h)*2*aa(j)/h+&

& (fzd(8)*d_phi(j)/2+diff(8)/h)*d_aa(j)/2

b(5,11)= por(j)/t_step

! Porosity

g(6)= por(j)-b1_pro/(1+b8*(conc(1,j)**b9))-&

& b4_pro/(1+b10*(conc(1,j)**b11))-b7_pro

b(6,2)= -dd*(conc(1,j)**(b9-1))/((1+b8*(conc(1,j)**b9))**2)&

& -ee*(conc(1,j)**(b11-1))/((1+b10*(conc(1,j)**b11))**2)

b(6,6)= -1.0d0

! H+

g(7)=conc(1,j)*conc(5,j)-1.0d-20

b(7,2)= -conc(5,j)

b(7,7)= -conc(1,j)

! ZnOH+ Zn2+ + OH- --> ZnOH+

g(8)= conc(6,j)-(10.0**1.33)*conc(1,j)*conc(4,j)

b(8,2)= (10.0**1.33)*conc(4,j)

b(8,5)= (10.0**1.33)*conc(1,j)

b(8,8)= -1.0d0

! HZnO2- ZnOH+ +2OH- --> HZnO2- + H2O

g(9)= conc(7,j)-(10.0**4.03)*conc(6,j)*(conc(1,j)**2)

b(9,2)= 2*(10.0**4.03)*conc(6,j)*conc(1,j)

b(9,8)= (10.0**4.03)*(conc(1,j)**2)

b(9,9)= -1.0d0

! ZnO22- HZnO2- + OH- --> ZnO22- + H2O

g(10)= conc(8,j)-(10.0**(-2.17))*conc(1,j)*conc(7,j)

b(10,2)= (10.0**(-2.17))*conc(7,j)
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b(10,9)= (10.0**(-2.17))*conc(1,j)

b(10,10)= -1.0d0

! Zn(OH)2 Zn2+ + 2OH- --> Zn(OH)2

g(11)= (por(j)*conc(9,j)-por_ini(j)*c_ini(9,j))/t_step-&

& rate_k*(conc(1,j)*conc(1,j)*conc(4,j)-3.0d-26)

b(11,2)= 2*rate_k*conc(1,j)*conc(4,j)

b(11,5)= rate_k*conc(1,j)*conc(1,j)

b(11,6)= -conc(9,j)/t_step

b(11,11)= -por(j)/t_step

return

end
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APPENDIX B
PROGRAM LISTING FOR IMPEDANCE CALCULATIONS

The program listings for the impedance calculations presented in Chapters 8 to 10

are given in this appendix. The theoretical development for the cases of ideally-polarized

electrodes (Chapter 8), electrodes with local CPE (Chapter 9), and electrodes exhibiting

Faradaic reactions (Chapter 10) were similar. The key difference was the boundary

condition applied on the electrode surface. The calculations were performed using the

collocation package PDE2D developed by Sewell.[90]

B.1 Main Program Listing

C * PDE2D 8.3 MAIN PROGRAM *

C *** 2D PROBLEM SOLVED (COLLOCATION METHOD) ***

implicit double precision (a-h,o-z)

parameter (neqnmx= 99)

C NXGRID = number of X-grid lines

PARAMETER (NXGRID= 400)

C NXGRID = number of X-grid lines

PARAMETER (NYGRID = 50)

PARAMETER (NEQN = 2)

parameter (nzgrid = 1)

PARAMETER (IRWK8Z= 1)

PARAMETER (IIWK8Z= 1)

PARAMETER (NXP8Z=201,NYP8Z=201,NZP8Z=2,KDEG8Z=1)

common/parm8z/ pi,a,omega,ck,c,deltav,nprob,iprob,DJ,CPEalpha

dimension xgrid(nxgrid),ygrid(nygrid),zgrid(nzgrid),xout8z(0:nx,0:

&ny),yout8z(0:nx,0:ny),zout8z(0:nx,0:ny),xcross(100),ycross(100),to

&ut8z(0:nsave),uout8z(0:nx,0:ny,4*neqn,0:nsave),xres8z(nxp8z),yres8

&z(nyp8z),zres8z(nzp8z),ures8z(neqn,nxp8z,nyp8z,nzp8z)

allocatable iwrk8z(:),rwrk8z(:)

character*40 title

logical linear,crankn,noupdt,nodist,fillin,evcmpx,adapt,plot,lsqfi

&t,fdiff,solid,econ8z,ncon8z,restrt,gridid

common/dtdp14/ sint8z(20),bint8z(20),slim8z(20),blim8z(20)

common/dtdp15/ evlr8z,ev0r,evli8z,ev0i,evcmpx

common/dtdp19/ toler(neqnmx),adapt

common/dtdp30/ econ8z,ncon8z

common/dtdp45/ perdc(neqnmx)

common/dtdp46/ eps8z,cgtl8z,npmx8z

common/dtdp52/ nxa8z,nya8z,nza8z,kd8z

common/dtdp53/ work8z(nxp8z*nyp8z*nzp8z+9)

common/dtdp64/ amin8z(4*neqnmx),amax8z(4*neqnmx)
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pi = 4.0*atan(1.d0)

zr8z = 0.0

nxa8z = nxp8z

nya8z = nyp8z

nza8z = nzp8z

kd8z = kdeg8z

C

nomega=160

a=0.25

ck=0.05

c=3.0d-5

deltav=0.01

DJ=1.0

CPEalpha=0.8

C

do 78760 iomega=1,nomega

omega=10**(-5+iprob*0.05)

C##############################################################################

C A collocation finite element method is used, with bi-cubic Hermite #

C basis functions on the elements (small rectangles) defined by the grid #

C points: #

C XGRID(1),...,XGRID(NXGRID) #

C YGRID(1),...,YGRID(NYGRID) #

C You will first be prompted for NXGRID, the number of X-grid points, #

C then for XGRID(1),...,XGRID(NXGRID). Any points defaulted will be #

C uniformly spaced between the points you define; the first and last #

C points cannot be defaulted. Then you will be prompted similarly #

C for the number and values of the Y-grid points. The rectangle over #

C which the PDE system is to be solved is then: #

C XGRID(1) < X < XGRID(NXGRID) #

C YGRID(1) < Y < YGRID(NYGRID) #

C #

C##############################################################################

call dtdpwx(xgrid,nxgrid,0)

call dtdpwx(ygrid,nygrid,0)

XGRID(1) = 0.0d0

XGRID(NXGRID) = 200

YGRID(1) = 0.0d0

YGRID(NYGRID) = 1.0d0

C

zgrid(1) = 0

call dtdpwx(xgrid,nxgrid,1)

call dtdpwx(ygrid,nygrid,1)

C##############################################################################

C If you don’t want to read the FINE PRINT, enter ISOLVE = 1. #
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C #

C +++++++++++++++ THE "FINE PRINT" (CAN USUALLY BE IGNORED) ++++++++++++++#

C + The following linear system solvers are available: +#

C + +#

C + 1. Sparse direct method +#

C + Harwell Library routine MA27 (used by permission) is +#

C + used to solve the (positive definite) "normal" +#

C + equations A**T*A*x = A**T*b. The normal equations, +#

C + which are essentially the equations which would result +#

C + if a least squares finite element method were used +#

C + instead of a collocation method, are substantially +#

C + more ill-conditioned than the original system Ax = b, +#

C + so it may be important to use high precision if this +#

C + option is chosen. +#

C##############################################################################

ISOLVE = 1

C##############################################################################

C Is this a linear problem? ("linear" means all differential equations #

C and all boundary conditions are linear) #

C##############################################################################

LINEAR = .true.

C##############################################################################

C Give an upper limit on the number of Newton’s method iterations #

C (NSTEPS) to be allowed for this nonlinear problem. NSTEPS defaults #

C to 15. #

C##############################################################################

NSTEPS = 15

C##############################################################################

C The solution is saved on an NX+1 by NY+1 rectangular grid covering #

C the rectangle (XA,XB) x (YA,YB). Enter values for XA,XB,YA,YB. #

C These variables are usually defaulted. #

C #

C The defaults are XA = XGRID(1), XB = XGRID(NXGRID) #

C YA = YGRID(1), YB = YGRID(NYGRID) #

C #

C##############################################################################

C defaults for xa,xb,ya,yb

xa = xgrid(1)

xb = xgrid(nxgrid)

ya = ygrid(1)

yb = ygrid(nygrid)

call dtdpx3(nx,ny,0,xa,xb,ya,yb,zr8z,zr8z,hx8z,hy8z,hz8z,xout8z,yo

&ut8z,zout8z,npts8z)

subroutine tran8z(itrans,x,y,z8z)
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implicit double precision (a-h,o-z)

common /dtdp41/xcart(3),x1grad(3),x2grad(3),x3grad(3),x1hess(3,3),

&x2hess(3,3),x3hess(3,3)

common/parm8z/ pi,a,omega,ck,c,deltav,nprob,iprob,DJ,CPEalpha

C##############################################################################

C If your region is rectangular, enter ITRANS=0, and you need not read #

C the FINE PRINT. #

C #

C + If X,Y represent polar or other non-Cartesian coordinates, you can +#

C + reference the Cartesian coordinates X1,X2 and derivatives of your +#

C + unknowns with respect to these coordinates, when you define your +#

C + PDE coefficients, boundary conditions, and volume and boundary +#

C + integrals, if you enter ITRANS .NE. 0. Enter: +#

C + ITRANS = 1, if X,Y are polar coordinates, that is, if +#

C + X=R, Y=Theta, where X1 = R*cos(Theta) +#

C + X2 = R*sin(Theta) +#

C + ITRANS = -1, same as ITRANS=1, but X=Theta, Y=R +#

C + ITRANS = 3, to define your own coordinate transformation. In +#

C + this case, you will be prompted to define X1,X2 and +#

C + their first and second derivatives in terms of X,Y. +#

C + ITRANS = -3, same as ITRANS=3, but you will only be prompted to +#

C + define XCART(*) = (X1,X2); their first and second +#

C + derivatives will be approximated using finite +#

C + differences. +#

C + When ITRANS = -3 or 3, the first derivatives of X1,X2 must all +#

C + be continuous. +#

C##############################################################################

ITRANS = -3

XCART(1) = a*sqrt((1+x**2)*abs(1-y**2))

XCART(2) = a*x*y

xcart(3) = z8z

x3grad(3) = 1

return

end

B.2 Subroutine Listing

subroutine pdes8z(yd8z,i8z,j8z,kint8z,x,y,z8z,t,uu8z)

implicit double precision (a-h,o-z)

parameter (neqnmx= 99)

common /dtdp5x/un8z(10,neqnmx)

common /dtdp18/normx,normy,nz8z

double precision normx,normy,nz8z,norm1,norm2,n38z

dimension uu8z(10,neqnmx)

common/parm8z/ pi,a,omega,ck,c,deltav,nprob,iprob,DJ,CPEalpha

zr8z = 0.0
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pr = uu8z(1, 1)

prx = uu8z(2, 1)

pry = uu8z(3, 1)

prxx= uu8z(5, 1)

pryy= uu8z(6, 1)

prxy= uu8z(8, 1)

pryx= uu8z(8, 1)

pii = uu8z(1, 2)

piix = uu8z(2, 2)

piiy = uu8z(3, 2)

piixx= uu8z(5, 2)

piiyy= uu8z(6, 2)

piixy= uu8z(8, 2)

piiyx= uu8z(8, 2)

call dtdpcd(x,y,z8z)

call dtdpcb(x,y,z8z,normx,normy,nz8z,x1,x2,x38z,norm1,norm2,n38z,3)

call dtdpcc(x,y,z8z,

& prx,pry,zr8z,prxx,pryy,zr8z,prxy,zr8z,zr8z,

& x1,x2,x38z,pr1,pr2,u38z,pr11,pr22,u338z,pr12,u138z,u238z,

& pr21,u318z,u328z,dvol,darc)

call dtdpcc(x,y,z8z,

& piix,piiy,zr8z,piixx,piiyy,zr8z,piixy,zr8z,zr8z,

& x1,x2,x38z,pii1,pii2,u38z,pii11,pii22,u338z,pii12,u138z,u238z,

& pii21,u318z,u328z,dvol,darc)

if (i8z.eq.0) then

yd8z = 0.0

C##############################################################################

C Enter FORTRAN expressions to define the boundary condition functions, #

C which may be functions of #

C X,Y,pr,prx,pry, #

C pii,piix,piiy #

C##############################################################################

if (j8z.eq.0) then

yd8z = 0.0

C F1 DEFINED

if (i8z.eq. 1) yd8z =

& 2*x*prx+(1+x**2)*prxx-2*y*pry+(1-y**2)*pryy

C F2 DEFINED

if (i8z.eq. 2) yd8z =

& 2*x*piix+(1+x**2)*piixx-2*y*piiy+(1-y**2)*piiyy

else

endif

return

end

C
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subroutine gb8z(gd8z,ifac8z,i8z,j8z,x,y,z8z,t,uu8z)

implicit double precision (a-h,o-z)

parameter (neqnmx= 99)

dimension uu8z(10,neqnmx)

C un8z(1,I),un8z(2,I),... hold the (rarely used) values

C of UI,UIx,... from the previous iteration or time step

common /dtdp5x/ un8z(10,neqnmx)

common /dtdp18/normx,normy,nz8z

double precision none,normx,normy,nz8z,norm1,norm2,n38z

common/parm8z/ pi,a,omega,ck,c,deltav,nprob,iprob,DJ,CPEalpha

none = dtdplx(2)

zr8z = 0.0

pr = uu8z(1, 1)

prx = uu8z(2, 1)

pry = uu8z(3, 1)

pii = uu8z(1, 2)

piix = uu8z(2, 2)

piiy = uu8z(3, 2)

call dtdpcd(x,y,z8z)

call dtdpcb(x,y,z8z,normx,normy,nz8z,x1,x2,x38z,norm1,norm2,n38z,3

&)

call dtdpcb(

& x,y,z8z,prx,pry,zr8z,x1,x2,x38z,pr1,pr2,u38z,2)

call dtdpcb(

& x,y,z8z,piix,piiy,zr8z,x1,x2,x38z,pii1,pii2,u38z,2)

if (j8z.eq.0) gd8z = 0.0

C##############################################################################

C Enter FORTRAN expressions to define the boundary condition functions, #

C which may be functions of #

C #

C X,Y,pr,prx,pry, #

C pii,piix,piiy and (if applicable) T #

C##############################################################################

if (ifac8z.eq. 1) then

C##############################################################################

C #

C First define the boundary conditions on the face X = XGRID(1). #

C##############################################################################

if (j8z.eq.0) then

C G1 DEFINED

if (i8z.eq. 1) gd8z =

C For Ideally-Polarized Blocking Electrodes

& omega*pii+prx/y

C For Blocking Electrodes with Local CPE

& omega*((deltav-pr)*cos(CPEalpha*pi/2)+pii*sin(CPEalpha*pi/2))+prx/y

178



C For Electrode Subject to a Faradaic Reaction

& prx/y+omega*pii+(deltav-prs)*DJ

C G2 DEFINED

if (i8z.eq. 2) gd8z =

C For Ideally-Polarized Blocking Electrode

& omega*deltav-omega*pr+piix/y

C For Blocking Electrodes with Local CPE

& omega*(deltav*sin(CPEalpha*pi/2)-pii*cos(CPEalpha*pi/2)-

& pr*sin(CPEalpha*pi/2))+piix/y

C For Electrode Subject to a Faradaic Reaction

& piix/y+omega*(deltav-pr)-pii*DJ

else

endif

endif

if (ifac8z.eq. 2) then

C##############################################################################

C Now define the boundary conditions on the face X = XGRID(NXGRID). #

C##############################################################################

if (j8z.eq.0) then

C G1 DEFINED

if (i8z.eq. 1) gd8z = pr

C G2 DEFINED

if (i8z.eq. 2) gd8z = pii

else

endif

endif

if (ifac8z.eq. 3) then

C##############################################################################

C Now define the boundary conditions on the face Y = YGRID(1). #

C##############################################################################

if (j8z.eq.0) then

C G1 DEFINED

if (i8z.eq. 1) gd8z = pry

C G2 DEFINED

if (i8z.eq. 2) gd8z = piiy

else

endif

endif

if (ifac8z.eq. 4) then

C##############################################################################

C Now define the boundary conditions on the face Y = YGRID(NYGRID). #

C##############################################################################

if (j8z.eq.0) then

179



C G1 DEFINED

if (i8z.eq. 1) gd8z = pry

C G2 DEFINED

if (i8z.eq. 2) gd8z = piiy

else

endif

endif

return

end

C

subroutine postpr(tout,nsave,xout,yout,nx,ny,uout,neqn)

implicit double precision (a-h,o-z)

dimension xout(0:nx,0:ny),yout(0:nx,0:ny),zout(0:nx,0:ny),

&rout(0:nx,0:ny),tout(0:nsave),phi_re(0:nx,0:ny),phi_im(0:nx,0:ny),

& dprx(0:nx,0:ny),dpry(0:nx,0:ny),dpiix(0:nx,0:ny),

& dpiiy(0:nx,0:ny),diff(0:nx,0:ny),trans(0:nx,0:ny)

dimension cur_re(0:nx,0:ny),cur_im(0:nx,0:ny),cur(0:nx,0:ny),

& subloc_re(0:nx,0:ny),subloc_im(0:nx,0:ny),ocal_re(0:nx,0:ny),

& ocal_im(0:nx,0:ny),resis_re(0:nx,0:ny),resis_im(0:nx,0:ny),

& gcur_re(0:ny),gcur_im(0:ny)

dimension uout(0:nx,0:ny,4,neqn,0:nsave)

common/parm8z/ pi,a,omega,ck,c,deltav,nprob,iprob,DJ,CPEalpha

UOUT(I,J,1,IEQ,L) = U-sub-IEQ

UOUT(I,J,2,IEQ,L) = UX-sub-IEQ

UOUT(I,J,3,IEQ,L) = UY-sub-IEQ

open (unit=33,file=’data_1.sav’)

open (unit=34,file=’loc_1.txt’)

open (unit=35,file=’global.txt’)

9 format (10E17.8)

10 format (12E20.12)

11 format (10E17.8)

13 format (7E17.8)

DO I=0,NX

DO J=0,NY

zout(i,j)= a*xout(i,j)*yout(i,j)

trans(i,j)= sqrt((1+xout(i,j)**2)*abs(1-yout(i,j)**2))

rout(i,j)=a*trans(i,j)

phi_re(i,j)=uout(i,j,1,1,1)

phi_im(i,j)=uout(i,j,1,2,1)

dprx(i,j)= UOUT(I,J,2,1,1)

dpry(i,j)= UOUT(I,J,3,1,1)

dpiix(i,j)=UOUT(I,J,2,2,1)
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dpiiy(i,j)=UOUT(I,J,3,2,1)

z8z = 0.0

call dtdpcd(x,y,z8z)

call dtdpcb(x,y,z8z,z18z,z28z,z38z,x1,x2,x38z,

& d18z,d28z,d38z,1)

write(33,9) xout(i,j),yout(i,j),zout(i,j),rout(i,j),

& phi_re(i,j),phi_im(i,j),dprx(i,j),dpry(i,j),dpiix(i,j),

& dpiiy(i,j)

END DO

END DO

do i=0,nx

do j=0,ny

diff(i,j)=deltav-phi_re(i,j)

cur_re(i,j)=-ck*dprx(i,j)/(a*yout(i,j))

cur_im(i,j)=-ck*dpiix(i,j)/(a*yout(i,j))

cur(i,j)=cur_re(i,j)**2+cur_im(i,j)**2

subloc_re(i,j)=deltav*cur_re(i,j)/cur(i,j)

subloc_im(i,j)=-deltav*cur_im(i,j)/cur(i,j)

ocal_re(i,j)= (cur_re(i,j)*diff(i,j)-phi_im(i,j)*cur_im(i,j))/

& cur(i,j)

ocal_im(i,j)=-(cur_im(i,j)*(deltav-phi_re(i,j))+

& phi_im(i,j)*cur_re(i,j))/cur(i,j)

resis_re(i,j)=(phi_re(i,j)*cur_re(i,j)+phi_im(i,j)*

& cur_im(i,j))/cur(i,j)

resis_im(i,j)=-(phi_re(i,j)*cur_im(i,j)-phi_im(i,j)*

& cur_re(i,j))/cur(i,j)

write(34,10) xout(i,j),yout(i,j),zout(i,j),rout(i,j),

& cur_re(i,j),cur_im(i,j),subloc_re(i,j),subloc_im(i,j),

& ocal_re(i,j),ocal_im(i,j),resis_re(i,j),resis_im(i,j)

enddo

enddo

C

ttcur_re=0.0d0

ttcur_im=0.0d0

do j=0,ny

if ((j.eq.0).or.(j.eq.ny)) then

gcur_re(j)=etacur_re(0,j)

gcur_im(j)=etacur_im(0,j)

else if (mod(j,2).eq.1) then

gcur_re(j)=4*etacur_re(0,j)

gcur_im(j)=4*etacur_im(0,j)

else if (mod(j,2).eq.0) then

gcur_re(j)=2*etacur_re(0,j)

gcur_im(j)=2*etacur_im(0,j)
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endif

enddo

C Integrate current density on the electrode surface

do j=0,ny

value_re= gcur_re(j)

value_im= gcur_im(j)

c value_re=(gcur_re(j)+gcur_re(j+1))*(rout(0,j+1)-rout(0,j))/2

ttcur_re=ttcur_re+value_re

ttcur_im=ttcur_im+value_im

enddo

C Calculate Global Impedance

tcur_re=ttcur_re*0.02/3

tcur_im=ttcur_im*0.02/3

globalim_re=deltav*tcur_re/(tcur_re**2+tcur_im**2)

globalim_im=deltav*tcur_im/(tcur_re**2+tcur_im**2)

dimenim_re=globalim_re*ck*a

dimenim_im=globalim_im*ck*a

Reff=4*dimenim_re

c_ceff=dimenim_im*omega*pi

write(35,11) omega,tcur_re,tcur_im,globalim_re,globalim_im,

& dimenim_re,dimenim_im,Reff,c_ceff

return

end
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APPENDIX C
MATHEMATICAL MODEL FOR A DISSOLUTION OF ZINC ROTATING DISK

ELECTRODE

As a preliminary step towards development of the model for the cathodic delamination,

a one-dimensional, transient model was developed for the dissolution and passivation of a

rotating zinc disk in a dilute solution of NaCl. The model treated explicitly the coupling

of mass transport phenomena, electrochemical reactions and homogeneous reactions.

C.1 Model Development

The advantages of using a rotating disk electrode system are that the hydrodynamics

conditions are well understood and the fluid mechanics associated within the system is

well studied. A schematic illustration of the flow field generated by a rotating disk is

presented in Figure where z is the direction perpendicular to the disk and r is direction

along the disk electrode. The rotation of the disk causes a spiral movement of the fluid

resulting in a net velocity toward the disk and in the radial direction.

C.1.1 Mass Transfer

The mass transfer of a species i in an electrochemical system is governed by equation

(2–1) where the flux of a species i is given in equation (2–2). Combination with the

Nernst-Einstein equation (equation (2–4)), under the assumptions of a steady-state

condition and an incompressible electrolyte, the governing equation for ci can be rewritten

as

0 = ziF
Di

RT
ci∇ · (ci∇Φ) + Di∇2ci − v∇ci + Ri (C–1)

where the terms on the right side represent the contribution of migration, diffusion,

convection, and production by homogeneous reactions, respectively.

The steady flow created by an infinite disk rotating at a constant angular velocity

in a fluid with constant physical properties was presented by Newman.[46] Under the

assumption that the velocities in r and θ direction are negligible, the velocity normal to
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Figure C-1. Schematic representation of a rotating disk electrode system in which a disk
electrode is embedded in a large insulator.

the disks that brings reactants to the surface is expected to follow

vz =
√

νΩH

(
z

√
Ω

ν

)
(C–2)

where ν is the kinematic viscosity and Ω. Near the electrode surface, the dimensionless

velocity H in equation (C–2) can be expressed as a power series

H = −a

(
z

√
Ω

ν

)2

+
1

3

(
z

√
Ω

ν

)3

+
b

6

(
z

√
Ω

ν

)4

+ ... (C–3)

where the coefficients a and b have values of 0.51023 and -0.616, respectively.

C.1.2 Electrode Kinetics

The electrochemical reactions of interest in the present model involved zinc

dissolution (4–6) and oxygen reduction (4–7). Under the assumption that the electrochemical

reaction considered are irreversible, the current densities due to zinc dissolution followed

the Bulter-Volmer expression. The oxygen reduction was assumed to be mass-transfer-limited;

thus, the limiting current density, shown in equation (2–39), depends on the concentration

of oxygen in the bulk. The thickness of the diffusion layer x seen in equation (2–39), in a
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cylindrical coordinate, is a function of rotation speed by

δ =

(
1

aSc

)1/3 ( ν

Ω

)1/2
Γ

(
1

3

)
(C–4)

where Sc is Schmidt number and Γ
(

1
3

)
is the gamma function of 1/3.

C.1.3 Homogeneous Reactions

The oxygen reduction taking place underneath the coating results in an increase of pH

in the interfacial degraded layer. For zinc, a series of chemical reactions associated with

Zn2+ hydrolysis is possible in alkaline solutions.[66, 67] In the presented model, multiple

homogeneous reactions, including water dissociation and a series of reactions associated

with Zn2+ hydrolysis, were considered. The mechanisms and equilibrium conditions of

these chemical reactions are summarized in Table 4-2.[67]

C.1.4 Boundary Condition

At the far boundary condition, the concentrations and solution potential were fixed

at bulk conditions ci,∞= 1.26 × 10−3 M and Φ∞=0. On the boundary of the metal

surface the zero-flux condition was used for the chemically inert species Na+ and Cl−.

The concentration of oxygen was set as zero because the oxygen reduction reaction was

assumed to be mass-transfer limited. The boundary conditions at the metal surface for

Zn2+ and OH− were obtained by relating their fluxes with the current densities due to the

electrochemical reactions on the metal surface. The equilibrium conditions listed in Table

4-2 were treated as boundary conditions for H+, ZnOH+, HZnO−
2 , and ZnO2−

2 .

C.1.5 Solution Method

The system of coupled, non-linear, partial differential equations required an iterative

method to converge on a solution starting from an initial guess. A tri-diagonal method,

BAND algorithm, was chosen to calculate the distribution of ci and Φ. The mathematical

model was developed using Microsoft Visual Fortran, Version 9.0 with double precision

accuracy.[74]
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Figure C-2. Calculated concentration distributions of species of OH−, Zn2+, H+, ZnOH+,
HZnO−

2 , and ZnO2−
2 on electrode surface.

C.2 Results and Discussion

The calculated distributions satisfied the coupled phenomena of species mass

transport and electronutrality. The domain length was 0.2 cm, the rotating speed was Ω

=50 rad/s, the thickness of the diffusion layer was x = 0.018 cm, and the metal potential

was chosen to be Ψ= -0.77 V .

The concentration distributions of the chemical species are presented in Figure C-2

as a function of dimensionless position. Due to the electrochemical reactions occurring

on the electrode surface, the concentrations of OH− and Zn2+ have a maximum near the

surface. The concentrations of the species produced in the homogeneous reactions (H+,

ZnOH+, HZnO−
2 , and ZnO2−

2 ) are largest near the surface and decrease with increasing

distance away from the electrode.

At steady state, based on the mass balance equation, the homogenous rate for species

Ri can be written by

Ri = ∇ ·Ni (C–5)

Thus, the rate for each of the homogeneous reactions can be expressed as follows:

R1 = ∇ ·NH+ (C–6)
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(a) (b)

Figure C-3. Calculated rate of the homogeneous reactions included in the model. a) Water
disassociation reaction; and b) Zinc hydrolysis reactions.

R2 = −∇ ·NZn2+ (C–7)

R3 = ∇ ·NHZnO−2
+∇ ·NZnO2−

2
(C–8)

and

R4 = ∇ ·NZnO2−
2

(C–9)

The rate of water dissociation is plotted in Figure C-3(a) as a function of dimensionless

position. The OH− ions generated near the electrode surface combine with H+ ions in the

solution to form water molecular. Due to the constraint of the equilibrium condition, the

concentration of H+ ions is small near the electrode; consequently, the rate of this reaction

is approximately zero near the surface. When z/δ approaches 5.4, the concentrations of

OH− ions becomes close to that of H+ ions, leading to the sharp increase in Figure C-3(a).

The rates of the zinc hydrolysis are presented in Figure C-3(b) as a function of

dimensionless position. The negative value of R2 indicates that ZnOH+ ions dissociate

into Zn2+ and OH− ions. This implies that, after the Zn2+ and OH− ions are formed, the

ZnOH+ ions were immediately produced near the surface. This can also be used to explain

the negative rates of reactions 3 and 4.

187



C.3 Conclusion

A mathematical model for one-dimensional, steady-state rotating disk electrode

system was developed. In this model, multiple heterogeneous reactions and equilibrated

homogeneous reactions were coupled with mass transport due to migration, diffusion and

convection. The calculated results demonstrates that after corrosion reaction occurs the

pH value of the electrolyte has been changed significantly due to the formation of OH−

ions. The results also show the coupling among the multiple homogeneous reactions that

take place simultaneously in the system.
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APPENDIX D
MATHEMATICAL MODEL FOR GALVANIC COUPLING IN A 2-D CELL

As a step toward the development of comprehensive model for cathodic delamination,

a two-dimensional model was developed that calculated the distributions of concentrations

and potential associated with cut-edge corrosion. Within the present model, the

Zn electrode serves as the local anode and steel as the local cathode. The purpose

of the model was to understand the set up of the galvanic couple by starting from

uniform distributions of all reactive species. The uniform initial conditions permit the

concentration and potential gradients appearing later due to the electrochemical reactions.

Within the model, multiple homogeneous reactions, including water dissociation and a

series of reactions associated with hydrolysis were assumed to occur simultaneously in the

solution phase.

D.1 Model Development

A schematic representation of the Zn-Fe model is given in Figure D-1 where Zn acts

as an anode, Fe acts as a cathode, and NaCl serves as the electrolyte. An insulator

is inserted between the two electrodes and the two vertical walls are composed of

insulators as well. Zinc dissolution was assumed to take place on the anode, whereas

oxygen reduction and hydrogen evolution were both assumed to occur on the cathode. No

iron dissolution was considered on the steel.

Figure D-1. Schematic representation of a two electrode cell in which Zn serves a local
anode and Fe as a local cathode.
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The development of the present model is similar to that presented in Appendix C.

The key differences were that the governing equations were expanded in a two-dimensional

form and different boundary conditions were applied on the anode, cathode and insulator.

In this model, the anodic and cathodic current expression are applied on the Zn (0<

x <0.016 cm) and Fe (0.024< x <0.04 cm) electrodes, respectively. On the region where

the insulator is inserted (0.016< x <0.024 cm), a zero-flux condition was employed for all

species.

D.2 Solution Method

The calculations by Allahar show that the accuracy of applied numerical technique

plays an important role on determining whether the equilibrium relations that describe

the homogeneous reactions can or cannot be incorporated.[21, 22] As a result, a numerical

technique with high-order accuracy is extremely crucial for this particular development.

In the development of the present model, a commercial program based upon

collocation method, PDE2D, was chosen. The use of the collocation method yields

approximations that are of high-order accuracy even when coupled nonlinear partial

differential equations are solved in a multidimensional domain. With this PDE2D

program, all homogeneous reaction can be included simultaneously and the discontinuity

at the bottom boundary can be handled without numerical difficulties.

D.3 Results and Discussion

The dimension of the domain was set to be 0.04 cm in the direction along the

electrodes and 0.02 cm in the direction away from the electrodes. At the bottom

boundary, 0< x <0.016 cm is the region where anodic reaction is dominant, and

0.024< x <0.04 cm is the region where cathodic reactions are more important. The

potential on the metal was chosen as V = -1.1 VSHE. The polarization parameters for zinc

dissolution included βZn =0.08 V/decade, i0,Zn =12 mA/cm2, E0,Zn =- 0.763 VSHE, βH2

=0.18 V/decade, i0,H2 = 10−5mA/cm2, and E0,H2 =- 0.828 VSHE.
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(a) (b)

Figure D-2. Calculated current density distributions along the x axis. a) 0< x <0.04 cm;
and b) 0< x <0.016 cm.

The overall current density distribution along the x axis is given in Figure D-2(a)

where the anodic current density is displayed within 0< x <0.016 cm, and the cathodic

current density is within 0.024< x <0.04 cm. The current density drops to zero between

0.016 cm and 0.024 cm, corresponding to the position of the insulator. The distribution

of the anodic current density on the Zn electrode is presented in Figure D-2(b). It is

clear in Figure D-2(b) that the anodic current density increases when approaching the

edge of the electrode. Both Figures D-2(a) and D-2(b) confirm that the geometry of the

electrodes constrain the distributions of current density in a way such that the periphery

of the disk has a greater accessibility. The distributions given in Figure D-2 also show that

the applied collocation method is able to handle the discontinuous transition from the

insulator to the two electrodes.

The concentration distributions of Zn2+ and OH− ions in units of mole/cm3 are

presented in Figure D-3 in contour format. Due to the local anodic reaction, the

concentration of Zn2+ ions has a largest around the Zn electrode and decreases with

increasing distance away from the local anode. A similar behavior was observed in the

concentration distribution of OH− ions.
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(a) (b)

Figure D-3. Calculated distributions of concentration in a unit of mole/cm3. a) Zn2+ ions;
and b) OH− ions.

Figure D-4. Calculated distribution of ratio of
cZn2+ ·c2

OH−
Ksp

where Ksp is the standard

solubility product of Zn(OH)2(s).
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The calculated concentrations of Zn2+ and OH− ions can be used to predict the

formation of corrosion product Zn(OH)2(s). The predicted distribution of precipitated

Zn(OH)2(s) is presented in Figure D-4. The magnitude in Figure D-4 is estimated by

cZn2+ ·c2
OH−

Ksp
where Ksp is the standard solubility product of Zn(OH)2(s) with a value of

3×10−17 (mol/liter)3 at room temperature.[10] The value of
cZn2+ ·c2

OH−
Ksp

, which reflects the

driving force of forming Zn(OH)2(s), is largest near the local cathode and decreases with

the distance away from the electrode.

D.4 Conclusion

The presented work serves as a preliminary approach for modeling the two-dimensional

cathodic delamination system. The uniform initial concentration distributions applied in

the model allowed us to simulate the natural establishment of the galvanic element. The

computational results indicate that the numerical difficulties associated with including

homogeneous reactions in a two spatial dimension and with the discontinuous region at the

boundary have been overcome in a steady-state model. The results also showed that the

unique configuration of the delamination system led to an interesting distribution pattern

of the species produced in the homogeneous reactions. The employed numerical technique

will be tested later for treating precipitation of Zn(OH)2 in a transient model.
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APPENDIX E
PARAMETER SENSITIVITY ANALYSIS

Due to the use of porosity-pH, poisoning-pH and blocking-pH relations, there are

several fitting parameters used in the cathodic delamination program. It is important

to explore the sensitivities of these parameters on the simulation results. The sensitivity

analysis is presented in this appendix. In the report, each fitting parameter were analyzed

using three different values. The velocity of the moving fronts and the kinetic analysis

were checked to determine the sensitivity.

E.1 Porosity

There are four fitting parameters used in the construction of the equilibrated

porosity-pH relation (see Figure 4-2). The fitting parameter bε,1 is associated with the

constant value seen at the high pH region. The fitting parameter bε,2 governs the slope of

the curve that increases from low pH to high pH regions. The deflection point located in

the middle of the increasing curve is controlled by the fitting parameter bε,3. The constant

value seen at the low pH region is governed by the fitting parameter bε,4.

E.1.1 bε,1

The sensitivity analysis for the fitting parameter bε,1 is summarized in Table E-1.

When the fitting parameter bε,1 that governs the porosity at high pH increases from 0.01

to 0.1, the rate of the delamination determined by both potential front and porosity

front increase by approximately 60 percent. It is observed that when bε,1 is equal 0.1, the

interfacial potential in the intact region increases with delamination time. The change of

bε,1 from 0.01 to 0.001 decreases the moving velocities by approximately 40 percent. The

reaction order, however, is not influenced by the change to the fitting parameter bε,1.

Table E-1. Sensitivity analysis for bε,1

bε,1 = 0.001 bε,1 = 0.01 bε,1 = 0.1
Potential Front Velocity 1.33 2.19 3.58
Porosity Front Velocity 1.09 1.63 3.27

Reaction Order for Potential Front 0.54 0.55 0.56
Reaction Order for Porosity Front 0.59 0.6 0.6
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Table E-2. Sensitivity analysis for bε,2

bε,2 = -5 bε,2 = -3 bε,2 = -2
Potential Front Velocity 2.26 2.19 1.98
Porosity Front Velocity 2.20 1.63 1.18

Reaction Order for Potential Front 0.56 0.55 0.55
Reaction Order for Porosity Front 0.63 0.6 0.6

Figure E-1. The sensitivity of the slope of the increasing curve to bε,2.

E.1.2 bε,2

The sensitivity analysis for the fitting parameter bε,2 is summarized in Table E-2. As

illustrated in Figure E-1, the slope of the increasing curve in Figure 6-6 becomes steeper

when the fitting parameter bε,2 changes from -2 to -5. The increase in the slope results

in a sight increase in the velocities of both potential front and porosity front. The other

observed feature is that the rates of the two fronts are approximately equal when the

slope is steep. It is also observed that the shape of the resulting potential distributions

(see Figure 6-6) is also influenced by this parameter. The reaction order, however, is not

influenced by the change in bε,2.

E.1.3 bε,3

The sensitivity analysis for the fitting parameter bε,3 is summarized in Table E-3.

The deflection point of the increasing curve seen in Figure 4-2 shifts from left to right

when the fitting parameter bε,3 increases from 9.8 to 11.8. When the deflection point is
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Table E-3. Sensitivity analysis for bε,3

bε,3 = 9.8 bε,3 = 10.8 bε,3 = 11.8
Potential Front Velocity 2.73 2.19 1.73
Porosity Front Velocity 2.27 1.63 0.5

Reaction Order for Potential Front 0.53 0.55 0.56
Reaction Order for Porosity Front 0.54 0.6 1.1

Table E-4. Sensitivity analysis for bε,4

bε,4 = 10−4 bε,4 = 10−3 bε,4 = 10−2

Potential Front Velocity 1.94 2.19 3.66
Porosity Front Velocity 1.62 1.63 2.98

Reaction Order for Potential Front 0.56 0.55 0.56
Reaction Order for Porosity Front 0.61 0.6 0.72

pushed to high pH region, the velocities of the fronts decrease. For bε,3 = 11.8, the velocity

of the porosity front decreases to 0.5 mm/hr and the reaction order analysis shows a

kinetic-controlled mechanism for the porosity front.

E.1.4 bε,4

The sensitivity analysis for the fitting parameter bε,4 is summarized in Table E-4.

The fitting parameter bε,4 controls the constant value seen at the low pH region in Figure

4-2. As shown in Table E-4, the decrease in this fitting parameter does not have strong

impact on the rate or the mechanism of the delamination. However, when bε,4 increases

to 0.01, the movements of both potential and porosity fronts increase dramatically. For

bε,4=0.01, the mechanism of the delamination remains mass-transfer controlled for the

potential front, but changes to a mixed-controlled mechanism for the porosity front.

E.2 Poisoning Factor

Four fitting parameters were used in the construction of the poisoning factor-pH

relation (see Figure 4-3(b)). The fitting parameter bζ,1 influences the constant value at the

high pH region. The fitting parameter bζ,2 governs the slope of the transition from low pH

to high pH regions. The deflection point seen in the middle of the increasing curve changes

with the fitting parameter bζ,3. The constant value seen at the low pH region is related to

the fitting parameter bζ,4.
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Table E-5. Sensitivity analysis for bζ,1

bζ,1 = 3.5 bζ,1 = 4.5 bζ,1 = 5.5
Potential Front Velocity 2.18 2.19 2.16
Porosity Front Velocity 1.6 1.63 1.6

Reaction Order for Potential Front 0.55 0.55 0.56
Reaction Order for Porosity Front 0.62 0.6 0.61

Table E-6. Sensitivity analysis for bζ,2

bζ,2 = -1.3 bζ,2 = -3.3 bζ,2 = -5.3
Potential Front Velocity 2.1 2.19 2.2
Porosity Front Velocity 1.35 1.63 1.75

Reaction Order for Potential Front 0.55 0.55 0.55
Reaction Order for Porosity Front 0.62 0.6 0.62

E.2.1 bζ,1

The sensitivity analysis for the fitting parameter bζ,1 is summarized in Table E-5.

When the high-pH value in Figure 4-3(b) increases by two orders (bζ,1 changes from 3.5 to

5.5), the rate of the delamination remains approximately the same. The reaction orders

determined based upon the potential front and the porosity front are not influenced much

by the fitting parameter bζ,1.

E.2.2 bζ,2

The sensitivity analysis for the fitting parameter bζ,2 is summarized in Table E-6.

The slope of the increasing curve in Figure 4-3(b) becomes steeper when the fitting

parameter bζ,2 changes from -1.3 to -5.3. The change in bζ,2 does not influence the rate

determined by the potential front, but has a slight impact on that determined by the

porosity front. For the values that have been tested, the kinetic analysis indicates that the

change in bζ,2 has no significant impact on the delamination mechanism.

E.2.3 bζ,3

The sensitivity analysis for the fitting parameter bζ,3 is summarized in Table E-7.

The deflection point of the increasing curve seen in Figure 4-3(b) shifts from left to

right when the fitting parameter bζ,3 changes from 9.4 to 11.4. The simulation results

do not change much when bζ,3 changes from 9.4 to 10.4, but the velocities of both fronts
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Table E-7. Sensitivity analysis for bζ,3

bζ,3 = 9.4 bζ,3 = 10.4 bζ,3 = 11.4
Potential Front Velocity 2.15 2.19 2.06
Porosity Front Velocity 1.62 1.63 1.33

Reaction Order for Potential Front 0.55 0.55 0.55
Reaction Order for Porosity Front 0.62 0.6 0.62

Table E-8. Sensitivity analysis for bζ,4

bζ,4 = -15 bζ,4 = -16 bζ,4 = -17
Potential Front Velocity 2.20 2.19 2.16
Porosity Front Velocity 1.68 1.63 1.65

Reaction Order for Potential Front 0.56 0.55 0.56
Reaction Order for Porosity Front 0.63 0.6 0.62

decrease slightly when bζ,3 changes from 10.4 to 11.4. For the values that have been

tested, the kinetic analysis shows that the change in bζ,3 has no significant impact on the

delamination mechanism.

E.2.4 bζ,4

The sensitivity analysis for the fitting parameter bζ,4 is summarized in Table E-8.

The computational results remain approximately the same when bζ,4 changes from -15, -16

to -17. For the values that have been tested, the simulation results are insensitive to this

fitting parameter.

E.3 Blocking Factor

The blocking factor was used in the cathodic current density expression. In order

to characterize an enhanced electrochemical reactivity for oxygen reduction in the front

region, a slight increase was assigned in pH range 10 to 11 in Figure 4-4(b). Seven fitting

parameters were used in the construction of Figure 4-4(b). The fitting parameter bα,1

is related to the constant value seen at the low pH region. The fitting parameter bα,2

is associated with the slope of the curve at the low pH region. The deflection point at

low-pH curve is controlled by the fitting parameter bα,3. The fitting parameter bα,4 is

associated with the constant value at the high pH region. The fitting parameter bα,5 is

related to the slope of the short curve seen at high pH. The length of the constant region
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Table E-9. Sensitivity analysis for bα,1

bα,1 = 6.5 bα,1 = 7.5 bα,1 = 8.5
Potential Front Velocity 2.0 2.19 2.52
Porosity Front Velocity 1.60 1.63 2.29

Reaction Order for Potential Front 0.56 0.55 0.57
Reaction Order for Porosity Front 0.62 0.6 0.65

Table E-10. Sensitivity analysis for bα,2

bα,2 = -10 bα,2 = -7 bα,2 = -4
Potential Front Velocity 2.29 2.19 2.07
Porosity Front Velocity 1.78 1.63 1.45

Reaction Order for Potential Front 0.55 0.55 0.55
Reaction Order for Porosity Front 0.62 0.6 0.62

in the middle range of pH is characterized by bα,6 and the magnitude of the constant seen

at the front region is governed by the fitting parameter bα,7.

E.3.1 bα,1

The sensitivity analysis for the fitting parameter bα,1 is summarized in Table E-9.

When the fitting parameter bα,1 changes from 6.5 to 7.5, the computational results in

terms of delamination rate and mechanism do not change much. However, when bα,1

changes from 7.5 to 8.5, corresponding to an increase in the blocking factor at low pH,

the rates and kinetic order determined by both potential front and porosity front show

increasing tendency.

E.3.2 bα,2

The sensitivity analysis for the fitting parameter bα,2 is summarized in Table E-10.

The slope of the increasing curve at low pH in Figure 4-4(b) becomes steeper when the

fitting parameter bα,2 changes from -4 to -10. The increase in the slope results in an

increase in the velocities of both potential front and porosity front. For the values that

have been tested, the kinetic analysis indicates that the change in bα,2 has no significant

impact on the delamination mechanism.
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Table E-11. Sensitivity analysis for bα,3

bα,3 = 8.8 bα,3 = 9.8 bα,3 = 10.8
Potential Front Velocity 2.51 2.19 2.0
Porosity Front Velocity 1.71 1.63 1.5

Reaction Order for Potential Front 0.58 0.55 0.55
Reaction Order for Porosity Front 0.59 0.6 0.61

Table E-12. Sensitivity analysis for bα,4

bα,4 = -2.5 bα,4 = -1.5 bα,4 = -0.5
Potential Front Velocity 2.11 2.19 2.26
Porosity Front Velocity 1.18 1.63 1.78

Reaction Order for Potential Front 0.55 0.55 0.55
Reaction Order for Porosity Front 0.62 0.62 0.6

E.3.3 bα,3

The sensitivity analysis for the fitting parameter bα,3 is summarized in Table E-11.

The deflection point of the increasing curve at low pH in Figure 4-3(b) shifts from left

to right when the fitting parameter bα,3 changes from 8.8 to 10.8. When the deflection

point is pushed to high pH region, the velocities of the fronts decrease. For bα,3 = 10.8, the

velocity of the porosity front decreases to 1.5 mm/hr, but the reaction order based upon

the porosity front does not change with bα,3.

E.3.4 bα,4

The sensitivity analysis for the fitting parameter bα,4 is summarized in Table E-12.

The fitting parameter bα,4 is associated with the constant value seen at the high pH

region in Figure 4-3(b). When bα,4 changes from -2.5 to -0.5, the blocking factor at high

pH increases from 10−5 to 10−3; thus, the delamination rates increase with bα,4. The

delamination mechanism is not influenced significantly by bα,4.

E.3.5 bα,5

The sensitivity analysis for the fitting parameter bα,5 is summarized in Table E-13.

The fitting parameter bα,5 is related to the slope of the short curve seen at high pH in

Figure 4-4(b). When the fitting parameter bα,5 increases from -60 to -40, the slope of the

curve becomes more gradual. The computational results remain approximately the same
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Table E-13. Sensitivity analysis for bα,5

bα,5 = -60 bα,5 = -50 bα,5 = -40
Potential Front Velocity 2.20 2.19 2.23
Porosity Front Velocity 1.66 1.63 1.63

Reaction Order for Potential Front 0.55 0.55 0.55
Reaction Order for Porosity Front 0.62 0.6 0.62

Table E-14. Sensitivity analysis for bα,6

bα,6 = 10.1 bα,6 = 11.1 bα,6 = 12.1
Potential Front Velocity 2.15 2.19 2.15
Porosity Front Velocity 1.6 1.63 1.66

Reaction Order for Potential Front 0.55 0.55 0.55
Reaction Order for Porosity Front 0.61 0.6 0.62

for three values of bα,5. For the values that have been tested, the simulation results are

insensitive to this fitting parameter.

E.3.6 bα,6

The sensitivity analysis for the fitting parameter bα,6 is summarized in Table E-14.

In Figure 4-4(b), the length of the constant region in the middle range of pH increases

with the fitting parameter bα,6. The computational results remain approximately the same

when bα,6 increases from 10.1 to 12.1. For the values that have been tested, the simulation

results are insensitive to this fitting parameter.

E.3.7 bα,7

The sensitivity analysis for the fitting parameter bα,7 is summarized in Table E-15.

In Figure 4-4(b), the magnitude of the constant in the middle range of pH increases from

10−4 to 10−2 when bα,6 changes from -11.1 to -9.1. The increase in the blocking factor

leads to a increase in the delamination rates. The kinetic analysis for -11.1 and -10.1

Table E-15. Sensitivity analysis for bα,7

bα,7 = -11 bα,7 = -10 bα,7 = -9
Potential Front Velocity 1.96 2.19 2.36
Porosity Front Velocity 1.47 1.63 1.77

Reaction Order for Potential Front 0.55 0.55 0.57
Reaction Order for Porosity Front 0.59 0.6 0.68
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shows the same delamination mechanism, but shows a mixed-controlled mechanism for the

porosity front when bα,6 is equal to 12.1.

The sensitivity analysis presented above indicates that the parameters used in

the construction of the porosity-pH relation (bε,1 to bε,4) are most sensitive ones in the

simulations. The fitting parameter bε,1 that governs the porosity at high pH influences up

to 60 percent of the delamination rate. The shape of the resulting potential distributions

is also influenced by that of the equilibrated porosity-pH relation. The the parameters

used in the construction of the poisoning factor-pH relation (bζ,1 to bζ,4) and blocking

factor-pH relation (bα,1 to bα,7) are, in general, less sensitive. However, the increase in the

cathodic current density at the front region results in an increase in delamination rate and

a shift in delamination kinetics.
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