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A new complex spectroscopy technique for the characterization of particles in
suspension was developed which integrates electrochemical impedance spectroscopy and
UV/Vis light scattering. The technique was designed to characterize the particle size
distribution, shape, and surface charge heterogeneity. Rotational electrophoretic
spectroscopy (RES) measures the rotational electrophoretic response to an applied
potential perturbation. Light-scattering measurements were demonstrated to be a
reasonable method for capturing the change of orientation of particles due to their

rotational electrophoretic mobility. An oscillatory light-scattering response was measured
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for a ensemble of borosilicate fibers rotating in response to an applied oscillatory electric
field. The two AC signals were analyzed to determine the magnitude of a complex
transfer function describing the relationship between the light scattered by rotating non-

spherical particles and the perturbing alternating electric field.

In support of the development of RES, infrastructure was developed for the
assessment and characterization of errors in spectroscopy measurements. The propagation
of errors from the time domain into the frequency domain was studied by numerical
simulation and by a formal statistical analysis. The variance of stochastic errors in
spectroscopy measurements was defined by a Taylor series of integral transforms of
random noise in the constituent time-domain signals. The statistical analysis was
conducted for four spectroscopy measurement techniques. This work demonstrated that,
while the error structure of complex impedance measurements was dependent upon the
employed measurement technology, the errors were always normally distributed in the
frequency domain. This result, seen even for colored noise in the time domain signals,
can be regarded to be a consequence of the central limit theorem. With the exception of
measurement techniques that introduced a bias in the error structure, the variance for real
and imaginary parts of the spectrum were found to be equal. These results are general and
can be applied to any spectroscopy measurement of stationary and causal systems. This
work supports the concept that the correlations between errors in complex spectroscopy

measurements are a condition of the Kramers-Kronig relations.



CHAPTER 1
INTRODUCTION

Complex spectroscopy techniques are employed in a diverse range of disciplines for
a broad array of applications. In comparison to time-domain measurements with a single
measurement at a single time, the complex measurement contains two pieces of
information at each frequency. As a result, the real and imaginary components of a
spectrum can be tested for consistency with each other via the Kramers-Kronig relations.
This consistency test provides a means for quantitative indication of reliability of data.

Complex spectroscopic measurements are becoming more popular for
characterization of particles in suspension. For example, state-of-the-art techniques such
as dielectric spectroscopy' and acoustophoresis’ are spectroscopy techniques. Current
commercial particle sensing technology typically provides the user with information
about the distribution of one particle property, e.g. particle size.> There are other property
distributions which are of interest. Particle shape, surface charge (zeta potential), and
dielectric properties are currently determined independently of other properties. Surface
charge heterogeneity of particles in suspension can not currently be measured in-situ with
commercially available sensor technology. A rotational electrophoretic spectroscopic
sensor is under development that integrates electrochemical impedance spectroscopy with
UV/Vis light scattering measurements. This is accomplished by developing a
spectroscopy (or transfer function technique) that is based on perturbations to an applied

electric field in a suspension of particles. The measured potential response in the



suspension and the response of a UV/Vis light signal measured at various angles around
the sample volume are related to the applied perturbation in potential as a complex
transfer function.

Charge heterogeneity may play a significant role for a variety of industrial processes,
including control of particle dispersions for stability, viscosity, and applicability.* The
long-range Coulombic forces that act between particles or between the particles and a
surface are influenced by the manner in which charge is distributed on the particle
surface. The goal of this effort is to develop a characterization technique that can
determine accurately in-situ the distribution of size and shape in conjunction with the
nature of charge heterogeneity on particles. While SEM can provide some of this
information, currently available technology cannot provide such information for particles
in suspension. The proposal is to employ light-scattering measurements to determine the
rotational electrophoretic response of suspensions of particles responding to oscillating
electric fields. The term “Rotational Electrophoretic Spectroscopy” has been coined to
describe the new technique.

The rotational electrophoretic spectra must satisfy the Kramers-Kronig relations if
they are to satisfy the conditions of causality, stability, stationarity, and linearity.’
Consistency can be tested using the measurement model tools developed in the laboratory
of Dr. Mark E. Orazem.%® To determine the consistent range of the spectrum, the spectral
errors must be classified and quantified. The stochastic errors can be used to weight the
measurement model regression. This weighting strategy can provide improved filtering of

Kramers-Kronig inconsistent data.



The form of these errors (the error structure) has been a matter of some controversy.
Descriptions of the stochastic error structure have been based upon observation for a
variety of measurements and systems. Macdonald et al. have suggested that the standard
deviations are roughly proportional to the complex impedance at each frequency.m'13
Researchers in Orazem’s labor::ttory("g'”'l5 '8 have demonstrated experimentally that the
variances of the stochastic error contributions to the real and imaginary impedance are
equal. They proposed an error structure that defined the equivalent standard deviations in
the stochastic errors in the real and imaginary impedances to be a function of frequency.
Both groups have supported their arguments by demonstrating that the relationship
between the standard deviations in the real and imaginary impedances is constrained by
the Kramers-Kronig relations. However, two very different sets of constraints have been
reported. The different constraints are the result of divergent assumptions about the
distributions of stochastic noise in impedance spectra. Durbha ez al® found that the
variances in the stochastic errors in the real and imaginary impedances were equal with
the assumption that stochastic noise is distributed normally. Macdonald and Piterbarg'’
did not find that equality, but they assumed that stochastic noise could have a skewed
distribution.

An effort is made in this work to illustrate that the crucial issue surrounding the form
of the stochastic error structure is the spectroscopy measurement technique. The
Kramers-Kronig relations do not transform errors; frequency-domain errors exist because
they are propagated through the measurement technology. The stochastic errors over time

are transformed uniquely into stochastic errors over frequency by each measurement

technique. Each measurement technology can be simulated on computer and studied to



determine the mechanisms by which time-domain errors propagate into the frequency-
domain. Also, frequency-domain errors in the complex impedance are the result of the
ratio of frequency-domain errors in the complex current and voltage signals. Integral
transforms can be determined that describe the propagation of time-domain stochastic
errors into the complex current and voltage.

The focus of this document is divided between discussions on the RES technique and
error analysis. The Rotational Electrophoretic Spectroscopy technique is described in
Chapters 2 and 3. Rotational electrophoresis is one form of electrokinetic phenomena.
Electrokinetic phenomena refer to the physics that relate fluid motion, charged surfaces,
and electric fields. A review of electrokinetic phenomena and how they apply to
alternating electric fields is provided in Chapter 2. The Rotational Electrophoretic
Spectroscopy technique is described in Chapter 3. In this chapter, the visual observation
of rotational electrophoresis is discussed. Proof of a light-scattering response to the
application of the rotational electrophoretic driving force (electric field) is provided. The
state of the development of the method is discussed.

The propagation of time-domain noise into frequency-domain errors is discussed in
Chapters 4 through 9. A thorough review of the controversy surrounding the error
structure of impedance measurements is provided in Chapter 4. A historical perspective
of complex nonlinear least squares (CNLS) regression is provided. The introduction of
various weighting strategies is discussed. Unanswered questions about the structure of
errors in complex spectroscopy measurements are raised.

Those questions are answered in the next five chapters. The influence of specific

measurement technologies on the error structure of impedance spectroscopy



measurements is demonstrated in Chapter 5. Questions about the universality of
weighting a regression of complex spectroscopy data by the variance in the measurement
have been raised in the literature. The results of the simulations reported in Chapter 5
demonstrate that the variance of the real and imaginary parts of the complex impedance
are equal as long as the measurement technique does not introduce bias error into the
spectrum.

The relationship between the errors in complex impedance and the errors in the
respective complex current and voltage signals is determined in Chapter 6. Taylor series
expansions for the variances of the real and imaginary impedances as a function of the
complex current and voltage signals are derived. The variances of the components of the
complex impedance are demonstrated to be a function of the variances in the complex
voltage and current signals and the six cross-correlations between the four components.

The propagation of skewed distributions of time-domain noise into the frequency-
domain measurement is discussed in Chapter 7. This work shows that, independent of the
distribution function for stochastic errors in the time-domain, stochastic errors in the
frequency-domain have a normal distribution. This result is shown to be a consequence of
the Central Limit Theorem applied to the methodology used to measure the complex
impedance. Durbha et al. determined that, in an expectation sense, the variance of the
stochastic errors in the real impedance is equal to the variance of the stochastic errors in
the imaginary impedance as a result of satisfaction of the conditions necessary for the
application of the Kramers-Kronig transforms.’ A necessary assumption for constraint of
the errors in the complex impedance through the Kramers-Kronig relations is the normal

distribution of frequency-domain errors. °



The mechanism by which noise in the time-domain is transformed into the
frequency-domain is derived in Chapter 8. The Taylor series derived in Chapter 6 is
determined as integral transforms of the noise in the current and voltage signals. These
transforms are expressed for two commonly used measurement technologies. The errors
in the real and imaginary impedance are shown to be uncorrelated. This result supports
the experimentally determined finding that errors in the real impedance are uncorrelated
to errors in the imaginary impedance when the impedance does not include a bias error
contribution.

Auto-integration is a convergence condition employed in impedance spectroscopy
measurements. The criterion is used to determine the termination point for the integration
of the current and voltage signals that is required for the calculation of the complex
impedance. In Chapter 9, it is demonstrated that the auto-integration criterion can not be
set to an arbitrarily small value in order to minimize the magnitude of the errors in the
complex impedance. It is also shown that the commonly used criteria are reasonable.

In Chapter 10, general conclusions about the research described in this document are
drawn. The state of the development of the RES technique is discussed. The implications
of the results of the numerical simulations and statistical analysis in Chapters 5-9 are
presented. Possible directions for continuation of this work are listed in Chapter 11.
Appendix A provides the details of the derivation that led to the results discussed in
Chapter 6. The details of the derivations for the integral transforms describing the

variances in the complex impedance components are provided in Appendix B.



CHAPTER 2
LITERATURE REVIEW: ELECTROKINETIC PHENOMENA

Electrokinetic phenomena were recognized for many years, but Smoluchowski first
formalized a description of the phenornenonl8 in the late 19" century. After World War I,
the field increasingly piqued the interest of researchers. Early researchers in the study of
double layer phenomena were quite interested in the phenomena of electrophoresis, or
cataphoresis as it was termed in that era. When an electric field is applied to a colloidal
suspension of non-conducting particles, the particles will move with a certain velocity
defined by the product of the electrophoretic mobility and the applied electric field. The
problem that has faced researchers for over a century is the description of the
electrophoretic mobility.

Electrophoresis, however, is not the only electrokinetic phenomenon.w'2 !
Electroosmosis is the movement of fluid in a fixed non-conducting chamber under an
applied electric field (it is electrophoresis with the particle frame of reference fixed). A
streaming potential can be measured if the non-conducting solid is stationary while the
liquid phase is in mechanically induced motion. If the non-conducting solid is in motion
due to a mechanical driving force, i.e., particles under gravity, and the liquid phase is
stationary, a sedimentation potential can be measured. Electrophoresis and sedimentation
potentials are usually associated with colloidal suspensions. Electro-osmosis and

streaming potentials are usually associated with liquid on large non-conducting surfaces

(such as glass tubing).



Measurement techniques that utilize electrokinetic phenomena can provide a way of
determining the surface charge of a non-conducting solid. The zeta-potential of a solid
surface is the potential at the hydrodynamically immobile layer, or Stern layer. The zeta

2 . - .24
2223 suspension viscosity,” and

potential has a significant impact on colloid stability,
suspension conductivity.?® Thus, the surface charge properties of particles can affect
the macroscopic properties of the suspension. It is sometimes in the interest of industry to
reach an understanding of the surface charge properties of the particles and powders with
which they work.”” Research & Development recently reported a survey of their readers
that was taken to determine their needs in particle and powder characterization.”®
Seventeen percent measured suspension conductivity, ten percent were interested in
suspension pH, and six percent focused on the particle surface charge as their primary
concern.

A recent series of papers were published in Chemical Engineering Progress on the
need for American researchers and engineering faculty to get more involved in particle
science and technology. Enis et al®® described the need to catalog interparticle forces to
understand the relation between surface energy and colloidal dispersion. One of the
forces involved in colloidal dispersion is due to surface charge. Knowlton er al*®
described the use of electric fields to more efficiently transport colloids. The
understanding of surface charge would be useful in this utilization of electric fields. The
surface charge properties of particulates and powders can be determined by measurement
of electrokinetic phenomena. This can be achieved through integration of electrokinetic

experiments and theory. In this chapter, a review of electrokinetics from the

phenomenological and theoretical standpoints will be made. A description of recent



innovative models and measurement techniques will also be provided. Suggestions for
future directions of research will also be included.

2.1 The Beginnings of Electrokinetics
The first calculation of the electrophoretic velocity of a non-conducting particle in an
applied electric field is attributed to Smoluchowski in the late 19™ century. Work on
calculation of the effect of non-conducting particles on applied electric fields was first
determined using a rigorous approach in which the particles were given a specific
geometric arrangement.’’ The British scientist, Henry, expanded the calculation by

2 - .
'832 The original

relaxing one of the assumptions used by Smoluchowski in his derivation.
assumptions of Smoluchowski were that (1) the hydrodynamic equations of motion for a
viscous fluid hold in the bulk fluid and in the electric double layer of the particle, (2) the
inertia terms in the equation of motion can be neglected because the flow is relatively
slow (that is, the Reynolds number is small with respect to unity), (3) the applied field
can be superimposed on the field created by the field resulting from the particle double
layer, and (4) the double layer thickness is small in comparison to the radius of the

1,33 where a is the

particle. The last assumption would now be described as xa >>
particle radius and k is the reciprocal of the double layer thickness, namely, the debye

length given by

2.1)

)
[5 aoszz ]

where & is the relative permmittivity, & is the permmittivity of a vacuum, k is
Boltzmann’s constant, T is the temperature, z; is the valence number of ion i, e is the unit

charge, and n;” is the bulk concentration of the " fon.
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Henry'® states that Debye and Hiickel also attempted to determine the electrophoretic
velocity as a function of the applied field, but found a different solution than that of
Smoluchowski. However, the analysis of Debye and Hiickel assumed that the applied
field lines were always parallel, which is only possible in the particle is of conductivity
equal to that of the fluid medium. Henry followed the analysis of Debye and Hiickel
except he allowed for the particle to be of a different dielectric property than the fluid.
His analysis found solutions for the electrophoretic velocity without making use of the
fourth assumption of Smoluchowski. However, when Henry made that assumption, his
solution for the velocity, U, reduced to that determined by Smoluchowski:'®

_€E¢ (2.2)

U=
4mu

where ¢ is the dielectric constant, E is the applied field, { is the zeta potential, and y is
the viscosity of the medium. At this point, it was believed that the shape of the particle
would not affect the value of the electrophoretic velocity, as long as the radius of
curvature was much greater than the Debye length. Henry also determined that equation

(2.2) should also apply to electroosmosis calculations.

8 realized that the third Smoluchowski assumption (that the

Even in 1931, Henry'
particle field would remain undistorted in the presence of the applied field) was unlikely.
A new generation of papers on correction of Smoluchowski’s equation (2.2) with
relaxation of the third assumption began to appear soon after World War II. Henry™*
corrected the Smoluchowski equation (2.2) for the distortion to the applied electric field

due to surface conductivity on the particle. Booth® took relaxation effects in the diffuse
p

double layer cloud into account. Accounting for the distortion in the diffuse cloud (using
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the Debye and Hiickel double layer model), he was able to determine the charge on the
particles. This work contributed a major departure from the solution of Smoluchowski, in
that Booth rewrote the electrophoretic mobility as a power series in the particle surface
charge.

Researchers began to concentrate on the fourth assumption of Smoluchowski in the
1960s. It was found that for moderate values of xa (0.2< xa <50), relaxation effects
required significant correction to the Smoluchowski equation.®® Also, in this era,
researchers began to exploit the computational power available with digital computers.
The assumptions of Overbeek’® were applied to these models which were solved through
numerical computation. The two most significant assumptions included in this model
were that (1) the applied field distorts the double layer, and that (2) only terms linear in
the electric field are considered. These early models also limited consideration of the ions
in the fluid and the magnitude of the applied field. These simple assumptions have
provided an avenue for further theoretical development in the theory of electrokinetics.

2.2 Recent Theoretical Developments

As the understanding of electrophoresis improved, the importance of the surface
charge on macroscopic properties became better understood. Many researchers began to
model the influence of zeta potential on the macroscopic behavior of colloidal
suspensions. Others attempted to improve the correlation between the
electrohydrodynamical model describing electrokinetic phenomena and experimental
observation. Another movement has been to ascertain theoretically the response of
colloidal suspensions to an applied oscillatory electric ficid. In this section, these efforts

will be described.
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2.2.1 Macroscopic Behavior and Surface Charge
The most easily understood dependency of a macroscopic property on surface charge
is most like suspension conductivity. It is well understood that water containing mobile

2021 salt water allows the passage of electricity

ions will have an electrical conductivity;
more easily than most fresh waters, for example. It is therefore not surprising that the
addition of charged particles would affect the conductivity of a suspension. First,

8 therefore the

particles which have an electrophoretic mobility are non-conducting,’
inclusion of these dielectric solids will affect the current lines through the fluid.>*?® The
double layer of each particle can also affect current lines. None of the models described
in Section 2 allowed for the polarization of the particles. Polarization of the disperse
phase would be expected to affect the conductivity of the suspension.

The effective conductivity of a suspension comprises contributions from the
conductivity of the bulk medium, polarization of the applied field by the dielectric
disperse phase, polarization of the particles, distortion in the distribution of ions in the
double layer, and transport of ions due to electroosmosis of the fluid, and electrophoresis
of particles.’™”® Saville’” approached the problem by defining a particle surface
conductivity. He was able to determine analytical solutions for symmetrical electrolytes.
The analytical solution was correct to second order in the zeta potential. Numerical
results for the same model verified that polarization, electroosmosis, and surface
conductivity can significantly affect the suspension conductivity. In further studies he
included the addition of counter-ions created in the particle charging process and changes

in the bulk concentrations due to nonspecific adsorption in his model.*® These inclusions

greatly improved the agreement with conductivity data.
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O’Brien also considered the problem of the addition of particles to suspension
conductivity. It was his belief that each particle contributed to the effective conductivity
through the solution for the electric potential and ionic concentrations far from the
particle.® As in the derivation of the Saville model,®” an approximate solution was
determined that was correct to order . Numerical solutions were also calculated and
they agreed within a few per cent at low surface charge (low zeta potential). The
discrepancy increased dramatically as the zeta potential increased. This model was not in
good agreement with conductivity data. The author attributed the discrepancy to an
inappropriate model for the particle and the electrolyte. The model was later tested on
data collected on a porous plug system consisting of closely packed spheres.*' The
equations of the model were the same, but the boundary conditions were changed to
accommodate the plug system. The numerical solutions to the model for the closely
packed system were in good agreement with measured conductivities. The zeta potential
was calculated and was in good agreement between estimates using the closely packed
conductivity and the conductivity of a dilute suspension using the same spheres.
However, when the estimate was made using the electrophoretic mobility of the spheres,
the zeta potential was much smaller. While the first and second estimated zeta potentials
decreased with decreasing Debye length, the third estimate increased with decreasing
Debye length.

Ohshima***® derived a conductivity formula based on the prior described O’Brien
solution.”? He claimed that his formula was valid for insulating and conducting particles
alike as long as two assertions held - (1) that the applied field is small with respect to the

field of the potential, that is, that £ << x¢’; and (2) that there is no flux of material into
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the particle, that is, that v-7Z =0 at the particle surface, where ¥ is the velocity of either
ion, and 7 is the unit normal at the surface.* His approximate formula and numerical
solution are both in agreement with the same formula and solution derived by O’Brien.*
Both are also correct to the same order.

One failure of all of these models is that they do not account for the induced dipole
moment that occurs under disequilibration of the double layer under applied field.** In his
review paper, Dukhin* derived a model for the induced dipole moment created when the
diffuse cloud of the double layer is distorted. The simplest way to visualize the induced
dipole moment is to consider the diffuse cloud under the imposed field. If the co-ions in a
colloidal system are positively charged, then under an electric field, the co-ions will
migrate towards the negative electrode. Thus, more positive charge exists on one
hemisphere of the particle than on the other. A dipole moment has been induced because
of the antisymmetry of the diffuse cloud.*’ It is shown by electrostatic theory thata set of
closed field lines results.*® Classical double layer theory assumes that a particle and its
double layer is electrically neutral and would not have any long rang field lines. The field
resulting from the induced dipole moment were expected to interfere with a field applied
to a colloidal suspension and thereby to affect the suspension conductivity. Dukhin and
Shilov* derived the effective conductivity of a suspension when induced dipole moments
form. Dukhin*® also points out that conductometric measurements are difficult in the
presence of polarized electrodes and suggests that such measurements be performed
under alternating current conditions. This will be discussed further in Section 3.3.

Another macroscopic property that is widely held to be dependent upon surface

charge is suspension viscosity. In fact, applied electric fields have been used to affect the
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viscosity of suspensions. The term electroviscosity was created to describe the increase in
viscosity due to the fixing of ions in the double layer of the disperse phase. In the 1950s,
Booth?* derived a formula for the effective viscosity of a suspension of particles and
electrolyte. He found that the electroviscous effect increased with the debye length.
Dukhin* discussed the effect that the field of the diffuse double layer will fix the dipole
of water molecules and affect the location of the shear plane near the particles surface.
Recent work described in his review paper* suggest that the displacement of the slipping
plane is probably no more that one water molecule in thickness, but at high surface
charge values, the displacement seems to increase, thereby increasing the effective
viscosity.

2.2.2 Electrohydrodynamic Models

Redefinition of Smoluchowski’s equation (2.2) gives

U=uE (2.3)
where U is the electrophoretic velocity, E is the applied field, and u is the

electrophoretic mobility. In order to understand better the electrophoretic mobility and its
dependence on the applied field, the zeta potential, and the fluid viscosity, many
researchers have developed electrohydrodynamic models to solve for the velocity of the
fluid around a particle when the particle is undergoing electrophoretic motion, but is held
in a fixed coordinate frame. The fixing of the coordinate system means that the fluid at
the particle surface is still (no-slip), while the velocity of the fluid far from the particle is
equal to -U.

The electrohydrodynamic models usually consist of the same set of equations but use

slightly different boundary conditions, assumptions necessary for an analytical solution,
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or numerical solution technique. The equations in the fluid include the equation of
motion and the continuity equation. These can be written as
uViu-Vp=pV¥ (2.4)
and
V-u=0 (2.5)
where p is the pressure field, u is the fluid velocity vector, and ¥ is the electrostatic
potential field in the fluid. The basic assumptions in these equations are that the inertial
terms can be neglected (Re small), and that the fluid is incompressible.

O’Brien and White developed a model to describe the electrophoretic mobility of a
spherical colloidal particle that coupled the above equations with the determined ionic
distribution and potential around a colloidal particle.47 They calculated the required force
to move a particle at the velocity U and the force required to hold the particle fixed
under the applied field E . The sum of these forces must be equal to zero which allowed
for determination of the electrophoretic mobility. The Poisson-Boltzmann equation®® was
used to describe the potential field with the boundary condition that the gradient of the
potential is equal to the electric field strength far from the particle. The boundary
conditions for the velocity consisted of the no-slip condition at the surface (the
hydrodynamically immobile layer was assumed to be approximately the particle surface)
and that the velocity is the negative electrophoretic velocity far from the particle.
Conservation of species equations were used to determine the ionic concentration profile

for each ion:
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V.-(kIVn;, +z,en, V¥ — A,n,u) =0 (2.6)
where n; is the concentration of each ion and A; is the ionic drag coefficient. The
boundary conditions for these equations required that far from the particle, the
concentration of each ion is the bulk concentration of that ion, and that at the surface,
there was no ionic flux into the particle. To determine the approximate solution to the
model, the equations were linearized under the assumption that the applied field was
much weaker than the field created by the zeta potential. The results of his study were
that the mobility is a monotonically increasing function at low values of the zeta
potential. At low values of the xu product, the mobility plateaus at high zeta potentials.
At higher values of the product, the mobility shows a maximum (although this maximum
occurs at zeta potentials that are difficult to reach in experiments). The maximum was
found for both symmetric and asymmetric electrolytes. The approximate solution*® was
compared to both the numerical solution and an earlier approximate formula derived by

Dukhin.*** The approximate O’Brien formula was simpler than the Dukhin formula and

% to allow for a general

in better agreement with the numerical solution. O'Brien,*
electrolyte (as compared to a symmetric electrolyte), later redeveloped the Dukhin
formula. The approximate formula was again in good agreement with the numerical
solution to the redeveloped model. The electrochemical potential was included in the
model to allow for changes in the ion density in the double layer of a spheroid particle
with a debye length much smaller than the radius of curvature.’® This work illustrated
that the Smoluchowski equation was not suitable for description of the electrophoretic

mobility for non-spherical particles. O’Brien also noted that for the non-spherical

particle, rotation may occur upon the application of an external field.
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Anderson also worked on the issue of particle rotation. It has been shown that the
Smoluchowski equation (2.2) holds for a nonconducting rigid particle of any shape if the
four assumptions of Smoluchowski hold.”' Also, the particle will not rotate no matter
what its shape.’' The focus of his early work was on particles which had discrete surface
charge distributions but on a scale consistent with the particle size. 3! Using essentially

4739 the problem was simplified by describing an inner region

the same model as O’Brien,
near the particle and an outer region outside the double layer. In the inner region, the
Poissan-Boltzmann equation20 held, and in the outer region, Laplace’s equation20 held.
As a condition at the boundary between the inner and outer regions, a slip velocity was
defined as the sum of the electrophoretic velocity, the velocity transform of the angular
velocity due to rotation, and the negative mobility calculated using the field at the
particle surface. Through this model, the linear velocity and angular velocity were
determined as functions of the monopole, dipole, and quadrapole moments of the particle.
No experimental data was available for confirmation of the model results. The model was
expanded to be valid for particles with a surface charge that is an arbitrary function of the
surface position.”? The solution was again determined as a function of the three polar
moments. Formulas were developed explicitly for spheroidal particles with axisymmetric
charge distribution. The result shows that while the particle will orient in a certain
direction, the particle may translate in a direction skew to the orientation angle. It was
also determined that a particle with a net neutral charge, but with a definite charge
distribution, can have a nonzero electrophoretic mobility. The model was also applied to

kaolinite clay to determine the unique zeta potentials on the faces and edges of the clay

particle. The translational and rotational velocities of dumbbell-like particles were
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similarly calculated except that not only were the forces on the net particle determined,
but the forces on the individual spheres of the dumbbell were determined.”® This study
found again that the translational velocity direction angle may be skew to the direction of
particle orientation. It also determined that the particle would align itself in the field even
if the difference in the zeta potentials of the two dumbbell spheres was small. A true
dipole does not need to exist for the dumbbell like particle to rotate, a gradient in the zeta
potential down the axis of the connector is simply required. Similar studies have
performed for nonuniformly charged particles of geometric descriptions-slender and
chain of spheres.>* The findings of the models for these geometry were similar to the
findings for the other geometries. A final addition to the model accounted for both
symmetric nonuniform charge and polarization of (flux of ions into) the double layer of a
spherical particle.55 Under these assumptions, it was determined that even a spherical
particle could have an angular velocity component, and the particle may move skew to
the angle of the charge symmetry axis. The dependence of the electrophoretic mobility of
a nonuniformly charge spherical particle on the monopole and quadrapole moments has
been independently verified.*®

Ohshima followed closely the path that O’Brien followed in using
electrohydrodynamic models to improve the correlation between measured
electrophoretic mobility and theory. Using a similar model to the first model of
O’Brien,*”’ an approximate formula and numerical solution for the electrophoretic
mobility of spherical colloidal particles were determined by introducing the

157

electrochemical potential.”’ The results were in good agreement with other researchers

and the approximate formula and numerical solution provided similar results. The
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electrophoretic mobility was found to have a maximum at large values of xa. A similar
approach was taken to determine the sedimentation velocity and potential of charged
spherical particles in a dilute suspension.58 Both the numerical and approximate model to
the solution showed that both the sedimentation velocity and potential had a saddle point
in a 3D plot of velocity or potential versus the zeta potential and the product «a.

An attempt was made to better correlate electrophoretic mobility data with
electrokinetic models by introducing a new model for the Stern layer. Earlier
measurements had shown that zeta potentials measured via mobility and conductivity
were in disagreement.' In order to bring these two values into agreement, a dynamic
Stern layer model was introduced which allowed for transport of ions in the Stern layer.sg
Adsorption-desorption processes and lateral movement of ions in the layer was allowed.
The lateral movement is described by the effects of electromigration and diffusion caused
by the application of an external electric field. Plots of the numerical solution of the
model for the mobility against the ionic strength showed local maxima and minima for a
given number of binding sites and for a given value of the ion surface mobility. Plots of
the mobility against the number of binding sites and ionic straight suggested the possible
presence of saddle points. The mobility increased as the ion surface mobility decreased.
The calculated mobilities were in good agreement with the measured mobilities of two
types of latex particle suspensions.®® Other researchers have taken the inability to
correlate zeta potential values determined by the electrokinetic models with other
measurements and have moved toward characterization of the charged surface through

other properties.®'
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The shear plane of a particle can be moved with respect to the particie radius by
creation of surface charge layer such as adsorbed polymer chains or polyelectrolytes.®*%
In one study, the electrophoretic mobility increased as the shear plane was placed deeper
into the charge layer.”” Numerical solutions for the mobility showed a maximum with
respect to the shear plane depth and increased with the fixed charge in the surface layer
when the Donnan potential was included in the model.>* An approximate analytic
solution to the same model was also developed and showed similar behavior to the
numerical solution at low charge in the surface layer.®® The model was further modified
to allow liquid flow through the surface layer and an analytic solution was derived.®®
Surface charge layer effects were also determined for electroosmosis and streaming
potentials along plane walls with a surface layer,®’ and as an approximation, the surface

layer does not effect the streaming potential or electroosmotic fluid velocity.

2.2.3 Oscillating Electric Fields

The application of an oscillatory electric field can affect a colloidal dispersion in two
ways: (1) the particle will respond in a kinetic movement and (2) the suspension
conductivity may be frequency dependent. The first way is quite simple to describe. If a
positive field is applied in a coordinate system fixed for the observer, a charged particle
in a colloid will show an electrophoretic mobility. They will translate and they may
rotate®® into alignment with the field. If the field is turned off, the particles will relax. If
the field is reversed, the electrophoretic mobility would be in the opposite direction and
the particles may rotate into a reverse orientation. Recent studies have determined that in
an oscillating electric field, the oscillatory movement of colloidal particles will create a

propagating sound wave. Likewise, if an ultrasonic beam is directed into a colloid,
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alternating electric fields will be produced.’> This phenomenon has been described as
electroacoustics or acoustophoresis.

O’Brien was one of the first researchers to formalize the phenomenon. The
phenomenon occurs because the oscillatory electrophoretic movement created by the
imposed oscillatory field creates oscillatory pressure fields on the opposing sides of
particles in a suspension. The alternating pressure fields propagate as sound waves. The
applied field and resulting sound wave bring about a complex transfer function known as
the dynamic mobility. The dynamic mobility is complex because there is a phase lag
between the applied field wave and the sound wave. The value of the dynamic mobility
is a function of the applied frequency, the zeta potential, the kinematic viscosity of the
fluid, and the size of the particle.®® An extensive study of the acoustophoretic response of
non-spherical particles was accomplished by using a traditional electrohydrodynamic
model while accounting for the electroosmotic flow field surrounding the particle.
Dynamic mobility spectra were calculated for several aspect ratios of prolate particles
and for several ratios of the density of the particle to the fluid density.”

The more common use of alternating electric fields is in the measurement of the
frequency dependent dielectric properties of a colloid. In the early years of the century,
AC technology was implemented to measure the complex admittance of colloidal
suspension. The real and imaginary parts of the admittance are related to the conductivity
and dielectric constant of the suspension. The high frequency asymptotic value of the
dielectric constant was associated with the suspended and suspending phases, and the
difference between the measured dielectric constant and this asymptotic value was

believed to give the value of the dielectric constant associated with the interface.”"
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With the improved ability to measure frequency dependent phenomena, more focus
has been placed on the dielectric properties in recent years. The dipole formation of a
particle in the presence of an applied oscillatory field will effect the conductivity of a
colloidal suspension.** O’Brien has formulated an expression for a complex dipole
coefficient that describes how the dielectric properties of the particle and its dipole
moment will distort the external field.”” The admittance has also been revealed to be a
more cumbersome function of the conductivity and dielectric constant than had earlier
been believed. The conductivity is frequency dependent, and the dielectric constant is
complex and frequency dependent.” Electrohydrodynamic models have been used to
calculate the admittance of a colloidal suspension. The real part of the dielectric
coefficient has two plateaus, increases from one to the other as frequency decreases, and
has a nonzero derivative with respect to frequency at roughly 10-100 kHz. The
magnitude increases with increasing zeta potential.73 The effective conductance is
constant at low frequency and monotonically increasing at high frequency. " The
imaginary part of the dielectric response behaves like the imaginary impedance response
of a Voigt circuit element,” and its magnitude increases with increasing zeta potential.
These calculations for the conductivity and dielectric response have been independently
verified through another modeling effort.”

2.3 Technical Innovations and Experimental Observations

The development of more sophisticated models in the field of electrokinetics has
inspired a great deal of new measurement technologies. An increased effort has also been
made to describe the electrokinetic properties of a greater catalog of particulate materials.

These recent advances will be described in this section.
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2.3.1 New Measurement Technologies

Classical electrophoretic measurements have been adapted to changing needs. Its
usage in DNA analysis (gel electrophoresis) is well known (O.J. Simpson).
Microelectrophoresis has been commonplace for several years.’>”’ Hewlett Packard has
recently developed an instrument making use of capillary electrophoresis.’ It is primarily
being used to separate and detect biopolymer particles.” Free solution capillary
electrophoresis (FSCE) makes use of three driving forces: the electrophoresis of the
particles, the electroosmosis of fluid along the capillary wall, and the drag of the particle
in the fluid. An external flow field can also be imposed to intrcduce another force.”
These forces in conjunction create a greater separation of particles than could be
accomplished with traditional electrophoresis. Detection is accomplished using UV/Vis
absorption spectlroscopy.80 The small currents required for the technique generate less
heat than the traditional current requirements. 7 The approach has certain difficulties. For
the detection and analysis of biopolymers and proteins to be accomplished, the capillary
wall needs to be suitable for the substance in study.?' This in itself is no trivial task. The
system also requires a more complex sample injection system than traditional
electrophoresis.82 However, the small volume required for sample measurement is a
benefit for the small amounts of biomaterial available.

Electrophoretic fingerprinting is another technique which has very recently been
developed.® The electrophoretic mobility of a colloidal particle is measured and plotted
against pH and pA (the negative log of the specific conductance). The three dimensional

plot is converted into a two dimensional topographic plot where the mobility is the
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contour variable, resulting in an electrophoretic fingerprint. The technique could be used
to assess particle composition, charge, and colloid stability.

A truly visual method has been developed to determine the zeta potential based on
3D tracking of individual particles.®* A sample chamber rests on a piezoelectric actuator
that keeps a particle in the focal plane of a CCD microscope using a sophisticated control
algorithm. Particles can be tracked when moving under Brownian motion or under an
applied field. The technique allows the user to actually sample what each individual
particle is doing, and average after all the measurements. Traditional electrophoretic
detectors use light-scattering methods that are averaged in the measurement.

Coulter® has recently made use of the discovery of particle rotation in a new
instrument. Rotation of particles was just recently verified.® The Coulter® Delsa 440SX
uses a pulsed electric field to align particles and then allow them to relax when the pulse
is in the off state.® It is also equipped with multiangle detectors to get a variety of
perspectives on the particles in a colloid sample. The alignment and relaxation of non-
spherical particles can provide information on the surface charge and the particle shape.
Analysis of the data can remove the influence of Brownian motion from the
electrophoretic mobility spectrum, thus providing a more accurate assessment of the zeta
potential.

The development of acoustophoretic theory inspired the construction of the Matec
Applied Sciences Acoustosizer.> A sample chamber consists of two electrodes opposite
each other. Each electrode is connected to a transducer. An oscillatory potential signai is
transmitted across the electrodes and the transducers sense the resulting sound wave.

Likewise, an oscillatory potential signal can be transmitted across the transducers,
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emitting a sound wave, which will result in a measured oscillatory potential between the
electrodes. Either technique can provide an assessment of the dynamic mobility as a
function of the frequency of the applied signal. Analysis of the data can provide values
for the zeta potential and the particle size distribution.” Determination of the dynamic
mobility can be difficult if the particles aggregate; another measurement technique is
required to determine the particle size independent of aggregation formation.®® However,
the limiting dynamic mobility has been shown to correspond with dc mobility in the case
of polystyrene latex particles.®® Studies have been completed on silicon nitride
suspensions to characterize the technique. The technique was determined to provide a
good assessment of the surface charge on the particle independently by two research
groups on the ceramic material.®”%8

An increasing popular electrokinetic technique is dielectric spectroscopy.”’ The
design of the dielectric spectrometer is quite similar to the design of an electrochemical
impedance spectroscopy experiment. A chamber is filled with a colloidal suspension.go
Two electrodes are placed at opposite walls to drive an oscillatory field through the
chamber. Polarization of the electrodes can create a non-uniform field in the colloid,”’
therefore selection of the driving electrodes is important. Two reference, or sensing,
electrodes are placed in a line normal to the faces of the other two electrodes. An
oscillatory potential is driven between the external electrodes and is sensed between the
reference electrodes. A phase lag may exist between the two signal, thus yields the
measurement of a complex admittance. The analysis follows in a different manner than
that described before,”> but the admittance can be converted into an expression for the

conductivity and the dielectric constant at any frequency.’® The model derived by Saville
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for the frequency dependent conductivity and dielectric constant are in extremely good
agreement with experimental data.””* Measurements on colloidal hematite using the
technique discovered a previously inaccessible phenomenon in the dielectric spectra.”

2.3.2 Electrokinetic Standard

An effort has been made to identify a reasonable electrokinetic standard, in order
that electrokinetic property determination can be better correlated between
experimentalists and between techniques. While polystyrene latex serves as a good
mechanical model for a spherical particle, it has been found to be troublesome as an
electrokinetic standard.”® There have been difficulties in relating the measured zeta

9697 and a modified description of the

potential with the surface charge on latex particles,
Stern layer has been suggested. Latex suspension preparation has also been shown to
effect zeta potential measurements.”® Charging phenomena on hydrocarbon particles is
poorly understood. For a hydrocarbon particle to carry charges that have been reported,99
ions would have to adsorb to a hydrocarbon surface out of the aqueous phase. Ions should
favor the aqueous phase over the hydrocarbon phase.

In response to the need for the standard, some researchers have suggested that
goethite be used. A series of studies on several inexpensive materials have been
performed to get replicate measurements of the electrophoretic mobility under a variety
of experimental preparation and measurement conditions.”® Red blood cells, silica, latex,
and goethite were all considered. Goethite particles can be produced with a very narrow
size distribution. The addition of phosphate can control the IEP of a goethite suspension.

Also, goethite suspensions age with little decomposition of the particles as compared to

the organic species.
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2.4 Summary

Electrokinetic models have been developing rapidly for the last twenty years. While
general models can be developed for broad classifications of systems, in application,
models must be specific to the application that is being considered. This is especially true
in the case of biosystems and non-rigid particles that demonstrate non-stationary
behavior. The development of increasingly sophisticated models has allowed
development of new characterization instrumentation. Frequency dependent phenomena,
electrosonic amplitude effects, and better sensitivity are being utilized in new
measurement techniques.

The science of electrokinetics can be extended to include mobility differences
between fluid and solid phases that result from the application of other fields. Electric
fields are not the only driving forces that can create the phenomena associated with
electrokinetics. Both the theories of diffusiophoresis and thermophoresis are derived
from the theory of e:lect:rophore:sis.m0 The research community can also utilize these
phenomena in development of new measurement technologies.

Although electrokinetic phenomena have been under study for over a century, the
general electrokinetic model is still incomplete. Theory and experimental observation do
not always agree. Instrumentation will become more powerful as on-line computational
ability improves. And as computational power increases, researchers will be better able to
solve more sophisticated models. The improvements in ability to assess electrokinetic
phenomena experimentally and via numerical simulation will provide an avenue for

improvement of the general electrokinetic model.



CHAPTER 3
DEVELOPMENT OF ROTATIONAL ELECTROPHORETIC
SPECTROSCOPY

Charge heterogeneity may play a significant role for a variety of industrial processes,
including control of particle dispersions and the use of slurries for chemical mechanical
polishing of silicon wafers. The long-range Coulombic forces that act between particles
or between the particles and a surface are influenced by the manner in which charge is
distributed on the particle surface.* The goal of this effort was to develop a
characterization technique that can determine accurately in-situ the distribution of size
and shape in conjunction with the nature of charge heterogeneity on particles. While
SEM can provide some of this information, currently available technology cannot provide
such information for particles in suspension. Technology was under development that
employed light-scattering measurements to determine the rotational electrophoretic
response of suspensions of particles responding to oscillating electric fields. The term
“Rotational Electrophoretic Spectroscopy” was coined to describe the new technique.

3.1 Background

Charge heterogeneity refers to the distribution of charge on the surface of individual
particles. Three types of charge heterogeneity are typically discussed in the literature:
random heterogeneity, isolated patches of charge, and interacting patches of charge.'”!
The most common colloidal particles that have non-uniform distributions of charge are
soil clays.® Clay particles are composed of sheets of silicon-based lattices.* Bentonite clay

lattices tend to have a different base or ion exchange capacity on the edges and faces of
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the sheets.* At an acidic pH, the edges of the sheets will usually be positively charged
while the exposed faces will be negatively charged.* This property is utilized in the
drilling of oil wells.* Bentonite clays are used as drilling mud for cooling and lubricating
drilling bits, removing debris, and sealing the walls of drilled holes. If drilling is stopped,
the clay solidifies. Polyvalent ions are added to the mud to neutralize the positive charge
on the edges of the lattice. The removal of positive charge inhibits the formation of three-
dimensional solid structures, reducing the amount of work required to re-liquefy the
mud.* The combined properties of particle charge heterogeneity, shape, and size
influence the packing structure of concentrated suspensions, and thereby influence the
associated rheological properties.3

The rotational moment of the electrophoretic mobility of particles in suspension is
utilized in this technique to focus on phenomena associated with surface charge
heterogeneity, non-spherical shape, and induced dipole formation. Translational
electrophoretic measurements can provide erroneous results for particles with
heterogeneous surface charge. For example, a non-uniformly charged, spheroidal particle
with a net zero zeta potential can still have a non-zero electrophoretic zeta potential.52
Non-uniform surface charge distribution has also been shown to create a component of
the translational electrophoretic mobility that is skewed toward the direction of the
applied electrophoretic field.”® Rotational electrophoretic mobility occurs as a response
by particles with non-uniformly distributed surface charge to an applied electric field.
Non-spherical particles may also align themselves in an applied electric field due to
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formation of an induced dipole."™~ Focus on the rotation of particles in suspension in an
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oscillating electric field will provide information on relaxation phenomena associated
with surface charge heterogeneity and diffuse double layer polarization.

The combined properties of particle charge heterogeneity, shape, and size influence
the packing structure of concentrated suspensions, and thereby influence the associated
rheological properties.*'”" Charge heterogeneity is generally overlooked because its
measurement is difficult. Most models for patchy charge transform the heterogeneous
charge into a smeared surface potential.'® Charge heterogeneity has also been described
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in terms of the permanent dipole or multipole moment of a particle. "~ The translational

and rotational moments of the electrophoretic mobility have been described with respect
to monopolar, dipolar, and quadrapolar moments. Models have been presented for
doublets of dissimilar particle:s,68 dumbbell-like particles,53 non-uniformly charged
ellipsoidal particles,’* and “slender” particles.**

3.2 Concepts for Design

The electrochemical component of rotational electrophoretic spectroscopy takes
advantage of the tendency of non-spherical particles to rotate to reach a preferred
alignment when an electric field is applied. If the field is applied in an oscillatory
manner, the particle will rotate in an oscillatory manner to achieve its preferred
alignment.”® Light scarttering techniques can sense the rotation of the particle as
illustrated in a simplistic manner in Figure 3.1. The intensity of the photodetector
response will vary in accordance with the amount of light blocked by the particle. In an
end-on configuration, the light intensity reaching the photodetector will be at a
maximum, and in a parallel configuration, the light intensity reaching the photodetector
will be at a minimum. As indicated in Figure 1d, rotation of a spherical particle will have

no effect on the photodetector, thus the technique will be sensitive to departures from a
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spherical particle shape. Note that, since the technique allows measurement of potential
and current, the more standard dielectric spectroscopy can be used to complement the
interpretation of the photodetector response.

The rotation of a particle is determined by the electrohydrodynamics of the fluid
surrounding the particle and is opposed by the viscous drag of the fluid on the particle.
The rotational electrophoretic mobility is dependent on the applied field and the
heterogeneity of charge on the surface. For example, John Anderson and his coworkers at
Carnegie Mellon determined that the angular velocity of a particle is dependent on its
dipole and quadrapole moments of charge.sz'ss’68 Also, the particle can have an angular
velocity because of its tendency to align in an applied field.'® Due to polarization of the
diffuse double layer around the particle in an applied field, a dipole moment for the
particle and its diffuse double layer can be induced. This induced dipole will draw the
particle into alignment with the field. Therefore, sensing the oscillating particle
orientations employs light scattering measurements lagging behind the applied alternating
electric field. An oscillating scatter signal can be measured because we are controlling
particle orientation and placement of the photodetector. The field measurement is much
simpler. The electric field is proportional to the current. And since the voltage drop is
measured between the reference electrodes, the field can be calculated as the gradient of
the potential.

The scattering intensity from a single particle is proportional to the wavelength of
light and a scattering function that is dependent on particle orientation and scattering
angle.'® Thus, the orientation of a single particle will affect the scattering intensity. The

scattering function can be approximated by the summation of the scattering functions for
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n identical particles. This description can be extended to a volume-averaged description
of the scattering. From this perspective, the system-described scattering function should
be different for a system of particles in random orientations or for a system of particle in
identical orientation or for a system with distributions of orientations.

The response of the photodetector to an oscillating electric field is a function of
frequency. At high frequency, the particle cannot change its alignment to conform to the
rapidly changing electric field, and the photodiode response is constant. At a frequency
characteristic for the particle shape and dipole moment and the fluid viscosity, the
particle will rotate at the frequency of the field, but this signal lags the field by a constant
amount. The phase lag itself also contains information concerning the particle shape and
dipole moment and the fluid viscosity. At very low frequencies, the particle will orient
with the field, but, once aligned, the particle will stay in alignment until the field strength
reduces sufficiently to allow relaxation. This will yield a maximum in the photodiode
response.

A zero-biased signal applied to the suspension would avoid translational
electrophoresis. At high frequencies, particles do not have sufficient time to respond to
the field, and therefore no scattering signal is expected as shown in Figure 3.2a. As the
field frequency is reduced and approaches the inverse of the time constant for particle
rotation, some particles would begin to cyclically rotate with the field. At some critical
frequency, all the particles would be oscillating in the field. The output signal would
have a phase lag with respect to the applied voltage signal, but it would not be purely
sinusoidal. Because the field is at full strength twice each cycle, the particles can align

twice each cycle. For forward scattering, an axially symmetric particle (with respect to
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the dipole moment) would be aligned in the light whether the field is positive or negative
in orientation. Therefore the photodiode signal is fully rectified. The applied voltage and
photodiode signals would look like those plotted in Figure 3.2b. As the frequency
decreases, a point would be reached where the particles would be aligned in the field
before the field reached its maximum. Since the particles would maintain the same
orientation as the field continued to increase, the scatter signal would appear to be not
only rectified, but clipped with respect to the applied field (Figure 3.2c). As a first
approximation, when the particles are mostly aligned, the optical signal should be
strongest (less projected area by the particles). When the particles are mostly relaxed, the
optical signal should be at its weakest (more projected area by the particles). The
photodiode response is expected to look like the absolute value of a sine wave. This has
been experimentally observed.

The Fourier series expansion in harmonics of the fundamental signal for that signal is

an even series of cosine harmonics.

Isin(mt)l =%+g%-—lt(—12?-cos(2ncot) G-
The impedance transfer function can not be directly measured from the applied voltage
and photodiode response signals, because the generator signal is a “pure” sinusoid while
the photodiode signal is a summation of harmonic sinusoids. This problem could be
solved by fully rectifying the applied signal from the generator would provide an applied
signal which also looked like the absolute value of a sine wave. Both the input signal and
the output signal would have the same structure defined by the Fourier series of equation

(3.1). The clipping phenomenon is nonlinear and does not lend itself to frequency domain

measurement, thus, the frequency range for the measurement is limited.
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To avoid harmonic analysis a bias is added to the alternating electric field so that
either the maximum or the minimum value of the field is null. Under this condition, no
oscillation in the scattering signal at high applied field frequencies would be observed
(Figure 3.3a). But as the frequency is reduced towards the characteristic frequency, a
scatter response (Figure 3.3b) that is purely sinusoidal would be observed. This results
because the particles only aligned once per cycle of the applied electric field. At low
frequencies, the clipping effect would still be present (Figure 3.3c). The transfer function
describing this set of perturbation and response signals could be directly calculated
without the necessity of signal conditioning. However, a bias is applied, and there is a net
translational electrophoretic mobility. But, with short enough measurements, and
occasional mixing of the system, this measurement strategy is reasonable and preferable
for this preliminary assessment of the technology.

3.3 Accomplishments

A schematic illustration of the rotational electrophoretic spectrometer system is
given in Figure 3.4. The RES prototype consisted of a cell with an optically clear
chamber exposed to monochromatic light scattered off a diffraction grating from a Xenon
white light source. A single wavelength of light was passed through the sampling
chamber to a photodetector, which recorded scattering intensity. The photodiode
measured the forward scatter of particles in suspension. After the particulate suspension
was added to the cell, working electrodes were placed in the upper chambers of the cell to
apply a field across the optical chamber. Micro-reference electrodes were inserted to just
above the optical chamber to measure the field in the suspension. A sinusoidal electric
field was generated by a Solartron 1254 Frequency Response Analyzer amplified by a

KEPCO BOP 500M Power Supply.
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The experiment was controlled via a personal computer. The frequency response
analyzer provided a signal used to drive the power supply to generate the oscillating
electric field across the sample volume. The potential difference across the reference
electrodes was monitored using a high-input-impedance voltage follower. The current
provided by the power supply could also be monitored. The photodetector signal was
returned to the frequency response analyzer either via a high impedance current-follower
or through the current follower and matched analog low-pass filters (not shown). The
frequency response analyzer provided an impedance measurement corresponding to the
ratio of any two signals. Thus, the system shown here could be used to measure
impedance corresponding to dielectric spectroscopy or to rotational electrophoretic
spectroscopy. At high frequency, the applied current signal and measured voltage drop
across the paired reference electrodes could be transformed into the dielectric
spectroscopy transfer function. The Rotational electrophoretic spectra were obtained for
arbitrarily selected wavelengths of light. A key feature of this approach was the coupling
of two very different frequencies to sample the suspension. The characteristic frequency
for light scattering is very large as compared to the characteristic frequency for particle
rotation. Thus, changes in light scattering signals can be used to monitor rotation of
suspended particles without hindering the interpretation of the light scattering signals in
terms of size, shape, concentration, and chemical composition.

The RES technique was applied to suspensions of borosilicate fibers. These fibers
had a large aspect ratio as their length was much greater than their diameter (Figure 3.5).
Video microscopy was used to verify that these fibers would respond to an oscillating

electric field with cyclical rotation. An ensemble of fibers was observed (Figure 3.6)
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while an oscillating electric field was applied to the suspension. The particles were
observed to align with an applied field and relax when no field was applied. The particles
rotated in a cyclical fashion when an oscillating electric field was applied.

A transient in the light scattering signal was measured (Figure 3.7) when a step
change in the electric field was applied. From an initially relaxed state, a field of
approximately 25 volts per centimeter was applied. The potential drop across the optical
chamber relaxed slowly over time because of the relaxation of the current resulting from
the onset of the potential between the working electrodes. A transient was visible in the
photodiode response. However, the signal change was on the order of a couple of
millivolts. The signal to noise is very low. FFT analysis of the transient showed that the
noise masked the low frequency features of the spectrum.

The experimental approach was deconstructed into its component measurements in
order to verify the measurement approach of the rotational electrophoretic spectroscopy
prototype. At several frequencies, the voltage perturbation and resulting light scattering
signal were captured using a DAQ-board. At each frequency, a rigorous signal processing
protocol was performed to determine the RES transfer function. An FFT was performed
on each signal (Figure 3.8 is the applied voltage and Figure 3.9 is the responding
photodiode signal) to verify that the primary frequency component of the signal was the
frequency of the applied perturbation. Thus, linearity of the measurement was
demonstrated. Once the existence of the response was verified, the transfer function for
the system at the applied frequency was calculated. The system transfer function was
determined by calculating the power spectra of the raw signals and the cross-correlation

of the two signals. The reciprocal of the magnitude is plotted against frequency in Figure
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3.10. The reciprocal is shown because the input signal is several orders of magnitude
larger than the output signal. A clear peak is located at approximately 784 mHz, which
was the frequency of the applied voltage signal. The cross-covariance of the input
perturbation and output signals was used to measure the modulus and phase angle of the
RES transfer function at the frequency of the applied perturbation. The magnitude
spectrum of the RES transfer function for a suspension of rod-like borosilicate fibers is
shown in Figure 3.11.

The magnitude spectrum for the system was calculated using the FFT technique at
each frequency of the applied electric field. This is the set of data that is connected by a
line. At this point the out-of-phase component has not been independently assessed. In
fact, determination of the out-of-phase component was difficult through the FFT
technique because the phase lag fluctuated greatly over frequency. An explicit calculation
for the phase lag at the forcing frequency was difficult because the analysis was
conducted on discrete data. The accurate phase angle might not have been detectable
within the constraints of the signal sampling frequency. The phase lags can only be
determined by interpolation between the calculated phase angles at the closest discretized
frequencies. The inability to measure the out-of-phase component of the transfer function
was also the result of the low signal to noise ratio of the out-of-phase signal. The out-of-
phase signal was smaller than in-phase signal & the noise levels of the two signals should
be equal when the transfer function is calculated using the FFT analysis or an analog
Frequency Response Analyzer. This equality will be thoroughly discussed in Chapters 4-

8.
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To assess the out-of-phase component with greater confidence, the real and
imaginary parts of the transfer function were measured using the analog frequency
response analyzer. This method of calculation is described in Chapter 5. Several values of
the complex transfer function were measured at the same frequency. The two components
were coaverted into magnitude values to check for consistency with the FFT-determined
spectrum. The values were reasonably consistent (the two FRA points in Figure 3.11).
Only two points could be determined before the instrumentation broke down.

3.4 Conclusions

Interpretation of these results in terms of rotation of rod-like particles was confirmed
by observation through video microscopy of frequency-dependent rotation of suspended
particles under an alternating applied field. The assumption that the rotation of particles
was a reversible process was verified by using an oscilloscope to monitor the photodiode
response. Relaxation processes in response to a square wave potential input were
observed to be repeatable. The rotation of particles was observed in the presence of a
superimposed flow field, which confirms the suitability of this approach for on-line
sensing.

Measurement of the Rotational Electrophoretic Spectroscopy transfer function was
accomplished using Fast Fourier Transforms on digitally stored pairs of applied voltage
and photodiode response signals. The magnitude of the transfer function was determined
at the frequency of the applied voltage signal. Power spectral analysis of the perturbation
and response signals provided evidence of a linear response of the light scattering signal
to a perturbation in the rotational electrophoretic driving force. The out-of-phase
component was not independently assessed because of the low signal-to-noise level in

that component.
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The RES measurement was extremely difficult to conduct. Oscillations in the light-
scattering signal have the same signal level as the noise in that signal. Thus, visual
verification of sinusoidal oscillations in the photodiode signal on an oscilloscope could
not be made; FFT analysis was required for that verification. The measurement technique
was unable to conduct reliable and repeatable measurements of the borosilicate
suspension using the RES system. However, the particulate response was observed
several times using video microscopy, and the transient response in the photodiode signal
was observed on several occasions although it could not be reliably reproduced.

The technique shows promise as a tool for characterization of particles in suspension,
since the RES transfer function could be measured, and that the rotational electrophoretic
phenomena was repeatedly observed. The biggest hurdle to overcome is improving the
signal-to-noise ratio of the measurement. One contributing issue to the signal-to-noise
problem is that, in the current implementation, a single wavelength of light is used for the
scattering measurement. The appropriate choice of that single wavelength has not been
determined. One approach to avoid an inappropriate choice is to expose the system to
white light and sense the scattered spectrum of light. Thus, a spectrum of scattered
wavelengths could be measured over time, and the FFT analysis could be applied to each
wavelength. The wavelength associated with the optimal signal-to-noise could then be
determined. This approach would also provide a determination of the rotational
electrophoretic spectral surface that described the RES transfer function for each
frequency of applied field and wavelength of light.

Another problem that might have led to reduced signal-to-noise is the

superposition of imposed fields in the sample volume of the measurement. While the
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particles responded to the electric field, the fluid in the sampling chamber experienced an
electroosmotic response to that same imposed field. The electroosmotic flow of the fluid
exerted drag on the particles. The particles were also mobile via translational
electrophoretic. The application of an electric field resulted in a current across the
resistive suspension that experienced a heat dissipation associated with resistive heating.
The heat dissipation also introduced natural convection into the suspension. The signal-
to-noise ratio of the measurement might be improved by introducing a Pouiselle flow to
the system with an average velocity that was much larger than the other velocities
imposed by the other fields. Application of the electric field in a direction normal to the
imposed flow field might result in rotation of the ensemble particles from one aligned

state to another aligned state, thereby improving the signal-to-noise.
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Figure 3.1: Schematic illustration of the influence of particle orientation on
the light reaching a photo-detector.
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Figure 3.2: Expected photodiode responses at three representative frequencies

of applied potential oscillating about zero. (a) high frequency.
(b) characteristic frequency for rotation. (c) low frequency.
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Figure 3.6: Ensemble of borosilicate fibers studied using the RES technique.
Long strands are the borosilicate fibers that were closest to the

focal plane.
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CHAPTER 4
WEIGHTING STRATEGIES FOR COMPLEX NONLINEAR
LEAST SQUARES REGRESSION

Regression of complex impedance spectra to complex models presents challenges
that are not observed with the regression of real data to real models. Since the real and
imaginary parts of the complex quantity are correlated by the Kramers-Kronig Relations
(KKR),'"'% an appropriate regression strategy should allow for the correlation of the real
and imaginary parts of the complex model through the KKR. Nonlinear Least Squares
(NLS)'% regression techniques have been employed to estimate the parameters of
complex impedance models.

Complex nonlinear least squares (CNLS) regression techniques were developed in
the late 1960’s. The CNLS approach is an improvement over NLS techniques because a
combined model parameter set is estimated by simultaneous regression of the model to
both real and imaginary data.'' The CNLS objective function can be derived through a
Taylor series expansion of the complex objective function to be

5w 2(o,)- 27 (41)
where Z(a)k) is the model value of the impedance at the k™ frequency and w, is a
weighting factor (or function) at that frequency.'”’

The first derivation of the CNLS objective function did not consider any form of
weighting except the inherent choice of unity weighting.'o7 Regression weighting is

important in improving the ability of the minimization algorithm to provide tight
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confidence intervals on the parameters of the model.'® A weighting matrix was
introduced into the CNLS objective function in its matrix form.'® The weights were
complex and, therefore, the real and imaginary impedance could be given independent
weighting in a regression. While the weights could be independent, the form was
suggested to be the inverse of the variance of the measurement.

Current papers' "% refer to the Macdonald and Garber paper'® of 1977 as the
original derivation of the CNLS technique as it applies to impedance spectroscopy. The
CNLS objective function is applied to impedance models and complex spectra. At this
point, the authors did not make any conclusions as to the most appropriate weighting
strategy for the regression. They observed that the most appropriate strategy would be to
use the inverse of the variance in the measurement as the weight at each frequency, but
that at low frequency, time-constraints prevents the measurement of replicate spectra.
The authors then suggested an approximation of the inverse of the variance of quantity
X as a proportionality function, where the standard deviation, s, of quantity X can be

written as

sf =dx, (4.2)

where a is a proportionality constant and the exponent n satisfies 12n2>—4. The

authors tested the proportional weighting scheme and unity weighting (in which the
exponent is zero and that proportionality constant is unity), and found that the standard
deviations of the parameter estimates were smallest when n < —1.

Since that paper, several categories of weighting strategy have been proposed. The
first strategy was unity weighting, or no weighting, which is appropriate if the impedance

is relatively constant over frequency ((1/3)Z, <Z, <3Z,). Zoltowski suggested a

modulus weighting scheme in which the weighting function is the inverse of the modulus
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of the impedance at that frequency.”o‘[”'”2'”3 Zoltowski argued that the modulus
weighting scheme is appropriate when errors in the real and imaginary impedance are
correlated. Macdonald refuted the choice of modulus weighting on the grounds that
correlation between the errors in the real and imaginary impedance were presumed to be
the result of instrumentation, as opposed a result of transformation through the KKR.'”
Another strategy is the proportional scheme suggested by Macdonald and others. 3-105.109
Proportionality weighting is considered to be the weighting scheme in which the standard
deviation of a component in the measurement is approximately equal to the magnitude of
the measurement of that component. The strategy is appropriate when the data range is
large.'” Two other weighting strategies have been suggested which can be reduced to the
proportional weighting scheme. The first is called VWT'® and is the form described in
equation ( 4.2). The second is termed CWT'® and can be written as

st =1+B,|X,| (4.3)

where B, is a proportionality constant. Another weighting scheme is termed residual

iteration weighting (RWT)'®, in which each tgrm in the objective function is weighted by
the residual error between the model prediction and observed value at the k™ frequency at
the last iteration. Finally, all authors recommend that the regression be weighted by the
inverse of the variance of the measurement at each frequency. 6-8.105.106.108-112 N facdonald
and his co-authors have suggested that the standard deviation can be approximated as
being proportional to the magnitude of the measurement.'®>'® Orazem and others have
suggested that a measurement model be used to estimate the standard deviation of the
measurement at each f'1'e:quency.6'8 Durbha et al. and Agarwal et al. have shown that the
variance in the stochastic error in the real and imaginary impedance is statistically

equivalent and can therefore be represented by an error structure model over frequency.‘s'9
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Obviously, a contradiction exists between the descriptions of the standard deviation
of the impedance made by the Macdonald and Orazem camps. If the variances in the
errors of the real and imaginary impedances are equal, then the variances of the real and
imaginary impedances cannot be equal to the squares of the magnitudes of the real and
imaginary impedances. Both camps have studied the errors associated with impedance
measurements to illustrate the behavior of those errors over frequency. Macdonald and
his co-authors have studied both experimental and simulated data, but their focus has
been on simulated data.>'%'% Orazem and his co-authors,*” along with Dygas and his
co-authors,'"* have observed the equality of the variances in the stochastic errors of the
real and imaginary complex spectra on several classifications of experimentally-
determined complex spectra such as electrochemical impedance spectra,
electrohydrodynamic impedance spectra, and complex rheological spectra. It has been
suggested that the observed equality of the variances is the result of the instrumentation
in use. Thus, it is fair to determine how the errors that are characterized in these studies
are, first, introduced into the spectra, and second, ascertained from the spectra.

The errors in simulated spectra generated by Macdonald and co-authors'®'% were
introduced in two ways. First, a spectrum was calculated with 13 significant digits. These
“exact” results were then rounded to n significant digits where n < 4 '%1% The authors
realized that the rounding error was “not really a simulation of real experimental

error.”'® The other approach was to add random noise to the exact (13 significant digit)

spectrurn.'os"09 The random noise had a Gaussian distribution around zero with standard

109

deviation proportional to the exact value of the impedance.” The distribution was

calculated using a seeded generator. Other distributions have been studied such as
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colored noise, but in all cases, the noise is added directly to the frequency domain
quantity and in a manner that is proportional to the exact value of the impedance. If the
noise that is introduced into the spectra is proportional to the impedance, then it is
obvious that the proportional weighting strategy is the most appropriate choice, as
Macdonald and his co-authors have suggested.5 105109 gyych simulations do not, however,
provide any evidence on the nature of errors in experimental spectra.

The errors are ascertained by Macdonald and his co-authors to be the residuals
between a model and a spectrum. Unlike Orazem and his co-authors, no filtering for non-
stochastic errors is done (unless an obvious outlyer is present). This is obvious through an
assertion that has been made'®” which refutes a suggestion made by Zoltowski:''? a
model should be fit to the form of the impedance (rectangular or polar) in which it is
measured; transformation of the impedance will result in the generation of bias errors.
That algebraic transformation would introduce bias errors only in the manner that
machine errors are propagated through numerical calculations. Those bias errors would
be, in general, orders of magnitudes smaller than experimentally determined stochastic
errors’ for double-precision calculations.'”

Different researchers have taken extremely different stances on the nature of errors
in impedance spectra. While Durbha er al. have considered the stochastic errors in
impedance spectra to be normally distributed, other researchers have considered other
distributions of noise in the spectra. Macdonald and Piterbarg have studied the
transformation of colored random noise by the Kramers-Kronig transforms.'” The authors
have focused on the distribution of errors propagated through the KKR as a result of the

numerical quadrature procedure that is used for integration of the transforms. This effort
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is only useful if only one component of the complex impedance is measured, or if one
wishes to predict the other component as a consistency test. However, the authors
determined the dependence of the transformed errors on the quadrature procedure used to
calculate the KKR error transform; they did not determine any physical reasons for the
forms of distribution of errors in the spectra that they claimed to observe.

In that same paper,'’ Macdonald and Piterbarg present criticisms of the work of
Durbha er al that have inspired the research that will be presented in the following
chapters. In their criticism, they state that both groups have focused on numerical
integration of the KKR to determine transformed errors.!” They also claim that both
groups recognize "that output stochastic errors are generated in the immediate

"17 of the appropriate KK-transform. The paper’ in contention

neighborhood of the pole
was not intended to illustrate that the level or distribution of the stochastic errors
"output,” or more appropriately, transformed by the KKR were influenced by the
implemented quadrature scheme. Rather, the authors intended to illustrate that a natural
condition existed between the variances in the stochastic errors of the real and imaginary
impedances. The conditions of the Kramers-Kronig relations were shown to lead to the
equality of the variances in the stochastic errors of the complex impedance components.
An important point that has been missed in this controversy, however, is the
evolution of the noise in impedance spectra. It is not the poles associated with the KKR
that cause errors in measured spectra. The errors in measured spectra are the result of
errors in the measurement technique and errors that have been transformed from the

measured time-domain signals to the calculated frequency-domain quantities. Little

discussion of this process has been made in the literature on impedance spectroscopy.
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Some researchers''!'"” have looked at the issue of noise propagation from the time-
domain into the frequency-domain, and their work will be discussed in the following
chapters. The research that will be presented in the following chapters is a result of a
desire to answer important questions raised by this controversy that have not yet been
addressed. Thus, studies will be discussed that focus on the distribution of frequency-
domain errors, the relationship between the variances in the complex impedance
components, and the relationship between the frequency-domain errors and the noise
associated with the time-domain signals under study and with the employed measurement

technique.



CHAPTER 5
INFLUENCE OF INSTRUMENTATION ON ERROR
STRUCTURE

Model transfer functions can be regressed to impedance spectra to assess information
on the physics or chemistry of the system. The ability to regress the model to the spectra
is enhanced by choice of an appropriate weighting strategy. One approach is to weight
the regression by some function of the standard deviations of the complex errors in the
data. Much controversy has been generated over defining the functionality of the standard
deviations of the errors. Agarwal et al. and Durbha ez al.5? have found that the variances
of the stochastic error contribution to the real and imaginary impedance are equal, and
therefore, an error structure that defines the equivalent standard deviations as a function

of frequency can be determined. Macdonald er al. have suggested that the standard

deviations are roughly proportional (o, /lX ;| = constant ) to the complex impedance at

each frequency.'®"® The findings of Agarwal et al. and Durbha et al. have been verified
experimentally‘s'8 and analyﬁcally.9 Critics'” of this finding have suggested that the
equivalence of variances in the stochastic errors in the real and imaginary impedance is a
result of the instrumentation used to measure the impedance spectra.

5.1 Motivation

Equivalence of the variances of the real and imaginary parts of the spectra has also
been verified experimentally for electrohydrodynamic impedance spectroscopy,’

rheology of viscoelastic fluids such as suspensions of particles (a purely mechanical
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measurement of frequency-dependent stress-strain relations), and dielectric

spectroscopy (in which heterogeneous media disperse high frequency electric fields).'"’
The measurement model infrastructure®®’*">!"? developed for enhanced interpretation of
electrochemical impedance spectroscopy was shown to be directly applicable to
spectroscopic measurements that are important in the area of characterization of
particulate suspensions. This infrastructure can be used to identify the degree of
consistency of spectra to the Kramers-Kronig relations; thus, portions of the spectra that
are corrupted by instrumental or other artifacts can be identified and rejected. The
variances of the components of the complex stochastic errors of acoustophoretic spectra’
were shown to be equal at most frequencies through the acceptance of the hypothesis that
the variances were equal via the F-test. The variances of the real and imaginary parts of
the stochastic error of the complex transfer functions were found to be equal for
rheological and dielectric spectroscopy data that satisfied the Kramers-Kronig relations.

The arguments made by all parties have been mostly based on simulated spectra or

analysis of experimental measurements (impedance spectroscopy, electrohydrodynamic

° or complex

impedance spect:roscopy,74 acoustophoresis,75 dielectric spectroscopy,”
viscometry).”” Recently, the aforementioned groups have independently produced papers
with differing views on the propagation of complex impedance errors through the
Kramers-Kronig relations (KKR).>"

Throughout these works, the manner in which these frequency-domain errors
develop from time-domain measurements has been largely uninvestigated.120 While the

focus on previous work has been on assembling a database of physico-chemical systems

and various spectroscopic techniques, the full commonality of these measurements has
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not been identified. There are various analog and digital methods for the measurement of
complex spectra from time-domain signals. The spectroscopic techniques mentioned here
(viscometry, EHD, etc) must use the same basic technologies for measuring complex
quantities.

Some researchers combine the measurement techniques of Fourier analysis and
phase-sensitive detection in order to measure a larger frequency range. Both techniques
will be described fully in the next section of this chapter, but it should be noted that these
two techniques measure complex electrochemical impedance through significantly
different algorithms. Sets of data that were measured using the two techniques in
conjunction were analyzed to determine the error structure of the measurement and the
consistency of these measurements with the Kramers-Kronig relations. Sets of impedance
spectra in which the low frequency spectrum was measured using the Fourier technique
and the high frequency portion was measured using phase-sensitive detection were
collected for three different systems.' System descriptions were not provided with the
data. This was preferable, in that the purpose of this analysis was to determine the
dependency of error structure and the Kramers-Kronig consistency on measurement
technique. The spectra were analyzed with the Measurement Model Tool®® set developed
in the research group of Dr. Mark E. Orazem. The collected data were organized in four
ways for study: the portion measured with the Fourier technique, the portion measured
with phase-sensitive detection, the entire spectrum, and the portion of the entire spectrum

that is Kramers-Kronig consistent. The student t-test ratio is presented for these systems

! Personal communication between Prof. Mark E. Orazem, Department of Chemical
Engineering, University of Florida and Prof. Andrezj Lasia of the Department of
Chemistry at the University of Sherbrooke, May 19, 1998.
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in Table 5.1. The Fourier portion was found to produce errors in which the variances of
the real and imaginary stochastic errors are equal. The PSD portion produces errors in
which the variances of the real and imaginary stochastic errors were not necessarily
equal. The variances of the errors determined for the sets of complete spectra were not
necessarily equal. The variances of the errors determined for the KK-consistent portions
of the sets of complete spectra might have been equal (Systems 2 and 3, in particular).

The ratio of the variance in the stochastic error in the real impedance to the variance
in the stochastic error in the imaginary impedance is plotted as a function of frequency
for all four cases of System 1 (Figure 5.1), System 2 (Figure 5.2), and System 3 (Figure
5.3). The F-test confidence limits are also plotted. For all three systems, the Fourier
portion fell within the 99% confidence limit; and the entire spectrum and the Kramers-
Kronig consistent part of the entire spectrum fell within the 99% confidence limit, but
appear to be biased away from one at high frequency (the PSD portion). For all three
systems, the PSD portion fell mostly within the 99% confidence limit, but the points were
clearly scattered above unity, not around unity.

The character of the noise introduced into the signals in these experiments is
unknown. And the nature of the systems is unknown. The FRA spectra were self-
consistent with respect to the Kramers-Kronig transforms, while the PSD spectra were
not. Also, the variance in the stochastic errors in the real impedance was equal to the
variance in the stochastic errors in the imaginary impedance when the Fourier technique
was employed, but the variances were not necessarily equal when the PSD technique was
employed. Thus, experimental evidence suggests that the employed measurement

technologies influence the stochastic errors in the complex impedance. The correlation
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between the variances of the real and imaginary impedances is affected by the
instrumentation used in the measurement of impedance spectra.

Software has been developed to simulate a variety of spectroscopic measurement
techniques. The code is written so that the various techniques can be performed on the
same signals. Different forms of time-domain stochastic and colored noise can be added
to the signals. The various techniques are used to measure complex transfer functions.
The frequency-domain errors can be determined and quantified to determine the
influence of the measurement technique on the correlation between the variances of the
real and imaginary stochastic errors.

The objective of this work is to apply the various complex spectral measurement
techniques to a single pair of signals constructed with various additions of stochastic
error. The simulated complex quantity is electrical impedance. Since the different
technique algorithms for the same signals will calculate different impedance spectra, a
direct comparison can be made of the error structure demonstrated by each technique.
Another objective is to determine how the quality of time-domain noise is propagated
into the frequency-domain. A quantitative means is required to test the equality of
variances in stochastic errors and the Gaussian nature of the errors. While the F-test has
been used as a means of testing for equality of variances, it is valid only at each
frequency, not over the entire spectrum. The suitability of the student t-test will be
assessed as means to test for equality of variances over the spectrum and to determine the
form of distribution of errors.

5.2 Methods for Impedance Calculation

Complex impedance spectra are generally measured using one of three techniques.’

Frequency Response Analysis (FRA)’ makes use of the orthogonality of sines and
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cosines to determine the complex impedance as the complex coefficients of a Fourier
series representing the ratio of the response signal to the input signal. Lissajous
Parameterization (LP) is the most classic technique in that it can be used if the only
measurement instrument available is an osciIloscope.5 Phase-sensitive detection (PSD)’ is
similar to FRA employing the orthogonality of sines and cosines along with the zero
integral of these waves over an integer number of cycles. An additional technique can be
envisioned which would simply relate the maximum and minimum of two signals as a
relative magnitude and phase angle. This technique will be referred to a Peak Detection
(PD).
5.2.1 Frequency Response Analysis

This method is used by the Solartron Instruments family of FRA’ and gain/phase
analyzers.'”' It is a specific application of Fourier analysis of signals. While Fourier
analysis provides a spectral representation of a time-domain signal, frequency response
analysis determines the coefficient of a specific term in the Fourier series representation
of the signal. With the generation of the perturbation signal, an in-phase sine wave and a
90° out-of-phase sine wave are generated. The input signal (current for impedance) and
the output signal (voltage) are multiplied with the in-phase and the out-of-phase sine
waves producing four signals for analysis. Each product-of-signals is integrated over each
cycle of the generated input signal. The current and voltage signals can be described by a

complex representation where the real part of the current signal is

T 5.1
I_,(a)) = %J‘IO sin(wt + ¢)sin(wt)dt (>0
0

the imaginary part of the current signal is
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r (5.2)
I; (a,) = %I Iysin(wt + @) cos(w t)dt
0
the real part of the voltage signal is
T (5.3)
V.(0)= % [Vosin(at + g)sin(wr)ds
0
and the imaginary part of the voltage signal is
(54)

T
V/(co) = %J' Vysin(wt + g)cos(wt)dt
0

The real part is noted by the subscripted r and the imaginary part is denoted by the
subscripted j. The constant coefficients of the integrands are the amplitudes of the
respective signals. The current is the variable / and the voltage is the variable V. The
difference between the limits of integration is an integral number of cycles. The
impedance is calculated as the complex ratio of the complex representations of the output
signal to the input signal as shown in Figure 5.4.

5.2.2 Lissajous Parameterization

A common technique that was used to determine the impedance prior to the
development of fast microprocessors was the estimation of the peaks and axis-intercepts
of the Lissajous representation of the input and output signals on an oscilloscope. The
most robust manner to determine the impedance through the Lissajous plot would be
regression of the data points to a curve. Similarly, a sine wave could be regressed to each
signal to provide a regressed curve to the Lissajous figure.

If the input and output signals are regressed to the function
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F(t) = Asin(@t + ¢) (5.5)

where 4 and ¢ are the estimated parameters, then any noise in the actual signal will be
filtered by a Least Squares Minimization.'? The ratio of the amplitude, 4, for the voltage
signal to the amplitude, 4, for the current signal is taken to be the magnitude of the
impedance transfer function at the given frequency. The difference between ¢ for the
output signal and ¢ for the input signal is taken to be the phase angle of the transfer
function at the same frequency.

5.2.3 Phase-Sensitive detection

A lock-in amplifier can also be used with a potentiostat to measure the complex
impedance. The method of its use is fundamentally different than the method of a
frequency response analyzer. Whereas the FRA performs an assessment of the Fourier
coefficients of the input and output signals, the lock-in amplifier measures the amplitudes
of the two signals and the phase angle of each signal with respect to some reference
signal. Thus, the impedance is measured in polar, rather than Cartesian, form.

A general signal can be written as

A=A,sin(wt+¢,). (5.6)
A reference square wave of unity amplitude is generated at the same frequency as the

sinusoidal perturbation. It can be approximated by the Fourier series’

(5.7)

=—Z sin[(2n + o £ + ¢ .

Tho2n+1

As was done in the Fourier assessment technique, the measured signal and reference

signal are multiplied, resulting in a product signal
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44, & 1 . : (5.8)
AS = 7[" "Z;, > +Ism(a)t +¢,)sin[(2n+ Dowr + g5 ].
This can be rewritten using trigonometric identities to be’
= 24, ([cos[-2na+g,—(2n+1)] (5.9)
AS =3 :
“(2n+1)r | —cos[(2n + 2)awr + ¢, + (2n + )]

The product of the signals can be expanded via the trigonometric identity for the cosine

of the sum of two angles to be’

_ 7 (5.10)
cos(¢A —¢S)—cos(2a)t+¢,, +¢S)

AS = +§cos(— 20t + ¢, -3¢S)-—§cos(4a)t+¢,4 +3¢s)

+§cos(—4a)t +9, —5¢S)——;—cos(6a)t+¢A +5¢S)+...

If the product signal is integrated over each cycle, it is clear that only the leading term of

the series will have a non-zero value, thus, 3

. (5.11)
2 Tasae =222 cos(g, ~ 45).
2 T

The integral ( 5.11) will have a maximum value when the phase angle of the square
wave is equal to the phase angle of the measured signal. In practice, the phase angle of
the generated square wave is adjusted such that the integral is maximized. The phase
angle of the square wave at the maximum value of the integral yields the phase angle of
the measured signal. The maximum value of the integral provides the amplitude of the
measured signal. This procedure is used on both signals such that the amplitude and
phase angle of each signal is measured as shown in Figure 5.5. The ratio of the voltage
amplitude to the current amplitude is the impedance magnitude and the difference

between the phase angles of the output and input signals is the impedance phase angle. >
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5.2.4 Peak Detection

This method is expected to be the least robust method for measurement of the
complex impedance because its lack of an averaging algorithm makes it sensitive to
random noise. Each cycle of the input and output signals is stored as one-dimensional
arrays of data V and I. The maximum and minimum values of each array is determined
(see equations ( 5.12) and ( 5.13)); the average of the maximum and absolute value of the

minimum (equations ( 5.14) and ( 5.15)) are taken to be the amplitude of the signal.

max(V) = V(k), min(V)= V() (5.12)
max(I) = I(m), min(T) = I(n) (5.13)
5 _ (v +v()) (5.14)

2
= _ (Km) +|1()) (5.15)

2

The index of the maximum element of the input array is subtracted from the index of
the maximum element of the output array. The same difference is calculated between the
indices of the minimum elements of the two arrays. The average of the difference is
divided by the number of samples per cycle, p, and multiplied by 2r to give the phase
angle of the transfer function at the given frequency. If the input signal is the current

perturbation, then

_27[(k—m)+ (1 —n)] (5.16)
2p )
The ratio of the amplitude of the voltage signal to the amplitude of the current signal is

¢

taken as the magnitude of the transfer function at the same frequency.
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5.3 Simulation of Impedance Systems

Code was written in the LabView® G Language. The program was designed to
simulate an actual impedance experiment. The parameters of the simulation mimicked the
experimental parameters of the Solartron Instruments family of frequency response and
gain/phase analyzers, ie., SI 1250, SI 1254, and SI 1260 instruments. The interactive
panel of the program provided a choice of the number of replicate scans to be made, the
frequency range of the scan, the number of points in the scan, the auto-integration
channel, the auto-integration mode, the delay before enforcing the auto-integration
criterion, and the maximum time for integration.

A choice of transfer functions, or systems, to study was also provided. In this work, a
simple single Voigt element was chosen. The Voigt element consisted of a 1 Q resistor,
R, in series with a 1 Q resistor, R, and a 100 pF capacitor, C, in parallel. The transfer

function was written as

R L ~wRC (5.17)
1+w?R2C? N+oRCE

Since this was a digital simulation, a sampling number, p, was an option also provided to

Z()=Z.+jZ, =R, +

the user. In the simulations discussed here, each cycle of each sine wave was sampled at

1024 samples/cycle. The effective digital sample rate, s, is related to the sine wave
frequency, @, by

sS=p-o (5.18)
where s provides the upper frequency limit on the FFT of the sampled signal. Finally, the
option of adding Gaussian-white noise to the input signal, the output signal, or both

signals was provided with. The noise level was set as a percentage of the input signal
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amplitude. In these simulations the Gaussian-noise level was 10% of the input signal
amplitude unless otherwise noted.

Each technique was applied to each cycle of the input and output signal. The
impedance estimation was completed when the auto integration criterion was met on the
chosen channel. For short integration, convergence was achieved when the ratio of the
standard deviation of the estimation of the magnitude to the magnitude over all cycles on
the selected channel was less than 0.10. For long integration, convergence was achieved
when the same ratio was less than 0.1. The simulation could be run without an auto
integration criterion; the impedance at each frequency was measured until the auto
integration time elapsed. The impedance was taken to be the mean of the impedances
calculated at all cycles.

5.3.1 Time-domain Noise

Two forms of time-domain noise were proposed. The first was a stochastic error
signal added to the signals or the system. Thus, for galvanostatic impedance

measurements, the signals could be described by

V(¢)=V(w)sin(et + ¢, )+ ¢, (5.19)
f(t) = [applied Sin(wt + ¢I )+ 81 8 ( 5'20)

where £, and ¢, are stochastic additive errors to the "true" value of the potential and

current signals, respectively.

The second type of noise was a stochastic error with a standard deviation that was
proportional to the instantaneous value of the signal. This noise distribution was not
intended to represent an experimentally observed noise distribution. Proportional noise

was a mathematical construct in which stochastic error was added at each point in time to
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each signal amplitude and phase angle (or instantaneous value of the frequency).
However, this type of error could be viewed as describing noise in the frequency control,
because the error in the phase angle could be rewritten as the product of an error in

frequency and time. For galvanostatically controlled impedance measurements, the

signals could be described by
V()= (17(60)4- g, )sin(a)t +y +¢&, ) (5:21)
()=, ppea + &, )sin(we + 8, +£, ). (5.22)
Of course, the two types of errors could be combined to provide a general form for a
signal with error by

;I'(t)=(,;1+€,,)sin(a)t+¢; +£¢")+6‘,. (5.23)

This was rewritten such that

Alt)=4 sin(a)t + q5)+ A cos(a)t + ¢) (5.24)
+& +6&, sin(a)t + ¢§)+ & cos(a)t + ¢)
where
g, =&, cos(gq,‘ )+ A(cos(am )-— l) (5.25)
&, =&, sinle, )+ Alsinle, )-1). (5.26)

In general, a noisy sinusoidal signal could contain the true sinusoid plus an out-of-phase
component plus error proportional to the true sinusoid plus error proportional to the out-
of-phase component plus additive error. The noise introduced in this chapter was
Gaussian, or normal, white noise. The values of this noise waveform had mean of zero
and were evenly distributed around the mean.'? A histogram of this type of error can be

found in Figure 5.6. In Chapter 7, a second noise distribution will be discussed.
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5.3.2 Application of Measurement Techniques

The impedance spectra could be calculated using any set of the four techniques to
calculate the impedance: assessment of the real and imaginary Fourier coefficients using
trapezoidal quadrature, detection of peaks, regression to the individual waveforms, and
phase-sensitive detection. For each technique, a separate file was saved for each scan.
Thus, one input signal was correlated to one output signal simultaneously using up to
four different techniques.

One cycle of the (clean or noisy) perturbation signal was constructed. The Fast
Fourier Transform of the signal was then determined. The response signal was
determined as the real inverse FFT of the product of the FFT of the perturbation signal
and the impedance transfer function. A second random noise signal could be added to the
response signal. Thus, if noise were added only to the input, then the response signal
would contain noise transformed from noise in the perturbation via the impedance
transfer function. If noise was added to the perturbation and response signals, then the
response signal contained transformed noise and additive noise. It should be noted that
this algorithm was tested on a perturbation impulse, and the response of the first order
transfer function showed the expected transient behavior that would be associated with
analytical Fourier transformation of the same impulse.

The pair of single cycles of the perturbation and response signals was then passed to
the calculation techniques. The complex impedance was calculated for that cycle of the
two signals. After three cycles of measurement, the auto-integration criterion was tested.
The calculations were performed over enough cycles for the auto-integration criterion to

be achieved by all the techniques.
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5.4 Results of Simulations

The error analysis tools used for electrochemical impedance spectroscopy were
applied to the simulated impedance spectra. The measurement techniques corresponding
to measurement with a frequency response analyzer or Lissajous parameterization
provided data in which the variance in the real and imaginary parts of the stochastic error
contributions were equal. The peak detection method provided data that contained a large
bias error contribution. The technique corresponding to measurement using a lock-in
amplifier was found to provide data in which the variances in the real and imaginary
components of the stochastic error were not equal.

It was necessary to establish an acceptable means to test for equality of variances
over the spectrum and to determine the form of distribution of errors. Noise was
characterized using two standard statistical parameters. The ratio of the variances of the
stochastic errors in the real and imaginary parts of the impedance was compared to the F-
test and student t-test.!?? The F-test is a means of accepting or rejecting the hypothesis of
equality of the variances in the real and imaginary impedances at each frequency of the
scan. Several plots of this test follow for each simulation and measurement technique.
The student t-test provides a method for testing the equality over the entire spectrum, and
verification of the normal distribution of errors. Because the t-test parameter is dependent
upon the number of samples, the ratio has been calculated of the measured t-test
parameter and the critical t-test parameter, £9.925/90-

The t-test parameter is appropriate for characterization of the frequency-domain
errors because, in each case studied, the impedance values at each frequency are
distributed in a Gaussian form (for example, Figure 5.7). The distribution of errors

shown in this plot were calculated for impedance spectra determined using the FRA
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technique. The errors were normally distributed at each frequency for all the
commercially available techniques (FRA, PSD, and LP). The t-test ratios for the
distributions of replicate impedance calculations at each frequency are less than one.
Thus, one aspect of this work is to determine the effectiveness of the student t-test for
qualification of the mean value and form of error distributions.

5.4.1 Simulations with Peak Detection

The different technique algorithms applied to the same signals resulted in the
calculation of different impedance spectra. The results of the FRA technique and the
Lissajous Parameterization technique were, in general, very similar. The peak detection
technique failed as an impedance measurement technique because it introduced a
significant bias error contribution to the measurement. The spectra were not at all
representative of the relaxation phenomena associated with the Voigt element. This bias
error contribution was filtered from the stochastic error contribution, though. The
variances of the real and imaginary stochastic errors were never equal. This is not a
surprising result in that noise in the signal would be directly propagated into the value of
the impedance calculated for each cycle at each frequency.

The t-test ratios of the logarithm of the ratio of the variances of the stochastic errors
in the real and imaginary impedance are shown in Table 5.2 for three of the measurement
techniques and several simulation conditions. The t-test ratio was less than one for
systems in which noise was added only to the output signal or to both the current and
voltage signals and the impedance was calculated via the FRA or Lissajous
Parameterization algorithms. The Peak Detection method never produced errors for
which the ratio of the variances was one. This was a result of the technique not using

averaging for impedance calculation. The t-test ratios were greater than one for the
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systems in which noise was added only to the input signal. In these cases, the calculated
errors were on the order of machine error, and loss of significance in the calculated
variances resulted. Two plots are provided to illustrate the effectiveness of the t-test ratio
for qualification of the distribution of errors. In Figure 5.8, in which Lissajous
Parameterization was employed, and Gaussian noise was added to the input and response
signals, the log of the ratio appears to be distributed around zero as a Gaussian, and the t-
test ratio is less than one. The same result was found for the calculation of the impedance
using the FRA technique and either quadrature scheme.

5.4.2 Simulations with Phase-Sensitive detection

The phase-sensitive detection simulation was developed. An algorithm was
introduced to calculate the complex impedance with a level of precision associated with
the calculation via frequency response analysis. The integral of the product of the test
signal (perturbation or response) and reference square wave was calculated for 16 evenly
spaced values of square wave phase angle. The process was repeated using 16 values of
phase angle over the four intervals of the preceding iteration around the phase angle at
which the maximum value of the integrals occurred. Since the signals are digital, this
process is repeated until the phase angle is not smaller than 27 radians divided by the
number of points in each cycle of the signal. Once this level has been reached, the
integral-phase angle points are fit to a second order polynomial. The phase angle at which
this polynomial is maximized is determined with the appropriate numerical precision.
The process is repeated over several cycles until the standard deviation of the calculated
impedance magnitudes satisfies the auto-integration criterion. In Figure 5.9, the log of the

ratio of the variances in the real and imaginary impedances calculated using the PSD
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technique is plotted. The log of the ratio may be Gaussian but it is not distributed around
zero, and the t-test ratio is much greater than one. The t-test was not satisfied for this
simulation. The variance in the real impedance was less than the variance in the
imaginary impedance calculated via PSD, thus one component of the impedance was
biased with respect to the other. The student’s t-test ratio demonstrated this inequality of
the variances.

With the development of the PSD calculation technique, the simulations were run
again with the PSD, Lissajous parameterization, and frequency response analysis
calculation techniques applied to the same set of perturbation and response signals. The
FRA technique was applied twice. In one case, the trapezoidal quadrature rule was used
to integrate the signals.'” In the other case, Bode quadrature was employed for signal
integration.'” Two quadrature schemes were employed to determine the effect of
quadrature error on the impedance calculations. The Bode quadrature rule is a higher
order rule, and therefore generates a smaller error than the trapezoidal rule (order h as

compared to h*, where h is the step-size of integration, 27/1024 ).'23

5.4.2.1 Additive Noise

Four categories of simulations were conducted - CASE 0: adding no noise (a test of
precision for each technique), CASE 1: adding noise only to the perturbation signal,
CASE 2: adding noise only to the response signal, and CASE 3: adding noise to both the
perturbation and response signals. The range of values for the variances in the real and
imaginary impedance is listed in Table 5.3. The student’s t-test results for equality of
variances of the stochastic errors in the real and imaginary impedance are reported in

Table 5.4. The noise in each case was Gaussian with a standard deviation of 10% of the
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input perturbation. Thus the standard deviation of the additive noise to the response
varied between 5% and 10% of the signal depending on the frequency of the
measurement, since the impedance varied between one and two ohms.

The test case of calculating the impedance from clean perturbation and response
signals provided verification that each technique generated only deterministic errors,
namely those associated with the numerical technique employed. This is a crucial result
in that it allows for the comparison of frequency domain stochastic errors to time-domain
stochastic noise introduced into the clean signals. The deterministic errors were on the
order of the level of precision associated with the code compiler and microprocessor-set
(see Table 5.3).

Frequency-domain stochastic errors were on the machine level of precision for the
simulation cases in which noise was added only to the input perturbation and the
impedance was calculated using either the FRA or Lissajous parameterization techniques
(see Table 5.3). The PSD calculation for the same simulated signal set resulted in
frequency-domain stochastic errors that were significant. The variance of these errors in
the real impedance were not equal to the variance of the errors in the imaginary
impedance as qualified by the F-test and student’s t-test (See Table 5.4).

The errors in the impedance determined from the other two simulation cases were of
significant order (see Table 5.3). For the two FRA and the Lissajous parameterization
calculations, the variance in the stochastic errors in the real impedance were equal to the
variance in the stochastic errors in the imaginary impedance. The variances were not
equal when the PSD calculation was applied to the same set of perturbation-response

signals. Figure 5.10 is the ratio of variance in the real impedance to variance in the
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imaginary impedance as a function of frequency. The impedance was calculated using the
FRA technique with Bode quadrature. The ratio is generally distributed around one and
most points fall within the 99% probability level. Therefore, the hypothesis that the
variances are not equal can be dismissed with 99% confidence. Figure 5.11 is the ratio of
variance in the real impedance to variance in the imaginary impedance as a function of
frequency where the impedance was calculated using the PSD technique with Bode
quadrature. The ratio is not distributed around one and most points fall outside the 99%
probability level. Therefore, the hypothesis that the variances are not equal can be
accepted with 99% confidence. The equality was tested for each case and for each
measurement technique at each frequency using the F-test, and over the spectrum using
the student’s t-test. The results of the student’s t-test ratio are consistent with the results
of the F-test for each case.

5.4.2.2 Proportional Noise

Three categories of simulations were conducted - CASE 1: adding noise only to the
perturbation signal (thereby introducing noise transformed by the system into the
response signal), CASE 2: adding noise only to the response signal, and CASE 3: adding
noise to both the perturbation and response signals. The range of values for the variances
in the real and imaginary impedance is listed in Table 5.3. The student’s t-test results for
equality of variances of the stochastic errors in the real and imaginary impedance are
reported in Table 5.4. The noise in each case was Gaussian with a standard deviation of
10% of the parameter to which the noise was added (amplitude or phase angle).

Frequency-domain stochastic errors were on the machine level of precision for the
simulation cases in which noise was added only to the input perturbation and the

impedance was calculated using either the FRA or Lissajous parameterization techniques.
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The PSD calculation for the same simulated signal set resuited in frequency-domain
stochastic errors that were significant. The variance of these errors in the real impedance
were not equal to the variance of the errors in the imaginary impedance as qualified by
the F-test and student’s t-test (See Table 5.4).

The errors in the impedance determined from the other two simulation cases were of
significant order. For the two FRA and the Lissajous parameterization calculations, the
variance in the stochastic errors in the real impedance were equal to the variance in the
stochastic errors in the imaginary impedance. The variances were not equal when the
PSD calculation was applied to the same set of perturbation-response signals. Figure 5.12
is the ratio of variance in the real impedance to variance in the imaginary impedance as a
function of frequency. The impedance was calculated using the FRA technique with
Bode quadrature. The ratio is not distributed around one and most points fall on the 99%
probability limit. Therefore, the hypothesis that the variances are not equal cannot be
dismissed. Figure 5.13 is the ratio of variance in the real impedance to variance in the
imaginary impedance as a function of frequency where the impedance was calculated
using the PSD technique with Bode quadrature. The ratio is generally distributed around
one and most points fall within the 99% probability level. Therefore, the hypothesis that
the variances are not equal can be rejected with 99% confidence. The results of the
student’s t-test ratio are consistent with the results of the F-test for each case. The equality
for each case and for each measurement technique was tested at each frequency using the
F-test, and over the spectrum using the student’s t-test.

The ratio of variances divided by three is also plotted in Figure 5.12. It is generally

distributed about one, and falls within the 99% probability limit. Therefore, the
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hypothesis that the variance in the real impedance is not equal to three times the variance
in the imaginary impedance can be rejected with 99% confidence. This factor of three
may be the result of the skewness of frequency domain errors that will result from the
bias introduced by this type of time-domain error. The error added to the phase angle
introduces the problems associated with measurement using phase-sensitive detection. No
analytical reason could be found for the factor of three. One explanation for this result is
that the introduction of noise in the phase angle offset the errors in phase angle
measurement due to the PSD calculation. The noise in phase angle also could be
considered as noise in the frequency control. As a result, the Kramers-Kronig transforms
could not be expected to hold, and this might account for the inequality of the variances
in the complex impedance components when the impedance was measured using the
FRA or Lissajous parameterization techniques.

5.5 Discussion

As the experimental evidence suggested, these simulations verify that the
instrumentation used to conduct impedance spectroscopy measurements will influence
the correlation between the variance in the stochastic errors in the real impedance and the
variance in the stochastic errors in the imaginary impedance. The distributions of the
errors in the components of the complex impedance are Gaussian, and can therefore be
defined by variances, but the variances of the distributions may not be equal. For additive
errors, it was shown that the variances were equal when the FRA technique was used, but
not when the PSD technique was used. For proportional errors, the opposite was found to

be true.
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5.5.1 Rectangular Coordinate Error Structure Due to Errors in Polar
Measurement

If the phase angle is measured independently of the magnitude, then, the error in
measurement of the phase angle is independent of the error in measurement of the
magnitude. The accuracy of the measurement of the phase angle and signal amplitude
may not necessarily be the same. In this case, one may not expect the variance in the real

and imaginary stochastic errors to be equal. This can be shown explicitly.

Let Z,, Z ;o IZI, and 43 be the true values of the complex impedance in real and

imaginary and modulus and phase angle forms, respectively. Then, the measured values

of the same components can be written as

Zr‘meas = Zr + 8r ( 527)
Zes =2, ¥, (5.28)
Zoa| =[] . (529)

¢meas = ¢§ + 8¢ ( 5'30)

if bias errors are neglected. By solving { 5.27)-( 5.30) for the true values of each

component, the measured impedance in Cartesian form can be found to be

q2|‘5mf (5.31)
o\ s an’f-s, )
[T w

j.meas —

1+tan3(g—¢,)
From ( 5.27) and ( 5.28), the error in the measurement of the real and imaginary

impedance can be found by subtracting ( 5.31) and ( 5.32) from the true values of the real
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and imaginary impedance, respectively. For N measurements of the impedance in polar
form, the corresponding errors in the measurement of the Cartesian form can be derived

as

( - )2 (5.33)

(2]-...f

1 N
+1—V_nz=u[l+tan2(¢3—a¢‘n)

a%=z‘z_22f ~ qzl—an.m)ltanz(é—e,_n) (5.34)
TR )

13 qZ‘I—anvm)ztanz(gﬁ—gM)

N 1+m2(¢3_8¢,n)

It is clear from ( 5.33) and ( 5.34) that for > =o; there must be a curve that relates the

vector of errors in the magnitude to the vector of errors in the phase angle measurement
as a function of the true Cartesian and polar forms of the impedance.

The equality of variance in the Cartesian errors mapped from the polar form was
tested using a variety of forms of noise added to calculated impedance spectra of a single
Voigt element. Two tests were used to check for equality of the variances. For every form
(proportional to the magnitude, proportional to the component, and absolute error), the
variances were found to differ with respect to the F-test and student t-test. This result
would be most representative of the FRA testing signals with proportional errors. The
errors in the signal phase angles would be independent of the errors in signal magnitudes
(and thus error in the impedance phase angle would be independent of the error in

impedance magnitude). Thus, equations ( 5.33) and ( 5.34) support the result (see Section
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3.2.2) that the variances in the real and imaginary impedance are not necessarily equal for
the cases where the FRA was used to measure the impedance from signals with
proportional noise.

5.5.2 Source of Bias Errors in Phase-Sensitive detection

Figure 5.14 shows the distribution of errors in the real impedance calculated via the
PSD technique on current and voltage signals with additive Gaussian noise introduced
into the input and output signals with respect to the theoretical impedance spectrum. It is
clear that a bias exists; the mean value of the distribution is not equal to zero. This bias is

a result of errors introduced by the PSD measurement.

If error is present in the PSD measurement of the impedance magnitude, then the

integral of the product of signals in equation ( 5.11) can be rewritten to be

(5.35)

2w
o _24
€our —; .(l)‘ASdt = pu COS(¢A _¢S +8¢)+6X'

where £, is the error in the integration (an additive error) and ¢, is the error in the phase

angle measurement (due to error in the phase angle controller). If the difference in phase

angles is equal to zero, then the observed value of the signal amplitude will be

__ T _ (5.36)
AO.ob - M(eoul Ex ) :

The error in magnitude estimate, £,, can be written as the difference between the

observed value of the magnitude and the expectation value

T 5.37
&4 = AO.ob _E(A0)=—;£eoul —m—)(eout _gX) . ( )
(4

Therefore, the error in the magnitude is a function of the integral, the error in the phase

angle controller and error in the integral
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e, =Le |1- L LA ) -39
A g ot cosiaﬂ 2 cosiaﬂ )

Note that the error in phase angle propagates into the magnitude through a cosine. Thus,
while the error in phase angle may be distributed normally about zero, the cosine of those
errors will not be normally distributed since the cosine of a negative number is the same
as the cosine of the absolute value of that number (see Figure 5.15). The skewness of the
distribution of the cosine of the errors in phase angle that are normally distributed about
zero is quite negative. As a result of this cosine, the error in amplitude will be biased
away from zero. This is the cause for the inequality of variances in the real and imaginary
impedances calculated via PSD. The bias in the frequency-domain errors is therefore not
characteristic of the error distribution. The bias is caused by the PSD instrumentation.

If the error in phase angle control in equation (5.38) is equal to zero, then the errors
in magnitude are distributed like the errors in integration (additive errors). In the case
where PSD is employed on signals with proportional noise, the errors in phase angle
control and phase angle noise (through the introduction of the proportional noise) may
cancel. If this were to occur, and the additive error in equation (5.38) is equal for both
current and voltage signals, then the impedance determined via the PSD technique would
have variance in the real stochastic errors that would be equal to the variance in the
imaginary stochastic error. This could explain the results of Section 3.2.2 in which the
variances in the real impedance were equal to the variances in the imaginary impedance
only when the PSD method was used (Figure 5.13).

5.5.3 Condition on Spectroscopy Errors by the Kramers-Kronig Relations

Durbha et al.’ determined that the variance of the stochastic errors in the real

impedance is equal to the variance of the stochastic errors in the imaginary impedance.
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This equality held as a statistical expectation. Three fundamental assumptions were
associated with their derivation. First, the expectation of the frequency-domain errors was
assumed to be equal to zero. Second, it was assumed that the errors were distributed
normally. Finally, the derivation held for complex spectra in which the real and
imaginary parts were determined simultaneously. For example, the equality of the
variances would not be expected for measurements of the complex refractive index
because the real and imaginary parts are determined independently.

The results of the simulations on the systems for which Gaussian additive noise was
introduced into the signals and the impedance was calculated using the FRA or LP
techniques satisfied the assumptions made by Durbha et al’ The spectral errors were
distributed normally about zero. The real and imaginary parts of the spectrum were
calculated simultaneously by these two methods. The equality of the variances was not
observed for impedance calculated using the PSD technique on the same systems. It was
shown in the previous section that the expectation of the errors would not be equal to
zero. One of the assumptions made by Durbha et al’® was not satisfied, therefore, the
variances were not equal.

The results of the simulations on the systems with proportional noise was introduced
into the signals were quite different. When the FRA or LP techniques were employed for
impedance calculation, the equality of the variances was not observed. When the PSD
technique was used for the calculation, the equality of the variances was observed.
Possible reasons for this were presented in Section 5.5.1. One possible reason was that
the error in phase angle could be considered as an error in the frequency control. When

the frequency was not stationary, the FRA and LP methods determined impedances
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containing errors that did not satisfy the conditions of the Kramers-Kronig relations.
Thus, an unstated assumption in the derivation of Durbha er al? may be that the
frequency of the measured impedance must be free of error. The PSD method may
minimize the affect of the error in frequency control with error in the phase shift control.

5.6 Conclusions

Replicate impedance spectra were provided for three different physical systems.
Each spectrum was measured using a combination of techniques: PSD at high frequency,
FRA at low frequency. The variance in the stochastic error in the real impedance was
equal to the variance in the stochastic error in the imaginary impedance when the FRA
technique was employed; the same equality did not necessarily hold when the PSD
method was used. The PSD spectra could be transformed via the Kramers-Kronig
relations with 95% confidence, but a residual bias error was always present. This bias
error could be associated with the independent measurements of magnitude and phase
angle for PSD.

To better understand the influence of measurement technique on the error structure
of impedance measurements, three commercially available impedance spectroscopy
measurement techniques were simulated using LabView® programs. Frequency response
analysis, phase-sensitive detection, and Lissajous parameterization were applied
simultaneously to an identical pair of perturbation and response signals associated with a
given transfer function. Different forms of error were introduced into these signals in
various combinations to determine the dependence of frequency-domain errors in
impedance spectra on the noise in the constituent time-domain current and voltage

signals. Two forms of time-domain noise with three means of introduction were
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considered. The two forms of noise were Gaussian additive and Gaussian proportional
types. For each type of noise, three sets of simulations were conducted, namely, noise
introduced into the input signal and transformed by the system into the voltage signal,
noise introduced only into the voltage (response) signal, and noise introduced into the
current and voltage signals.

The variance in the stochastic error in the real impedance was equal to the variance
in the imaginary impedance for the cases where the additive noise types were introduced
into the signals, and the impedance was measured using the FRA or Lissajous
parameterization techniques. Impedances with equivalent variances in the real and
imaginary impedances were not calculated by the PSD technique applied to the same
pairs of signals. This inequality was a result of the independent measurements of phase
angle and magnitude associated with the PSD technique. However, in the proportional
noise cases, impedances with equivalent variances in the complex impedance
components were determined using the PSD technique, while the other two techniques
failed to generate that result. The only explanation for this result is that the introduction
of noise in the phase angle associated with the proportional noise type offset the errors in
phase angle measurement due to the PSD calculation. The noise in phase angle also could
be considered as noise in the frequency control. As a result, the Kramers-Kronig
transforms could not be expected to hold, and this might account for the inequality of the
variances in the complex impedance components when the impedance was measured
using the FRA or Lissajous parameterization techniques.’

The equivalence of the variances in the stochastic errors in the real and imaginary

impedances is a condition of the Kramers-Kronig relations if the necessary conditions of
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the KKR hold and the errors are normally distributed and have an expectation value of
zero.” The stochastic errors in impedance calculated using the PSD technique were
normally distributed, but the mean value of the distribution was not zero. Therefore,
criticism of the equivalence of the variances as a result of instrumentation has some basis.
However, the bias of the stochastic errors is caused by the PSD instrumentation; the bias

is not characteristic of the stochastic error distribution.
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Table 5.1: Student t-test ratio for impedance spectra measured with a
combination of techniques.

System 1 System 2 System 3
Fourier Analysis 0.46 0.46 0.20
Phase-Sensitive Detection 1.50 0.47 1.40
Entire Spectrum 1.10 1.34 1.22
KK-consistent Spectrum 1.36 0.47 0.89

Table 5.2: Student t-test values for matrix of simulations and assessment
techniques. Additive noise level was 10% of input signal
amplitude unless otherwise noted.

Fourier Assessment

Peak Detection

Signal Regression

Input - 10%

4.67 (2e-5)"

5.71 (0.03)™

Input - 20%

4.63 (3e-5) "

3.13(0.04)™

Input - 50%

431 (8e-5)""

3.02 (0.06)

Output 0.544 14.3 0.614
All 0.0685 14.9 0.0232
Colored Noise - All 0.196 15.7 0.197

* FD indicates FFT of noise signal added to FFT of output signal; TD indicates noise
signal added to output signal in the time-domain.

** Term in parentheses is the inverse of the signal-to-noise ratio.
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Table 5.3: Range of values of variance in stochastic errors for matrix of
simulations and assessment techniques. Additive noise level
(INPUT and OUTPUT) was 10% of input signal amplitude
unless otherwise noted. Transformed noise (Z*INPUT) was
proportional to the impedance at the given frequency.

NOISE ADDED
INPUT | Z*INPUT | OUTPUT FRA(T) FRA(B) LP PSD

1] ] ] 01074 01071 010 0= 107"
X X ] 10°* <108 | 10% <1078 010720 108 =107
] ] X 108<=10° | 108=10°% | 10 =10"° | 10 =107
X X X 10107 | 10%107* | 10*=10" | 10°° =107

(T) Trapezoidal quadrature rule used in FRA calculation.

(B) Bode quadrature rule used in FRA calculation.

Table 5.4: Student t-test (applied to ratio of variances in stochastic errors in
the real and imaginary impedances) ratios for matrix of
simulations and assessment techniques. Additive noise level was

10% of input signal amplitude unless otherwise noted.

NOISE ADDED
INPUT | Z*INPUT | OUTPUT FRA(T) FRA(B) LP PSD
X ] 4.99 2.35 - 8.16
] ] X 0.0526 0.000858 0.0901 15.03
X X X 0.0781 0.636 0.142 16.35

(T) Trapezoidal quadrature rule used in FRA calculation.

(B) Bode quadrature rule used in FRA calculation.

® - .
Variance of stochastic errors was often zero.
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Table 5.5: Range of values of variance in stochastic errors for matrix of
simulations and assessment techniques. Additive noise level
(INPUT and OUTPUT) was 10% of input signal amplitude
unless otherwise noted. Transformed noise (Z*INPUT) was
proportional to the impedance at the given frequency.

NOISE ADDED
INPUT | Z*INPUT | OUTPUT FRA(T) FRA(B) LP PSD

X X [] | 108107 | 108 <107 | 108107 | 10° <107
] L] K | 107107 | 107 <107 | 107 <107 | 10° <107
X X K 110710 | 107 <10* | 107 <10 | 107 <107

(T) Trapezoidal quadrature rule used in FRA calculation.

(B) Bode quadrature rule used in FRA calculation.

Table 5.6: Student t-test (applied to ratio of variances in stochastic errors in
the real and imaginary impedances) ratios for matrix of
simulations and assessment techniques. Additive noise level was

10% of input signal amplitude unless otherwise noted.

NOISE ADDED
INPUT | Z*INPUT | OUTPUT FRA(T) FRA(B) LP PSD
= X ] 4.59 4.98 4.59 1.00
] ] X 4.80 4.63 4.78 1.91
X X X 5.58 5.75 5.58 1.85

(T) Trapezoidal quadrature rule used in FRA calculation.

(B) Bode quadrature rule used in FRA calculation.

= . .
Variance of stochastic errors was often zero.
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Figure 5.1: The ratio of variances in stochastic errors in the real impedance to
those in the imaginary impedance as a function of frequency for
the four cases of System 1: the FRA portion, the PSD portion,
the entire spectrum, and the Kramers-Kronig consistent portion
of the entire spectrum. The F-test probability limits are also
plotted. The ratio for the PSD portion is not scattered about one,
but generally falls within the 99% confidence limit. The ratios
for the other three cases are scattered about one, and generally
fall within the 99% confidence limit. The F-test suggest that the
variances are equal for all four cases. The least confidence in
that equality is for the PSD case.
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Figure 5.2: The ratio of variances in stochastic errors in the real impedance to

those in the imaginary impedance as a function of frequency for
the four cases of System 2: the FRA portion, the PSD portion,
the entire spectrum, and the Kramers-Kronig consistent portion
of the entire spectrum. The F-test probability limits are also
plotted. The ratios for the all four cases are scattered about one,
and generally fall within the 99% confidence limit. The F-test
suggest that the variances are equal for all four cases.
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Figure 5.3: The ratio of variances in stochastic errors in the real impedance to
those in the imaginary impedance as a function of frequency for
the four cases of System 1: the FRA portion, the PSD portion,
the entire spectrum, and the Kramers-Kronig consistent portion
of the entire spectrum. The F-test probability limits are also
plotted. The ratio for the PSD portion is not scattered about one,
but generally falls within the 99% confidence limit. The ratios
for the other three cases are scattered about one, and generally
fall within the 99% confidence limit. The F-test suggest that the
variances are equal for all four cases. The least confidence in
that equality is for the PSD case.
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Figure 5.4: Assessment of Fourier coefficients is achieved by integrating the in-
phase ard out-of-phase products of the voltage and current signals over
each cycle. The impedance is calculated as the ratio of the complex
representation of the voltage to the current.
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Figure 5.12: F-test for ratio of variance in real impedance to variance in

imaginary impedance as a function of frequency. Impedance
calculated using the FRA technique (Bode quadrature) with
Gaussian proportional noise added to both the input and output
signals (CASE 3). The ratio is not scattered around unity. The
ratio scaled by one-third, however, is scattered around unity, and
falls within the 1% level of significance.
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Figure 5.13: F-test for ratio of variance in real impedance to variance in
imaginary impedance as a function of frequency. Impedance
calculated using the PSD technique with Gaussian noise added
to both the input and output signals (CASE 3). The ratio is
generally scattered around unity, and most points fall inside the
1% level of significance. Thus, there is 99% confidence that the
hypothesis that the variances are unequal is false.
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CHAPTER 6
PROPAGATION OF ERRORS IN COMPLEX CURRENT AND
VOLTAGE

Time-domain noise in the current and voltage signals propagates into the frequency-
domain quantities that are measured, namely, the complex current and voltage. To
understand better the nature and sources of errors in the complex impedance, the manner
in which errors in the current and voltage signals propagate into the complex impedance
must be determined. While it is straightforward to describe the complex impedance in
terms of the complex signals, it is difficult to characterize explicitly the noise in the
complex impedance in terms of noise in the complex current and voltage. If the errors in
the components of the complex signals are considered to be small with respect to the
mean values of the components, the variance in the impedance can be linearized around
the mean values of the components of the complex current and voltage. This linearization
can be accomplished through derivation of the Taylor series for the variance in the
impedance in terms of the signal components. The result provides a means of assessing
the character of the errors in the impedance in terms of the errors in the current and
voltage.

Thus, this chapter will address several issues. First, the correlation between the
variance in the complex impedance and the variances in the complex current and voltage
will be determined. Second, a condition for equality of variance in the real impedance

and variance in the imaginary impedance will be observed. This equality has been
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&9 and Dygas er al.''* It was also

observed experimentally by Orazem and co-workers
demonstrated in the previous chapter for simulated data calculated using the FRA
technique. This condition for equality of variances in the real and imaginary impedances
will be verified as the reason for equality of variances in the complex impedance
components. Finally, the frequency dependent error structure will be shown to be a result
of the manner in which noise is introduced into the signals. The introduction of noise into
different signals influences the error structure of the impedance measurement.

If a quantity X is sampled repeatedly, then the expectation value of X can be

described as the mean value of X

1< (6.1)
E(X)==>X,.
N
The variance (the square of the standard deviation) is then
, (6.2)
o} =" E|(x - ()R]

It should be noted that these definitions for standard deviation and variance still hold if
the definition of expectation is adjusted for a continuous population rather than a discrete
sampling of the population. If the quantity X is a continuous function with a probability

distribution defined by p, then the expectation of X will be

(6.3)

B(x)= ol (e)at

The first definition of expectation (equation (6.1)) will be the one considered in this
chapter, but the second definition (equation (6.3)) will be employed in a later chapter.

6.1 Variance of Real and Imaginary Impedance from Complex Taylor Series
Expansion of Complex Impedance

The complex impedance at a given frequency is the ratio of a resulting complex

voltage signal at that frequency to a perturbing complex current signal. The Fourier
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transform of the signals are complex and the phase angle of each signal is defined with

respect to a reference sinusoid at the same frequency. The impedance can be written

V() (6.4)

Z(0)= T@)

where o is the frequency and the tilde represents a complex quantity. If the impedance
at a given frequency is sampled several times, then an expectation value can be
determined via equation (6.1). The complex impedance can be linearized about the

expectation value by a Taylor series expansion

w2 [ Jr-oh (L0

Therefore the expectation of the linearized impedance can be written as

E(Z(w))=E[7€J+[E(ZIZ/ J]E(V E[@))+ [E[Zf J]E([ _£(7) (6.6)

The variance in the impedance can then be written in terms of the linearized

description of the impedance as

Vz‘Nz

12 (6.7)
E[Z<w)—5(2(w))F=E<H ﬂ e »]>.
42 j][(z - £{7)-£(7 - £(7)]

J

Q)

The right hand side of equation (6.7) can be expanded to give

5[2'(@)—5(2(@))]2=[E(g_§.]”5(f_5(a))z{E(%Ig_ﬂg(;_d}.)f 65)
| ()| o5 - et 26 |

This can be written in terms of variances and co-variances as



109

, Z Y aZ\ o7 oz (69)
oV ol ov ol
To simplify notation of the expectation values of the derivatives, the caret will

represent evaluation at the expectation, and the subscript zero will represent the

expectation value. Then, the derivatives in equation (6.9) are

-az __1_ (6.10)
v | 1,

and
@ __é (6.11)
ol I,

Then the variance in the complex impedance is

o2 (L2 (2 ) _of% (©-12)
z }'02 14 702 I 702 w

The variance in the complex impedance can be written in terms of real and imaginary

components as

.\ (6.13)

Therefore the variance in the impedance can be rewritten in terms of the real and

imaginary components of all the signals
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. 52 (6.14)
2 —o? i == lo} —op +2j )+-—-—~° o —or +2j0 )
Oz, Uzj+210'z,zj 72 Ov, Oy, T2JOyy, Tz 7L 1; 419,
0 0
4 { )
_2(72 }’-Vrh -a,,j,j +J GV,I,- +GV,I,
0

The complex components of the coefficients in equation (6.14) are derived in Appendix
A. Substituting those expressions into the Taylor series expansion in equation (6.14), the
variance in the complex impedance can be written as

(6.15)

2 2 .
oy —0y +2j =E L=l 2200 (o +2j )
Zr Zj JO-ZrZI - ( 2 [ '))2 O-Vr O-Vj jO—Ver
+I.2
r J

l(aeae gy

5

T
+ (r2+172f >

\
b ot <210,
o, —or, +2jo,,,

((r-sreyaied 1
E +j[(1,2—[J.ZXZI-)—Z([,IJ.XZ,)]
2] (1,2 +12f

L

v

. (
L(O' vir, ~%vu; t iov, T Oy, ))
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The real part of this equation gives

b2 o2 Jol 41,2 - {( [)(za)ay}
( E[(I: -1} )z’ ‘Zfz)}(o'f, -oi )‘

+4E(IrIjXZij)

oK) e )

(Ir[iXZr.- ~Z;

rEli(Irz —IJZXZ')' ):l(o-Vr,r -O-V‘[j) |

+2(r.1,)z,

|
_ E[(I: 1)z, )}(a% o)

(6.16)

g

-2(1,1,)z,)

The imaginary part of this equation gives

[sz,z,.]lf(ffw,l)Z {E(['Z ! 2Xf’w) } (6.17)

—E(I I; XO'V Uv)

o e )

-+ E[(l,l _[jZXZ,Zj)—(I,I,-XZr2 —ij) ci, =01, )}
'E[([ 27, 2XZ )+21 1,)z;) KGVI Oy, )
+E[(1-—1 \z,)-200,1,)z, )Icm ~ v )}

The ten variance components in equations (6.16) and (6.17) are grouped such that if

+ <

-9

the variance terms in parentheses on the right-hand-side of equations (6.16) and (6.17)
are equal to zero, the variances in the real and imaginary impedances are equal, and the
covariance between the real and imaginary impedances is equal to zero. This condition
also requires that there is no correlation between the real and imaginary impedances,

because the covariance between them would be equal to zero.
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6.2 Variance of the Real and Imaginary Impedance from the Real Taylor Series
Expansions of the Impedance Components

If the impedance in equation (6.1) was measured several times, then the expectation
value of the impedance, and the variance in the impedance could be calculated. Equation
(6.9) provides a means of calculating the variance in the complex impedance as a
function of the variances in the complex current and voltage signals. However, to
determine independently the behavior of each of the variances in the real and imaginary
impedances, the variances of the real and imaginary impedance must be derived as
independent functions of the real and imaginary components of the complex current and
voltage signals. (Note that since the only error contribution being considered here is
stochastic in nature, the variance in the impedance is equivalent to the variance in the
stochastic errors if the expectation value of the stochastic errors is equal to zero.)

The Taylor series expansion for the variances of the real and imaginary impedance

can be derived in the same manner as was done for the complex impedance.

V. +jV, (6.18)

Rationalization of the fraction by multiplication of the numerator and denominator by the

complex conjugate of the leads to

VI, +V;I, (6.19)
ALY S
and
, Wl (6.20)

JT T2 2
I,"+1;
The variances in Z; and Z; at each frequency can be written in terms of the linearized

Taylor series expansion of (6.19) and (6.20).
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Equation (6.9) is derived for the impedance as a function of two variables. The
Taylor series could have been written in terms of the four components in equations (6.19)

and (6.20). Equation (6.5) would be rewritten as
I Y (6.21)
7, ~ g PV | 92 )+ 8| 2= (v, - (7))
I +1° ov, | oV
oz, ) oz, I, _
o[ e ot 2 e -0

Vil, =V.I; oZ; Y oZ; ., - (6.22)
Z, = E[[—”j—}u [E(arf, ]_(V, ~E(7, )){E[a—VJHG - —E(;)
+ [5( aaz['j j([, —E(1,))+ [E{ Zi’ H( —£(7,)
The variance can be written as
[E[ Zf/ J v.-EWV,))+ {EL ;IZ/] H

’ 8z, ) oZ,
\+ [E( A /](1, ~E(1,))+ {E[ 5

=
I

]
<

and

&

(%]

(6.23)

and

J

{5 e

The variance in the real and imaginary impedance can be written as a function of the

( - 12 (6.24)
{5 oz »{E[ Z ]](V,- &)

variances of and covariances between the complex components of the current and voltage

signals
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where Z , represents the expectation value of the impedance.
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(6.25)

(6.26)

The derivations of the coefficients in the Taylor series of equations (6.25) and (6.26)

are reported in Appendix A. Substitution of these determined coefficients into equations

(6.25) and (6.26) leads to the variance in the real impedance as



115

v ey, )[V[ +v,1,] IV[ n 1]2

.

_([,2+11.2)' (I +1; )3 (I +1; )4 [r

+E- y?2 _4(/.XVI.IV,1,+ g j]+4(j IV,[r+V/_[j 2 .
(r2+17) (1.2 +172f (r,2+17) /

+2F

vi 2t v
v, ALY vy ||
(2er?f 2

A 21, X1, v, 1, +v,1,]

_(1,2+1j2f_ (2+22f |7
— Vil _2(1121Vr1r+Vj[j]o_
_(1,2 +1j2f (1,2 +1j2)3

vy, oy vt v

(1,21'-[]2)2 B ([,2-1-11.2)3

A AR P

([r2+[jz)4

+2F

+2F Vi,

+2F




116

and the variance of the imaginary impedance as

72 (6.28)
2 = —_I— 2 ./
sz : (Irz +[f2)2 }7Vr o I : [ )- } I )' "

A a1, Y1, -v.r;] 4l IVI v}

_(1,2+1j2f— (r2+17f ’ (1,-+1j~)“

[}8]

+E £ +4(IjXV,)[VjI,—V,Ij]+4(ljlej1,—V,[j]z o2
_([rz““ljzy (Irz*‘ljz)J ([r2+112)4 ] !
op AL N 1, v, v,
i (r.2+12f (1 +1; T
Al —wﬂ%
e ey [
oE E/jz, 7_2(1,ZIV1.1, -,
_[r-+[j~ (r2+[_2 | il
A Xt Y1, - ]a
_[r2+[j- ([_ [ )3 Vil j
[4(r, X1, 7,1, -v.1,} N o0y, 1, -v, 1,1, -v.1,]
+2E (07 v12) 22 o
A7 o
] (I,2+Ij2)2 ]

This method for determination of the Taylor series expansions for the variances in
the real and imaginary impedances does not provide a means of assessing the covariance
between the two components as a function of the variance in the constituent current and
voltage signals. However, by isolating the two impedance variances, the equality of the
variances in the real and imaginary impedances can be tested through the ratio of the two,

rather than the difference of the two. As a result, the statistical F-test and student’s t-test
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can be used to qualify the relationship between the variances in the complex components

of the impedance.

6.3 Vector Representation of Variance in Impedance

Equations (6.27) and (6.28) can be considered to be the inner-product of a coefficient

vector and a vector of variances, covariances, and cross-covariances. The vectors

I;
([ Sl jz)z
I;
(I S [jzf
LA A 2R . a(r2fvt, +v,i, B
(r2+17 (1217 glf +12f
v _4(II'XVIIVI'II'+VJ'II]+4(IJ_IV"[’+VI'IJ']2
(2+17 (12417 (r2+17)
201,
([r2 +/ .ZY
wy, g enslns v A1 ARITN
(r2+17 (12172 (r2+12f
A /At
1741} 12+17)
wI, 4, Wi +vi)]
(r2+1; )21,3 +1;°
o, AN, v
(r.2+1f I2+17
AN 03 AR
(1,21 (2+17

(6.29)
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(1.2 +1f (1.2 +17f (212
201,
([,2+Ij2
s Xt -vi b vt -vplvs -v] vy,

){1,%1]2)' (2172
4(1,

Ly -vi] o

(I+[)3 ([+[)'

oW1, +( Nvr, -v,1]

P+ (12er?f
it 4, V1]
12+17 (17412)

_{ w,l, 4, Xt, IVI ~v,1,]

[r2+[ ([ +1; )}

—([r2 +[jz)2
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(6.30)



and

o
Vilj |

are related through equations (6.27) and (6.28) by

azz.r =ATV
and

oz, =AY
respectively

If another two vectors are defined to be

‘([rz:[jz)’
o)
% -1 )z’ fzf)f Ar.1,)z.2,)
—((1;)—1,.- 22~z )+ 411, )z.2,)|
~ 1|4z
(e I ARV CE AR (A (AR
~2\r2-12)z,)+ 21,1, )z
2 ,3—112 z,)-2(1,1,Xz,)
21, -1 fz,)-21.1,)2.)
212 -172)z.)+2(1,1,)z,)

and
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(6.31)

(6.32)

(6.33)

(6.34)
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( (1) T (6.35)

|
~

-
“.
!
- ——r——v——
~
"~ [ [S)
IJ
N
N ~ (4]
N
A \.I—/
[\ .

1z ,) A1)z, I |

then, equations (6.16) and (6.17) can be rewritten as

-

and

652 =CTV. (6.37)
The coefficient vectors can be correlated by substitution of equations (6.32) and (6.33)

into equation (6.36) as

D=A,-A,. (638)

The difference between equations (6.29) and (6.30) can be written as
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-1’
gf,z +12) )
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(2 +12) (r,2+172f
oY1, +v,,F-4lr,?fp1, -v,0,F
(Ir2 *‘[jz)4 |
v2-v: 4, Yv, W, v, w4l v o v, 0]

(1,2+1j2f_ (r,2+172f

PR AR R
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([rz*’ljz)4 |

) 4[Vj1: vl wvia e ayr, -vi Y1, -va,]
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The ten components of the vector in equation (6.39) were expanded, and then simplified.
The results are presented in Appendix A. The simplified components were introduced

into equation (6.39) that can be rewritten as

I z) T (6.40)

N2 =12z -z2)+4l0,1,)z.2,)
NI ")
Y ([,2+1j2’ ‘4E[r2“[j2§ XZ )]
—al\r2-12 z,)+2(1,1sz )]
2,2 -1, )z,)-2(1,1,)z,)
o1, -1.2)z,)-201,1,)z,)

21,7 -1 )z +2(1 5)z,)

r J .

Comparison with equation (6.34) leads to the verification of
A,—-A;=D (6.41)
As a result of this equality, the test for the equality of the variance in the real
impedance to the variance in the imaginary impedance can be accomplished in two ways.
First, the difference between the two can be set to be equal to zero and the relationship
between D and V can be determined. Second, the variances can be set to be equal and

the relationship between A, and A ; can be determined.

If equation (6.36) is rewritten such that the difference between the variances is set

equal to zero,

o5 — 0'§j =DTV=0 (6.42)
then it is apparent that the transpose of the difference vector D must be orthogonal to the

variance vector V . Equations (6.32) and (6.33) can also be set to be equal such that
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ATV=ATV (6.43)
The tests for equality, equations (6.42) and (6.43), defined for the Taylor series
descriptions of the variances in the real and imaginary impedances have been written
such that they hold at a single frequency.

6.4 Simulation Studies of Taylor Series Expansion for Variance of Complex
Impedance in Rectangular Form

One possible solution to equations (6.42) and (6.43) is obtained under the condition
that the variances in voltage be equal, the variances in current be equal, the real cross-
covariance and imaginary cross-covariance be equal, the other two cross-covariances be

the negative value of the other, and, finally, that the two covariances be equal to zero.

o (@)=0oy (o). (6.44)
o, (@)=07, () (6.45)
oy, @)=0,, (@)=0 (6.46)
oy, @)=0y,, (@) (6.47)
(6.48)

O‘ler (a)) = _UV,Ij (w) .

This solution also satisfies the condition that the errors in the real and imaginary

impedance are uncorrelated, or that the covariance, equation (6.37), between the real and

imaginary impedance is equal to zero. Simulation studies were conducted to determine if

this solution to the equality of variances in the real and imaginary impedances could be
found.

Whereas the simulations discussed in the previous chapter were conducted to mimic

the actual impedance measurement that only reported the complex impedance, these
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simulations were conducted to determine the complex components of the current and
voltage signals as well as the complex impedance. Each component was time-averaged
until the auto-integration criterion for the impedance calculation was satisfied. The single
Voigt element, first order, transfer function studied in the previous chapter was employed
here. The measurement of the complex components of impedance, current, and voltage
were repeated 500 times at each frequency. The spectrum consisted of the same 91
frequencies ranging from 1 Hz to | MHz that were used in the simulations of the previous
chapter. From the six replicate complex components, the variances and covariance in real
and imaginary impedances and the variances and covariances of cross-covariances
between the real and imaginary currents and voltages were calculated. The expectation

value (sample mean) of each complex component was calculated for substitution into the

Taylor series coefficient vectors A ,, A T and D.

The simulations were conducted using the frequency response analysis calculation
and phase-sensitive detection calculation. The Bode quadrature rule was employed in
both impedance calculation techniques. Three simulation cases were conducted. In one
case (CASE 1), Gaussian noise was added to the input and this noise was transformed by
the system into the output signal. The distribution of this noise was defined by a standard
deviation that was 10% of the input signal amplitude. Thus, the signal to noise level in
the input signal was 10 at all frequencies. The next case (CASE 2) consisted of adding
noise only to the output, such that one signal was clean while the other was noisy. The
distribution of the noise added to the output signal also was defined by a standard
deviation that was 10% of the input signal amplitude. Thus, in this simulation the signal

to noise ratio was 10 at high frequency at 20 at low frequency. The final case (CASE 3)
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was the combination of the first two in that the same distribution of Gaussian noise was
added to the input and output, and the input noise was transformed into the output signal.

For all three cases in which the FRA calculation was employed, the condition of the
variance vector by which equation (6.43) can be observed was satisfied. The ratio of the
Taylor series for variance in the real impedance to the Taylor series for variance in the
imaginary impedance are plotted in Figure 6.1 (for PSD calculation) and Figure 6.2 (for
FRA determination). The variances in real and imaginary impedance are generally equal
when the complex signal components are calculated using the FRA technique. The ratio
does not appear to be unity at high frequency for CASE 1. In fact, the ratio is scattered
widely at high frequency, but this may be a result of loss-of-significance machine errors
or of the lack of higher order terms in the Taylor series expansions. The variances in the
real and imaginary impedances are not equal in all three cases when the complex signal
components are measured using phase-sensitive detection. The correlation between the
real and imaginary impedance was also calculated, and was determined to be equal to
zero on average over the spectrum for both measurement techniques for CASE 1 and
CASE 2. The errors were correlated to a very small level in CASE 3 when the PSD
technique was used. The errors were uncorrelated in CASE 3 when frequency response
analysis was employed. This was verified using the student’s t-test over the spectrum of
correlation coefficients associated with the covariance between the components and the
standard deviation of each component.

Each condition on the variance vector by which equation (6.43) can be observed,
defined by equations (6.44)-(6.48), was tested. The ratio of variances in the complex

voltage is shown in Figure 6.3 for the PSD measurement and in Figure 6.4 for the FRA
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measurement as a function of frequency. The ratio of variances in the complex current is
shown in Figure 6.5 for the PSD measurement and in Figure 6.6 for the FRA
measurement as a function of frequency. The F-test probability lines are also plotted.
The covariances in voltage are shown in Figure 6.7 and Figure 6.8, respectively, for PSD
and FRA calculations, and in current, for PSD and FRA calculations, respectively, are
shown in Figure 6.9 and Figure 6.10. The ratio of real cross-covariance to imaginary
cross-covariance are plotted as a function of frequency in Figure 6.11 for the PSD
measurement and in Figure 6.12 for the FRA measurement. Finally, the ratios of cross-
covariances between the real voltage and imaginary current and imaginary voltage and
real current are shown in Figure 6.13 and Figure 6.14, respectively, for PSD and FRA
calculations.

Nearly all of the conditions of the conditions defined by equations (6.44)-(6.48) were
satisfied when the FRA technique was used to calculate the impedance. Not all of the
conditions were satisfied when the PSD technique was employed. Tables Table 6.1-
6.2Table 6.3 provide students t-test results applied to the equality of the calculated
variance vector and the trivial solution for the respective case numbers. The ratio of
voltage variances falls well within the middle of the F-test limits for the PSD calculation
(Figure 6.3), but the same ratio for the FRA calculation (Figure 6.4) shows trending and
falls outside the limits. The ratio of current variances falls well within the middle of the
F-test limits for the PSD calculation (Figure 6.5), but the same ratio for the FRA
calculation (Figure 6.6) is distributed to the lower limit. PSD calculated covariances in
voltage and current are widely scattered about zero (Figure 6.7 and Figure 6.9); the

corresponding covariances calculated using frequency response analysis are scattered
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tightly around zero (Figure 6.8 and Figure 6.10). The ratio of the cross-covariances
between the real current and voltage and the imaginary current and voltage calculated via
the PSD technique (Figure 6.11) are scattered widely about one, and fall well outside the
F-test limit, while the same ratio calculated through the FRA technique (Figure 6.12) fall
well within the F-test limits. The final cross-covariance ratio is distributed widely about -
1 for both calculation methods (Figure 6.13 and Figure 6.14). The calculated cross-
covariances are scattered more widely when the impedance is calculated via the PSD
technique than via the FRA technique. The wide scatter of these values leads to the
failure of the ratio of the variances of the PSD measured impedances to generally satisfy
the F-test.

Another interesting result from these simulations is that the noise level in the
constituent signals was frequency-dependent due to the method of introduction of noise
into those signals. The noise level in the current was the same for the two of the three
cases in which noise was added to the current. However, the noise level in the complex
voltage was highly dependent upon the manner in which noise is introduced. In Figure
6.15, the ratio of the variances in the real and imaginary voltage for CASE 1 with
Gaussian noise to the same variances for CASE 2 with Gaussian noise are plotted as
functions of frequency. The ratio was a function of frequency. This may seem an obvious
result in that, the noise level introduced into the voltage signal was constant over
frequency in CASE 2, but the noise level introduced into the voltage signal in CASE 1
was scaled by the impedance. The impedance magnitude, and the reciprocal of the square
of the impedance magnitude are also plotted as a function of frequency. The ratio was a

function of the impedance magnitude, and was scaled by the reciprocal of the square of
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the impedance magnitude. This scaling was applied to the ratios, and they are also

plotted. Both ratios were generally scattered about unity. Therefore, the nature of the

frequency dependent error structure of impedance measurements is a function of the

manner in which noise is introduced in the time-domain.

6.5 Taylor Series Expansion for Variance of Complex Impedance in Polar Form

The Taylor series for variance in the complex impedance can also be derived for a

polar coordinate description of the impedance. Thus, the general Taylor series for the

variance will be given by
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(6.54)
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The variance in the complex impedance, in terms of its magnitude and phase angle, can

be written as

ol = oz 20'2 + H QZ— o+ (©22)
27 gz | a¢ % F a|z| |2l
where
(6.57)

p=0¢,—¢
By combining equations (6.49) and (6.56) and substituting equations (6.51)-(6.54)

for the partial derivatives, the Taylor series can be written as

ezj«so_lzI —[Z]Zezﬁo'j _'_Zjlzlezquo.lzw (6.58)
1 ajs |Vl 2 |V|2 2jé 2 |V|2 2jp 2
=== e IV[ Glll _26 O-¢V -5 e O'a
Y i 1] 1 '
" N4y N 4
-2 T Oy + 20 e Oy, —2) T "
N PN
|[| [1{or III |11¢V Il|2 P18y

The common exponential can be cancelled and the ratio of voltage to current magnitudes

can be replaced with magnitude in impedance. Equation (6.58) then becomes
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The real and imaginary parts can then be separated, leaving
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These two equations can be expressed in vector form as
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(6.65)

[ 2 ] (6.66)

This method for determination of the Taylor series expansions for the variances in
the magnitude and phase angle of the impedance provides a means of assessing the
covariance between the two components as a function of the variance in the constituent
current and voltage signals. However, the statistical F-test can not be used to qualify the
relationship between the variances in the complex components of the impedance. The
student’ t-test can be used to determine if the difference defined by equation (6.62) and

the covariance defined by equation (6.63) is equal to zero.
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6.6 Simulation Studies of Taylor Series Expansion for Variance of Complex
Impedance in Polar Form

Whereas the LabView simulations conducted to mimic the actual impedance
measurement only reported the complex impedance, these simulations were conducted to
determine the complex components of the current and voltage signal along with the
complex impedance. Each component was time-averaged until the auto-integration
criterion was satisfied. The measurement of the complex components of impedance,
current, and voltage were repeated 500 times at each frequency. The complex
components were all reported in polar form. The spectrum consisted of 91 frequencies.
From the six replicate complex components, the variances and covariance in real and
imaginary impedances and the variances and covariances of cross-covariances between
the real and imaginary currents and voltages were calculated. The expectation value
(sample mean) of each complex component was calculated for substitution into the
Taylor series coefficient vectors C, and D.

A set of simulations patterned after the three cases of Section 4 were conducted. The
simulations were performed using the frequency response analysis calculation and phase-
sensitive detection calculation. The Bode quadrature rule was employed in both
impedance calculation techniques. The same three simulation cases were conducted:
CASE 1 in which noise was added to the input and this noise was transformed by the
system into the output signal, CASE 2 in which noise was added only to the output, such
that one signal was clean while the other was noisy, CASE 3 in which noise was added to
the input and output, and the input noise was transformed into the output signal.

The difference in variance in impedance magnitude and scaled phase angle as

defined by equation (6.62) are plotted for all three cases in Figure 6.16 for PSD
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calculation and in Figure 6.17 for FRA calculations. The cross-covariance between the
impedance magnitude and phase angle defined by equation (6.63) is plotted for all three
cases in Figure 6.18 for PSD determination and in Figure 6.19 for FRA determination.
The differences and cross-covariances for the three cases are scattered tightly around zero
for the impedance spectra measured using the FRA technique. The differences and cross-
covariances are distributed over frequency for all three cases when the impedance spectra
were calculated using the PSD method.

The t-test for the differences between variances in impedance magnitude and phase
angle and the impedance cross-covariance being equal to zero is shown in Table 6.4.
When the FRA technique was used to calculate the impedance, the hypothesis that the
difference between the two variances was equal to zero can be accepted for CASES 2 and
3. The hypothesis that the mean of the difference determined over the spectrum was equal
to zero can be rejected for the FRA calculation in CASE 1 since the calculated ¢-
parameter is greater than the critical value with 5% level of significance. The noise level
in the impedance measurement was extremely small for the CASE 1 simulation, since
very little noise was in the response signal. When frequency response analysis was used,
the noise level was on the order of the machine (computer) error - 10® for these
simulations. The hypothesis that the difference was equal to zero when the impedance
was calculated via the PSD technique can be rejected for all three cases. The hypothesis
that the impedance cross-covariance defined by equation (6.63) was equal to zero can be
accepted for all three cases in which frequency response analysis was employed, while
the hypothesis that the cross-covariance was equal to zero for the three cases in which

phase-sensitive detection was used can be rejected. The test parameter is greater than the
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critical value for 5% level of significance (almost greater for CASE 1, but the parameter
will be greater than the critical value when the level of significance is greater).

6.7 Conclusions

The variance in the real and imaginary impedance was estimated by a ten-term linear
Taylor series expansion with respect to the variances and covariances of and cross-
covariances between the complex components of the current and voltage signals. The
Taylor series expansion was derived in both rectangular and polar complex coordinates.
Choice of the rectangular coordinate expansion derived for the individual impedance
components allowed equality of the variance in the real and imaginary impedance to be
tested through a ratio rather than a difference. The rectangular coordinate ratio
accommodated the F-test as a test of equality of the variances at each frequency, and
accommodated the student’s t-test as a test of equality of the variances over the spectrum.
Also, by using the rectangular coordinate expansion, a condition on the variance vector
for the equality of the variances in the real and imaginary impedances was determined.
The rectangular coordinate expansion derived for the complex impedance and the polar
coordinate expansion provided a means for testing the covariance between the real and
imaginary impedance or impedance magnitude and phase angle. This analysis does not
neglect, a priori, the correlations between the complex components of the current and
voltage signals. Simulation studies confirmed that the complex cornpor;ents of the current
and voltage signals were correlated even though the real and imaginary parts of each
signal were not correlated.

Simulation studies were conducted to demonstrate that the Taylor series expansion

could be used to describe the variances in the complex impedance components. The

simulations conducted in the previous chapter intended to demonstrate the nature of the
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stochastic errors associated with the employed spectroscopic calculation method. The
errors in the real and imaginary impedance were not correlated when either technique
was used to calculate the impedance and noise was added only to the input or output. The
errors in the real and imaginary impedance were never correlated for the FRA
calculation; they were correlated for the PSD calculation in the case in which noise was
added to both the input and output. It was demonstrated in Chapter 5 that the PSD
technique introduces a bias error into the real and imaginary impedances. These results
are consistent with the experimental finding that errors in the real and imaginary
impedance are uncorrelated if the impedances do not contain bias error contributions.’
The variance in the real impedance was shown to be equal to the variance in the
imaginary impedance for added Gaussian noise when the FRA technique was employed.
The result was not found when the PSD method was used. Similarly, the Taylor series for
variance in the real impedance was equal to the corresponding series for the imaginary
impedance when the FRA technique was used to calculate the impedance spectra. The
equality of the Taylor series for variances in the real and imaginary impedances did not
hold when the PSD technique was employed. The condition on the rectangular coordinate
variance vector for equality of the Taylor series for the impedance variances was
observed when the measurement was made using the FRA technique. This condition was
not observed when the phase-sensitive detection technique was used. The experimental
evidence and the simulation results demonstrate that the variances in the real and
imaginary impedances are equal when the FRA technique is employed in the simulation

or experimental instrumentation. Therefore, the results of this chapter suggest that
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equations (6.44)-(6.48) are satisfied when frequency response analysis is used to measure
impedance spectra.

The frequency-dependent error structure of impedance spectra is a function of the
manner in which noise is introduced into the integrated signals, not the distribution of
noise introduced into them. The distribution of noise in the response signal will be a
function of frequency if that noise has propagated through the system from the
perturbation signal. In such a case, the distribution of noise in the response would be
frequency dependent (or dependent upon the impedance), while the distribution of noise
in the perturbation would be independent of the impedance. Thus, the distribution of
noise in the complex impedance would have a frequency-dependent error structure
because the ratio of a frequency-dependent function to a frequency-independent function

would be frequency-dependent.
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Table 6.1: Student’s t-tests for trivial solution conditions for equality of variance
in the real and imaginary impedances described by the linear Taylor
series expansion. Calculations were conducted for the CASE 1
scenario, noise added to the input and output signal, with output
noise including input noise transformed by the system.

PSD FRA

RATIO a | v t t/ tajvnel t t taw.a-i
o3, /agj =1 | oos | 2| 0.739 0.372 0.559 0.281
op /o&l_ =1 | o05 | 2 1.08 0.546 0.612 0.308
o7 /a,j =1 | o0s | 2 | 247 12.4 0.219 0.110
o /o,,/_,j =1 oo0s | - | 5.07 2.55 0.089 0.045
i, [Ty, ==L | o0s | 2| 569 2.87 1.00 0.506
Oy, =0 ooss | 1| 252 1.11 0.782 0.343
o, =0 0025 | 1| 5.24 2.30 1.23 0.538
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Table 6.2: Student’s t-tests for trivial solution conditions for equality of variance
in the real and imaginary impedances described by the linear Taylor
series expansion. Calculations were conducted for the CASE 2
scenario, noise added to the input and output signal, with output
noise including input noise transformed by the system. Noise was
not added to the current, so there was no variance in the complex
current compornents.

PSD FRA
RATIO a | v t t/ tvn-i t t/ tavan-t
o5 /0'2/_ =1 | oos | 2 | 0.995 0.501 0.799 0.402
o7 /oﬁl_ =1 | oos | 2 | 324 1.63 0.370 0.186
0'12,/0'/2,=1 005 | 2 - - - -
O-l’rl’_/o-l’}-[j =1 o0s | 2 - - - -
G, /o',,[,r ==11 05 | 2 - - - -
Oy, =0 002s | 1| 3.63 1.59 1.227 0.538
o ;= 0 0025 | 1 - - - -
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Table 6.3: Student’s t-tests for trivial solution conditions for equality of variance
in the real and imaginary impedances described by the linear Taylor
series expansion. Calculations were conducted for the CASE 3
scenario, noise added to the input and output signal, with output
noise including input noise transformed by the system.

PSD FRA
RATIO a | v t t/ tavn-i t t/ to/v.n-i
o7, [0z, =1 | aos | 2| 377 1.90 2.93 1.47
o7 /cr,‘,"j =1 | o0s | 2 | 0.649 0.327 0.890 0.448
o7 /cr,zj =1 | oo | 2| 213 10.7 1.31 0.658
oy /0',.1_ =1 oos | 2| 474 2.39 1.68 0.846
s, [Ous, == | oos | 2 | 455 2.29 750 0.377
Sy, =0 oo2s | 1 | 2.13 0.935 0.653 0.287
S, =0 oo | 1 | 446 1.96 0.208 0.0913
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Table 6.4: Student’s t-tests for difference in variances in impedance magnitude
and phase angle and for the cross-covariance between the impedance
magnitude and phase angle equal to zero.

PSD FRA
RATIO | CASE| a |V t t tajv.n-l t t tarvnel
op-lfoi=0| 1 | o5 | » 11.0 5.54 2.41 1.21
Tzt =0 L oo | o 2.19 0.963 1.50 0.659
ap-iZei=0] 2 | ios | 2| 236 11.9 0.702 0.353
Tz =0 2 loes | 3.30 1.45 1.67 0.734
ou—lZias =01 3 | 105 | 2 22.6 11.4 1.03 0.307
% =0 3 loos | 1.51 0.135 0.0321 0.0141
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Figure 6.1: Ratio of Taylor series for variance in the real impedance to variance in
the imaginary impedance when phase-sensitive detection is used to
calculate the impedance. Note that in general the ratio does not
satisfy the F-test for 5%. Therefore for all three cases, there is less
than a 5% probability that the Taylor series for the variances are
equal.
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Figure 6.2: Ratio of Taylor series for variance in the real impedance to variance in
the imaginary impedance when frequency response analysis is used
to calculate the impedance. Note that in general the ratio does satisfy
the F-test for 5%. Therefore for all three cases, there is less than a
5% probability that the Taylor series for the variances are not equal.
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Figure 6.3: Ratio of variance in the real voltage measurement to the variance in
the imaginary voltage measurement. Calculation was made using the
phase-sensitive detection technique. Note that the ratios for all three
cases often fall outside the F-test 5% probability limits. Therefore,
there is less than 95% probability that the variances are not equal.
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Figure 6.4: Ratio of variance in the real voltage measurement to the variance in
the imaginary voltage measurement. Calculation was made using the
FRA technique. Note that the ratios for all three cases all fall inside
the F-test 5% probability limits. Therefore, there is less than 5%
probability that the variances are not equal.
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Figure 6.5: Ratio of variance in the real current measurement to the variance in

the imaginary current measurement. Calculation was made using the
phase-sensitive detection technique. Note that the ratios for all three
cases often fall outside the F-test 5% probability limits. Therefore,
there is less than 95% probability that the variances are not equal.
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Figure 6.6: Ratio of variance in the real current measurement to the variance in
the imaginary current measurement. Calculation was made using the
FRA technique. Note that the ratios for all three cases all fall inside
the F-test 5% probability limits. Therefore, there is less than 5%
probability that the variances are not equal.
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Figure 6.7: Covariance between real and imaginary voltage components
calculated using phase-sensitive detection. The trivial solution to the
equality of variances in the complex impedance requires that this
covariance be equal to zero.
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calculated using frequency response analysis. The trivial solution to
the equality of variances in the complex impedance requires that this
covariance be equal to zero.
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Figure 6.9: Covariance between real and imaginary current components calculated
using phase-sensitive detection. The trivial solution to the equality
of variances in the complex impedance requires that this covariance
be equal to zero.
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Figure 6.10: Covariance between real and imaginary current components
calculated using frequency response analysis. The trivial solution to
the equality of variances in the complex impedance requires that this
covariance be equal to zero.
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Figure 6.11: Ratio of cross-covariances between real current and voltage to

imaginary current and voltage components calculated using phase-
sensitive detection. The trivial solution to the equality of variances
in the complex impedance requires that this ratio be unity. For all
three cases, the ratios generally fall outside the F-test 5% probability
limits. There is 95% probability that these cross-covariances are not
equal at those frequencies.
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Figure 6.12: Ratio of cross-covariances between real current and voltage to
imaginary current and voltage components calculated using
frequency response analysis. The trivial solution to the equality of
variances in the complex impedance requires that this ratio be unity.
For all three cases, the ratios generally fall inside the F-test 5%
probability limits. There is 5% probability that these cross-
covariances are not equal at those frequencies.
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Figure 6.13: Ratio of cross-cevariance between real voltage and imaginary current

to cross-covariance between imaginary voltage and real current
components calculated using phase-sensitive detection. The trivial
solution to the equality of variances in the complex impedance
requires that this ratio be the negative of the other. For all three
cases, the ratios generally fall outside the F-test 5% probability
limits. There is 95% probability that these cross-covariances are not
equal at those frequencies.
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Figure 6.14: Ratio of cross-covariance between real voltage and imaginary current

to cross-covariance between imaginary voltage and real current
components calculated using frequency response analysis. The
trivial solution to the equality of variances in the complex impedance
requires that this ratio be the negative of the other. For all three
cases, the ratios generally fall outside the F-test 5% probability
limits. There is 95% probability that these cross-covariances are not
equal at those frequencies.
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Figure 6.15: Ratios of variances in voltage components for CASE 2 to variances

in voltage components for CASE 1, in which Gaussian noise was
introduced into the signals. These are the ratios of additive noise to
noise transformed by the system. The ratios are clearly frequency
dependent, and correlated to the reciprocal of the square of the
impedance magnitude. The ratios scaled by the reciprocal of the
square of the impedance magnitude are generally scattered about

unity.
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Figure 6.16: Difference in variances of impedance magnitude and phase angle for
PSD calculation. The difference should be equal to zero over the
spectrum.
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Figure 6.17: Difference in variances of impedance magnitude and phase angle for
FRA calculation. The differences are scattered about zero over the

spectrum.
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Figure 6.18: Cross-covariance between impedance magnitude and phase angle for
PSD calculation. The cross-covariance should be equal to zero over
the spectrum for the imaginary part of the Taylor series expansion
for variance in the real and imaginary impedance to be equal to zero.
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Figure 6.19: Cross-covariance between impedance magnitude and phase angle for
FRA calculation. The cross-covariance should be equal to zero over
the spectrum for the imaginary part of the Taylor series expansion
for variance in the real and imaginary impedance to be equal to zero.
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CHAPTER 7
PROPAGATION OF COLORED NOISE IN TIME-DOMAIN
SIGNALS

Orazem and co-workers have demonstrated that as a result of the conditions
necessary for the Kramers-Kronig Relations to apply to complex impedance spectra, the
variance in stochastic errors in the real impedance is equal to the variance in the
stochastic error in the imaginary impedance.9 One assumption involved in that derivation
is that the distribution of stochastic errors in the complex impedance is normal, or
Gaussian. ° Other researchers, however, have conducted research on the transformation of
colored, or skewed, noise in the complex impedance components through the Kramers-
Kronig relations.'” If the distribution of frequency-domain errors can be non-Gaussian,
then the derivation made by Durbha er al.? only holds for a subset of all imbedance
measurements. Also, if the distribution of errors in impedance spectra is not Gaussian,
then the distribution is not fully defined by a mean and standard deviation. For such
distributions of impedance errors, the variance in the impedance measurement would not
be an appropriate choice of CNLS regression weighting strate:gy.‘"'g‘l 1.105.106.109-114.118

Thus, it is necessary to determine if colored, or skewed, noise exists in impedance
spectra. It has been shown in Chapter S that Gaussian noise in the time-domain
propagates into Gaussian errors in the frequency-domain. If colored noise exists in the

frequency-domain impedance measurements, then it must propagate from a non-Gaussian

distribution of noise in the time-domain current and voltage signals. In this chapter, the
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propagation of colored distributions of time-domain noise into the frequency-domain will
be discussed. The equivalence of variances in the real and imaginary impedances®®7*!!8
will be shown to hold for measurements conducted using the FRA technique on signals
with colored noise. It will be shown that as a result of a fundamental theorem of statistics,
frequency-domain errors will be normally distributed, even if the distribution of time-

domain noise is not Gaussian.

. 7.1 Simulated Measurement of Complex Impedance

The calculation methodology described in Sections 1 and 2 of Chapter 5 was used to
determine the complex impedance for signals with introduced colored, or skewed,
additive noise. These errors were not uniformly distributed around the mean (see Figure
7.1). In this work, the time-domain colored noise contribution has a coefficient of
skewness'** on the order of 750. A Gaussian distribution would have a null coefficient of
skewness.

A series of simulations were performed to attempt to map further the nature of the
error structure of impedance measurements. Three categories of simulations were
conducted - CASE 1: adding noise only to the perturbation signal (thereby introducing
noise transformed by the system into the response signal), CASE 2: adding noise only to
the response signal, and CASE 3: adding noise to both the perturbation and response
signals. The range of values for the variances in the real and imaginary impedance is
listed in Table 7.1. The student’s t-test results for equality of variances of the stochastic
errors in the real and imaginary impedance are reported in Table 7.2. The colored
distribution was constructed by first calculating the absolute value of a normal
distribution with a standard deviation of 4% of the input signal amplitude. A normal

distribution with a standard deviation of 2% but with a mean of 2% of the input
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amplitude was added to it. Finally a normal distribution with a standard deviation of 1%
of the input amplitude with a mean of 1% of the input amplitude was added to the noise
signal.

The frequency-domain errors were normally distributed for each calculation
technique. An example of a distribution of frequency-domain errors at a single frequency
of impedance measurement is presented in Figure 7.2. The errors in impedance at each
frequency were normally distributed for each measurement technique.

As seen for simulations with normally distributed time-domain errors (presented in
Chapter 5), frequency-domain stochastic errors were on the machine level of precision
for the simulation cases in which noise was added only to the input perturbation (CASE
1) and the impedance was calculated using either the FRA or Lissajous parameterization
techniques. The PSD calculation for the same simulated signal set resulted in frequency-
domain stochastic errors that were significant. The variance of these errors in the real
impedance were not equal to the variance of the errors in the imaginary impedance as
qualified by the F-test and student’s t-test (see Table 7.2).

The errors in the impedance determined from the other two simulation cases were of
significant order. For the two FRA and the Lissajous parameterization calculations, the
variance in the stochastic errors in the real impedance were equal to the variance in the
stochastic errors in the imaginary impedance. The ratio of the variances is plotted for the
FRA calculation of CASE 3 in Figure 7.3. The ratio is generally scattered around unity,
and most points fall within the one-percent level of significance. Thus, there is 99%
confidence that the hypothesis that the variances are unequal is false. The ratio is

normally distributed over frequency as shown in Figure 7.4. Thus, the expectations of the
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variances are equivalent over the spectrum for the FRA measurement technique. The
variances were not equal when the PSD calculation was applied to the same set of
perturbation-response signals. The ratio of the variances is plotted for the PSD
calculation of CASE 3 in Figure 7.5. The ratio is not scattered around unity, and most
points fall outside the one-percent level of significance. Thus, there is 99% confidence
that the hypothesis that the variances are unequal is true. The ratio is normally
distributed, as shown in Figure 7.6, but not about zero. Thus, the expectations of the
variances are not equivalent over the spectrum for measurement using the PSD technique.

7.2 Taylor Series

In the previous chapter, the Taylor series expansions for variance in the components
of the complex impedance in terms of the variances in the complex current and voltage
were derived. The calculation methodology described in Section 4 of the Chapter 6 was
repeated, but the distribution of noise introduced into the current and voltage signals was
colored. This colored noise was constructed in the same manner that was described in the
previous section. The Taylor series simulations were conducted for the same three cases
of noise introduction described in the previous section. Only the FRA technique was
tested, since the previous studies confirmed that the PSD method produced errors that
were normally distributed although the variances of those real and imaginary errors were
not equal.

In all three cases, the conditions defined by equations (6.44)-(6.48) of Chapter 6
were generally observed for the variance vector and equation (6.43) of the same chapter
(equivalence of variances in real and imaginary impedances) was satisfied. Table 7.3
provides student’s t-test ratio results applied to the observed condition for the equality of

the calculated variance vector and for the respective case numbers. All of the ratios were



164

less than one, except for some in CASE 1, and some of the cross-covariance conditions.
The CASE 1 exceptions were most likely the result of machine errors due to extremely
small noise levels associated with the calculation. The cross-covariance exceptions were
most likely also the result of machine errors.

The ratio of the Taylor series for variance in the real impedance to the Taylor series
for variance in the imaginary impedance as a function of frequency is plotted in Figure
7.7. Note that in general the ratio does satisfy the F-test for a five-percent level of
significance. Therefore for all three cases, there is less than a five-percent probability that
the Taylor series for the variances are not equal. The ratio might not have been equal to
unity at high frequency for CASE 3, since the ratio was widely scattered at high
frequency. The extreme scatter at high frequency might be the result of loss-of-
significance machine errors or of the lack of higher order terms in the Taylor series
expansions. The ratio of variances in the complex voltage is shown in Figure 7.8 as a
function of frequency. The ratio of variances in the complex current as a function of
frequency is shown in Figure 7.9. The F-test probability lines (five-percent level of
significance) are also plotted. For both voltage and current, the ratios generally fell within
the F-test bounds. Therefore, the variances in the real and imaginary components of each
signal were equal. The covariances in voltage are shown in Figure 7.10 and in the
covariances in current are shown in Figure 7.11. Both covariances were scattered
uniformly about zero. The student’s t-test (see Table 7.3) was employed to verify that the
mean values of these covariances were equal to zero. The ratio of real cross-covariance to
imaginary cross-covariance is plotted as a function of frequency in Figure 7.12. For all

three cases, the ratios generally fell inside the F-test 5% probability limits. Therefore,
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there is a 5% probability that these cross-covariances are not equal at those frequencies.
Finally, the ratios of cross-covariances between the real voltage and imaginary current
and imaginary voltage and real current are shown in Figure 7.13. The ratio was generally
scattered around one, although many values of the ratio fell outside the F-test 5%
probability limits. Therefore, the probability that the two cross-covariances were not
equal was greater than five-percent.

Another interesting result from these simulations is that, as was presented in Chapter
6, the noise level in the constituent signals was frequency-dependent due to the method of
introduction of noise into those signals. The noise level in the current was the same for
the two of the three cases in which noise was added to the current. However, the noise
level in the complex voltage was highly dependent upon the manner in which noise is
introduced. In Figure 7.14, the ratio of the variances in the real and imaginary voltage for
CASE 1 with additive colored noise to the same variances for CASE 2 with additive
colored noise are plotted as functions of frequency. The ratio was a function of frequency
as was observed in Chapter 6 for signals with additive errors that were normally
distributed. The impedance magnitude, and the reciprocal of the square of the impedance
magnitude are also plotted as a function of frequency. The ratio was a function of the
impedance magnitude, and was scaled by the reciprocal of the square of the impedance
magnitude. This scaling was applied to the ratios, and they are also plotted. Both ratios
were generally scattered about unity. Therefore, the nature of the frequency dependent
error structure of impedance measurements is a function of the manner in which noise is
introduced in the time-domain. The frequency-domain error structure in not dependent

upon the distribution of the noise that is introduced into the signals.
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7.3 Discussion

The Central Limit Theorem'?* states that the distribution of mean values calculated
from random subsets of a population will approach normality as the number of selected
subsets approaches infinity. As a result of the Central Limit Theorem, the distribution of
errors in the impedance measured at a given frequency must be normal, independent of
the distribution of errors in the time-domain signals. If the stochastic errors in impedance
spectra are normally distributed and have an expectation of zero, then the variance in the
real stochastic errors will be equal to the variance of the imaginary stochastic errors."’

The source of error in impedance spectroscopy measurements is time-domain noise
associated with the analyzed signals. Each signal (system input and system output) is
analyzed using any one of a variety of techniques (e.g., frequency response analysis). All
of these techniques have one thing in common: they measure the complex impedance as
an average value calculated over several cycles. In order to determine the error in the
complex impedance at each frequency, replicate measurements have to be made.

The calculation of the complex impedance for each cycle can be considered to
provide the samples of the subset of the overall population of complex impedance values.
The mean value of the calculated complex impedances is kept as the observed value.
Each replicate scan then provides a mean value of the complex impedance calculated
from a different subset of the overall population of impedance values. Thus, by the
Central Limit Theorem, the distribution of mean values of the impedance at each
frequency should become normal as the number of replicates becomes large.

The integration of a signal over time when divided by the difference between the
limits of integration is the average value of that signal. Thus, integration itself acts as the

averaging of a small sample of the overall population of impedance values. Even if a
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particular measurement technology does not measure over a multiple number of cycles,
as long as it employs some form of integration (or regression as in the Lissajous
parameterization technique described in Section 1 of Chapter 5), the distribution of
replicate measurements of the real and imaginary impedance will be normal. Simulations
were conducted in which 500 replicate calculations of the impedance were made at each
frequency. Each calculation was made over a single cycle of the current and voltage
signals. The replicate impedance values were normally distributed when the introduced
noise in the time-domain signals had a Gaussian or colored distribution.

Observed errors at each frequency should be normally distributed. Even if the time
domain noise has a colored distribution, the distribution of means of the subsets will be
normal. Likewise, the natural distribution of impedance values may not be normal, but
the experimentally determined distributions will always appear normal when
commercially available measurement technology is employed.

7.4 Conclusions

The character of the noise added in the time-domain does not affect the distribution
of noise in the complex spectra. Even if colored, or skewed, noise is introduced into the
time-domain signals, the errors in the real and imaginary impedance will Gaussian, as
long as replicate measurements of impedance averaged over multiple cycles are made.
Thus, in practice, the FRA technique will measure spectra containing errors that are
normally distributed and which have variances in the real and imaginary components that
are equal. The PSD technique will also measure spectra containing errors that are
normally distributed. But the variance of these errors in the real and imaginary
components will not necessarily be equal. This is due to the independence of errors in the

PSD integrator and phase shift controller.
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The results presented in this chapter for propagation of colored time-domain noise
further the argument that frequency-domain errors in the complex impedance will be
Gaussian. There may be a frequency-dependent noise level in impedance measurements,
but the errors will be normally distributed at each frequency and over the spectrum. The
hypothesis is supported by the Central Limit Theorem (which holds to most any
reasonable approach to conducting impedance spectroscopy measurements), the analysis
of synthetic spectra using the Measurement Model Tools developed by Orazem and co-
workers,”®'"7*!18 the results of Dygas et al.,''* and the analysis of the components of the
Taylor series variance vector. Since the variance vector solution to equation (6.43) of
Chapter 6 holds for the colored-noise case, it is improbable that studies'’ need to be
performed on impedance spectra containing frequency-domain colored noise. The normal
distribution of stochastic errors in impedance spectra can be fully described by a mean

value and standard deviation. As a result, weighting of CNLS regressionss"7’74"05'106"09'

_ L 6-9.74.114,118
'14.118 by the variance of the measurement of the real and imaginary impedance

is a reasonable strategy.



Table 7.1: Range of values of variance in stochastic errors for matrix of

simulations and assessment techniques. Additive noise level
(INPUT and OUTPUT) was 10% of input signal amplitude
unless otherwise noted. Transformed noise (Z*INPUT) was
proportional to the impedance at the given frequency.
(T) Trapezoidal quadrature rule used in FRA calculation.
(B) Bode quadrature rule used in FRA calculation.
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NOISE ADDED
INPUT Z*INPUT OUTPUT FRA(T) FRA(B) LP P SD

X = [ 1078 =107 | 107? < 1078 01079 107 < 1072
] ] 5 10°=10* | 10°=107 | 1010 | 10°®* =107
< = 4 107 =10* | 10°e=10* | 1010 | 10°° =107

Table 7.2: Student t-test (applied to ratio of variances in stochastic errors in the

real and imaginary impedances) ratios for matrix of simulations
and assessment techniques. Additive noise level was 10% of

input signal amplitude unless otherwise noted.
(T) Trapezoidal quadrature rule used in FRA calculation.
(B) Bode quadrature rule used in FRA calculation.
" Variance of stochastic errors was often zero.
NOISE ADDED
INPUT | Z*INPUT | OUTPUT FRA(T) FRA(B) LP PSD
X X | O 3.26 1.599 9.05
[] L] X 0.679 0.554 0.657 12.35
X X X 0.901 1.402 1.005 12.43




Table 7.3:

Student’s t-test ratios for the conditions that satisfy the equality of
variance in the real and imaginary impedances described by the
linear Taylor series expansion. Calculations were conducted for
all three cases, with the additive noise having a colored
distribution (skewed with a non-zero mean).
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CASE 1 CASE 2 CASE 3

RATIO a | v t/ tawvn-1 t/ taw.n-1 t/ twv.n-1
03 /03 =1 | ons | - 0416 0.470 0.623
O',?,'r/O‘[} ~1 oos | » 0.412 0.353 0.220
o7 Jo? =1 | o | 2 0.897 - 0.663
Oy.r, / Oy, = L4 ogo0s | 2 0.183 - 0.0703
Or.1; / Sy, =L | 05 | 2 0-506 ) 0.570
Gry =0 | oo | 0.170 0.180 0115
o, =0 0.025 | 1 0.0773 } 0.365
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Figure 7.3: F-test for ratio of variance in real impedance to variance in
imaginary impedance as a function of frequency. Impedance
calculated using the FRA technique (Bode quadrature) with
colored noise added to both the input and output signals (CASE
3). The ratio is generally scattered around unity, and most points
fall within the 1% level of significance. Thus, there is 99%
confidence that the hypothesis that the variances are unequal is
false.
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Figure 7.5: F-test for ratio of variance in real impedance to variance in

imaginary impedance as a function of frequency. Impedance
calculated using the PSD technique with colored noise added to
both the input and output signals (CASE 3). The ratio is not
scattered around unity, and most points fall outside the 1% level
of significance. Thus, there is 99% confidence that the hypothesis
that the variances are unequal is true.
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in general the ratio does satisfy the F-test for 5%. Therefore for
all three cases, there is less than a 5% probability that the Taylor
series for the variances are not equal.
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Figure 7.8: Ratio of variance in the real voltage measurement to the variance in
the imaginary voltage measurement when colored noise was
added to the time-domain signals. Calculation was made using
the FRA technique. Note that the ratios for all three cases all fall
inside the F-test 5% probability limits. Therefore, there is less
than 5% probability that the variances are not equal.
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Figure 7.9: Ratio of variance in the real current measurement to the variance in
the imaginary current measurement when colored noise was
added to the time-domain signals. Calculation was made using
the FRA technique. Note that the ratios for all three cases all fall
inside the F-test 5% probability limits. Therefore, there is less
than 5% probability that the variances are not equal.
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Figure 7.10: Covariance between real and imaginary voltage components when

colored noise was added to the time-domain signals. Impedance
was calculated using frequency response analysis. The trivial
solution to the equality of variances in the complex impedance
requires that this covariance be zero.
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colored noise was added to the time-domain signals. Impedance
was calculated using frequency response analysis. The trivial
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CHAPTER 8
TRANSFORMATION OF ADDITIVE TIME-DOMAIN NOISE
INTO FREQUENCY-DOMAIN ERRORS

Two commonly used techniques for measurement of impedance spectra - Frequency
Response Analysis (FRA) and Phase-Sensitive Detection (PSD) - have been discussed in
the previous chapters. Both techniques employ time-averaging (integrating) circuitry to
calculate the products of the perturbation and response signals with a reference “locked”
signal.’ In frequency response analysis, two reference signals, sine and cosine waves, are
employed, while in phase-sensitive detection, a square wave with controlled phase angle
is used.’

Stochastic errors in the resultant frequency-domain measurement are the result of the
calculation on time-domain current and voltage signals via the integration circuitry. The
reference signals are not the source of stochastic error. The reference signal can be
described as the sum of a pure sinusoid and a noise signal, and the noise signal in the
reference signal can be superimposed on the measured signal via the transitive property
of addition. Two sources of frequency-domain stochastic error are left: quadrature errors
associated with the time-averaging circuitry and noise in the perturbation and response
signals. Quadrature error has a deterministic quality, so the primary source of frequency-
domain error must propagate from the time-domain noise via the integration process.

In this chapter, the mechanisms through which time-domain stochastic noise is

propagated into the frequency-domain complex impedance are described. The
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transformation of errors in the current and voltage signals into errors in the complex
impedance is derived for the two measurement technologies. The variances of the
(stochastic errors in the) real and imaginary impedances will be derived as functions of
noise in the current and voltage signals. The influence of the method of measurement -
frequency response analysis (sine and cosine waves) or phase-sensitive detection (square
wave) - on the impedance error structure will also be assessed. Analytical descriptions of
the variance in the frequency-domain quantities (complex impedance, voltage, and
current) will be developed. The variance in the complex components of the impedance
will be related to the time-domain noise in the constituent current and voltage
(perturbation and response) signals.

The analytic description of variance in impedance in terms of the noise in the
constituent signals will be derived using two description of variance. The first is the
common sample variance, and the second is termed functional variance. The sample

variance of a series of measurements of quantity X can be written as'*

2 __ L <hpy 2 (8.1)
G.X‘N—l,m,[Xk E(X)]

where the expectation is defined by'?

1 & (8.2)
E(X)= FZX‘: .
k=1

The functional variance is a bit more difficult to visualize. It is applied to a function,
whereas the sample variance is applied to discrete measurements of some quantity. Thus,
if X is defined to be the integral of a function of time, x, over the interval from a to b,

then the functional variance can be defined by' t6
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ok = ﬁj{[x(f )— E(x)Fde (8.3)

where the expectation here is defined by''

E(x)=a—1—c-l—)-lfx(t)dt. 84

The functional variance is a calculation applied to one signal, while the sample variance
is applied to replicate measurements of integrated signals. In the specific case of
impedance spectroscopy measurements (or complex spectroscopy measurements), the
variances of the real and imaginary impedances are of interest. Thus, in equation (8.3),
the time-domain function would be replaced by an appropriate Fourier transformation
integral. This will be discussed in detail in the next section.

8.1 Variance as a Result of Frequency Response Analysis

Experimental measurement of the voltage and current signals in an impedance
spectroscopy experiment will include stochastic noise in the signals. In frequency
response analysis, the complex impedance is calculated as the ratio of the complex
voltage to the complex current (with respect to the reference sine wave). The complex
components of the voltage and current signals (including noise) are calculated using the

technique as

2 2afe (8.5)

V()= 5—%1- J'I}si_n(a)t + ¢, )sin(wt )t + E% In,, (¢)sin(wt Jdt
0 0

me/ai 2mfw (8'6)
Vi w)= 2 IVsin(a)t + @, )cos(ot)dr + =2 Iny (¢)cos(art )d:
2m 2m
2mfw 25/ (8.‘7)

I (@)= Ea;)n— Iisin(a)t + ¢, )sin(wr )dt +—2%)m- IZ, (¢)sin(we )dt
0 0
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2;m/a: 2mfe (8_8)
(@)= % I[ sin(wt + ¢, )cos(wt )dr + 56—;; jn, (¢)cos(er )t
0

0

The upper limit of integration is an integer number of cycles. As a result of this choice of
integration limits, the expectation of the error in the frequency-domain complex voltage
and current will be equal to zero if the expectation of the noise signal is equal to zero.
Each component is then the sum of the expected value of the component and the

appropriate in-phase or out-of-phase integral of the additive noise signal.''®

X 2mfw 8.9

/@)=, @)+ 2= | n, C)sinfarki )
- [

2m/w (8.10)

V, (a)) = Vj (a))+ % J‘n,, (t)cos(a)t)dt

A 2mfw 8.11
[,(a))=1,(a))+i In,(t)sin(a)t)a’t ( :
2m

R 2mfw (8.12)
[j(aJ) = [j(a))%-% In,(t)cos(cot)dt
0

Based on this description of the complex components of the constituent current and
voltage signals, the variance in the real and imaginary impedance can be determined as
the Taylor series expansions in the variances of the constituent signals.

8.1.1 Functional Variance Defined by Expectation Integration over Time

The Taylor series expansions for the variance in real and imaginary impedance
developed in Chapter 6 were written as a dot product of a coefficient vector and variance
vector. The components of the variance vector were derived in functional variance form.

For details of the derivation, refer to Appendix B. The ten components are functions of
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the correlation function between the noise signals associated with the variance vector

component
2mfa ( 1) T (8.13)
oy (w)=(—29—~] J. dry, .. (r{ l_zr_a)- cos(wr)+ 2; sin(wr)
< ] % \ m ) \ <77 ) .
, ( 2w 3\ / i (8.14)
aI;j (Cl))= zi J‘ dr anur (r{(l—zia)— COS(C()T)— 2—1— sin(a)r)
\ <) %o L \ <7 i
] ( 2mfew \ / \ 7 (8.15)
ol (@)= 21 I AT Y .., (z‘{(l—zr—w— cos(wr)+ -2—1—— sin(wr)
\ <) % m ) \ <7 ) .
2o / \ \ } (8.16)
o (a))=(2i I dry,, (z'{ l_zr_a) cos(wr)—(2—1~ sin(wr)
\ <) %o \ 7 \ 7 i
&y, (@)=0. 8.17)
G’r’j (a)):O (8.18)
8.19
27/ (1 - gﬂ)cos(wr) ( )
1) m
O-V,.I,_( )= - J‘ dr [Wnynl (T) l//n,n; (T)
2m 1
0 +(?2——]sin(a)r)
m
5,1, (@)=0 (8.20)
O'ler(a))=0 (8.21)
(8.22)

o [1 —;—w)cos(a)r)

2
") m
O-V-I i (G)) = (2 J J. dr [y/nrn[ (T)-i- ‘/,n,np (f)
m ) 5 1 .
—(——jsm(a)z')
2m
where the variable of integration is defined as the difference between the time-variables

of integration associated with the double integral corresponding to the square of the

quantity. The integral of the sine of the sum of two angles (see Appendix B) is equal to



190

zero, therefore, the covariances in equations (8.17) and (8.18) and the cross-covariances
in equations (8.20) and (8.21) are zero.

It is clear from these results that the error structure of impedance measurements is a
strong function of the correlation between the various errors in the signals. In the next
section, simulations will be discussed in which these integral equations are used to
calculate the vector of variances, covariances, and cross-covariances of the complex
current and voltage signals used in the Taylor series description of the variance in the
impedance.

8.1.2 Simulation Studies of the Variance Defined by Expectation Integration over
Time

A LabView code was constructed through which the correlation functions associated
with the time-domain noise could be calculated and the integral components of the
variance vector could be determined. Bode integration was used to calculate the integrals
over the time-shift variable. The correlation functions were calculated directly from the
noise signals. The ten components of the rectangular coordinate variance vector were
calculated for both definitions of the variance. One hundred replicate measurements of
the impedance were made at each frequency. Each measurement of the complex
impedance was made over three cycles of the current and voltage signal. The long-
integration convergence criterion was met at three cycles. The functional variance
determined for the reported impedance was averaged over the 100 replicate
measurements.

Three simulation conditions were studied. In the CASE 1, noise was added to both
the input and the output, but the input noise was not transformed through the system. This

simulation followed the analysis conducted by Milocco and Biagiola''’ for noise
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introduced only via measurement. The next simulation (CASE 2) was for noise added to
the input signal and transformed through the system into the output signal. The final
simulation (CASE 3) consisted of adding noise to the input, allowing it to be transformed
by the system into the output signal, and introducing an additional noise signal to the
output signal. A simulation was not conducted in which noise was added only to the
output signal, because it would duplicate the Milocco- and Biagiola-influenced'"’
experiment.

The variance vector was calculated at 91 frequencies as the average of 500 replicate
measurements of the variance vector. The ratio of the linear Taylor series for the variance
in the real impedance to the linear Taylor series for the variance in the imaginary
impedance was determined at each frequency. The coefficient vectors were calculated
based on the average values of the complex components of the voltage and current. The
variance vector was calculated through the integral equations derived in this chapter, and
it was also calculated, for comparison, as a sample variance of the replicate estimations of
the complex voltage and current signals. At each frequency the F-test ratio was calculated
for the 500 replicates. The student’s t-test was also calculated to determine if the mean
value of the logarithm of the ratio of impedance variances was equal to zero.

8.1.2.1 CASE1

The F-test spectra are shown in Figure 8.1 for the ratio of variances of the real and
imaginary impedances via the variance vectors calculated through the integral equations
and calculated as the sample variance of the replicate estimations of the complex signals.
Both ratio spectra generally fall within the F-test probability limits over frequency. The
student’s t-test results are shown in Table 8.1. The student’s t-test parameters calculated

over the impedance spectra for the two methods of calculation of the variance ratio are
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less than the critical value of the parameter. The probabilities associated with the
calculated parameters are also shown in the table. The calculated variances in the real and
imaginary impedances are equal, as stated by Milocco and Biagiola''’ for noise
introduced through measurement of the signals.

8.1.2.2 CASE2

When the variance vector calculated via the derived integral equations for the
simulation where noise added to the input signal is allowed to be transformed by the
system into the output signal is introduced into the Taylor series expansions for variance
in the complex impedance, the ratio of the variance in the real to the variance in the
imaginary impedance is not necessarily unity. The F-test spectra are shown in Figure 8.2
for the ratios of variances in the real to imaginary impedances calculated through the
sample variance (observed values of the complex signals) and the derived integral
equations. The F-test is generally not satisfied at high frequency for the ratio calculated
using the functional variance vector. The student’s t-test parameters are listed in Table
8.2. The t-test is not satisfied for the ratio of impedance variances calculated through the
derived integral equations, while it is satisfied for the ratio determined through the
sample variance calculation.

8.1.2.3 CASE3

The results for this case are the same as for CASE 2. The statistical tests for the ratio
of the variance in the real impedance to the variance in the imaginary impedance are
satisfied when the ratio is calculated through the sample variance vector. When the
functional variance vector (consisting of the derived integral equations) is used in the

Taylor series expansion for the variances in the real and imaginary impedances, the F-test
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is not satisfied at high frequency (Figure 8.3). The student’ t-test is not satisfied for the
probability of five percent (Table 8.3).

8.1.2.4 Influence of System on Propagation of Errors

Again, note that the Taylor series expansions used to define the variances in the real
and imaginary impedances in terms of the variances of and between the complex
components of the current and voltage signals are comparable to the variance in the
stochastic error of the impedances if the expectation of the stochastic error is equal to
zero. Thus, the functional description of variance satisfies the experimental observation
that the variance (of the stochastic error) in the real impedance is equal to the variance in
the imaginary impedance (of the stochastic error) when noise is introduced into the
current and voltage signals only through measurement. The observation is not satisfied
when noise is transformed through the system. An explanation is required.

The correlation functions involving the noise in the voltage signal are related to the
auto-correlation function for the noise in the current signal through the impedance if the
noise in the voltage signal is transformed through the system from the noise in the
current. The auto-correlation function for the noise in the voltage signal can be written

3.5“6

W nymy () = Elny (), (1 +2)]. (8.23)

This can be written as the product of two integrals

2mife 2/ e (8.24)
Y nyny (r)= E{ Ier(x)n, = x)}E{ _[dyZ(y)n, (t+7- y)} .

The product of the two integrals can be rewritten as a double integral such that
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2mjw 2miw (8.25)
Vun©)=E] | a26) Tz =)

The expectation can be brought into the integrals. Only the noise functions have an

expectation different than the function itself, so

2o1f/w 2mje (8.26)

Y oy (r)= I dxZ(x) J'dyZ(y)E[n, (t—x)n, (t+7— y)]

The expectation of the product of the noise signals is the definition of the correlation
function, therefore, the auto-correlation function of the voltage noise signal is related to

the auto-correlation function of the current noise signal as

2m/w 2mfw (8_27)
l//nylly (T') = J- de(X) J‘dyz(y)lynln, (T —-y+ X) -
0

0

The cross-correlation function can be determined through a similar derivation. In this
case, however, the impedance is only included in one integral. Therefore, the cross-
correlation functions can be written in terms of the auto-correlation function for the noise

in the current signal as

2m/w 2mjw (828)
Ve ()= [ d [dyZ(y)w,,,, (c—y+x)
0

0

2mnfe dmiw (829)

Vo (©)= [ &x2(x) [dyw,, (c-y+x).
0 0

The noise in the voltage signal could arise from two sources, namely, that
transformed through the system from the noise in the current signal and additive noise
contributed to the voltage signal. In this case, the correlation functions in equations
(8.13),(8.14), (8.17), and (8.19)-(8.22) will be the sum of four correlation functions.

Equation (8.13) would then be rewritten as
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(8.30)

0'3,(0))=E[[4n2 ZI’Z}/MT/[ZV () + 2 ()t () + 3 ()sin(x)sin(ay )dxdy}

where the superscripts a and ¢ refer to additive noise and transformed noise,
respectively. Thus, the variance in the real component of the voltage signal can be
considered to be the sum of four integrals

vl (i

(8.31)

sin(a)z'):'

(o YU ’ \ £ 1

+ 2 ) I dry, a( { 1-22 |cos(wr)+ L sin(wr)
\ 2m \ 2mm ) \ 27m )
( i 1 \ 1Y

+ —9—] I dry , ., (r{ 1-22 lcos(wr)+ L sin(wr)
Kzﬂn 0 vy \ 27171) \2701) |
/ 2mfo ( \ (1) i

+ i) I dry , (r{ 1-22 lcos(wr)+ L sin(wr)
\27m | meny \ 2m ) \ 27m ) ]

The auto-correlation function, Vs is defined by equation (8.27). The cross-correlation
vy

function, Woa is defined as
Ry

v ()= Eln Oz e+ 7). (8.32)
nyny
and can therefore be written in terms of the cross-correlation function for the noise added

to the current signal as

Lmfw 2mfew (833)
Ve ()= { dxZ(x) {dy W, e (E—y+x).
Likewise, the other cross-correlation function can be defined in integral form as
2mfo  Qlmfw (834)

(r—y+x).

[ ax j’dy zZbw,,

0

Substitution into the third integral of equation (8.31) using the symmetry of correlation

!I/al

nyny

functions gives
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(8.35)

o ()= (_2% ﬁwdr v, (r){(l —%Jcos(wr)+(§—;; Jsin(a)r)}
+ ( % Jz"’f‘" dry ., (rﬂl —%Jcos(wr) + (2_;1:71— )sin(a)z'):l .

0

2mnfw )
+(£J Idr v, . (r)cos(wr)
m o nyny

Similarly, the variance in the imaginary component of the voltage signal can be written as

oy, (@)= (% jszwd TV, (z‘{[l -%Jcos(m) _ [ﬁ )sin (m)} (8.36)
+ ( % ﬁ:w Aty o0 (r{(l —%Jcos(wr)—(z_:m_)sin(m—)] _

+ 2\2,].",: (r)cos(wr)
zsz 0 Ty, . (c)co

For the case of transformed noise and additive noise in the voltage signal, the two non-

Zero cross-covariance equations, (8.19) and (8.22) can also be rewritten as

W (8.37)
3 mtes (1 - %)cos(wr)
7o @) =[5 | I b, v @)
™ ny m | .
0 +(—)sm(a)r)
2mm
2o [l - %Jcos(wr)
+(%J I dr (t//n‘%l (1')+t//"1"g (r) l
"J o +(—]sin(a)r)
2mn
(8.38)

. 1—% cos(wr)
Sy, (60)={E;n_J J;/ dr( wn @w () E(-j;)}in(wr)

_ 1_% cos(wr)
+(——-—J _([/ dr (’r”n;}n, )+, ) E[;J]in(wr)
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The presence of the convolution integrals in the correlation functions has tremendous
affect on the nature of the components of the Taylor series expansion variance vector. If
the noise is stochastic and simply additive (no transformed noise in the output) as
assumed by Milocco and Biagliola,''” then the four correlation functions will be identical.
Each function will be finite at a time-shift of zero, and zero everywhere else. Introduction
of these correlation functions into the integrals for the ten components of the variance
vectors leads to a variance vector that satisfies the conditions for equality of the Taylor
series expansions of the complex impedance variances, since the equations would reduce

to

2 () @ (8.39)
o-V,. w 7271_ nynyr

5 ) (8.40)
o-l;l- ((0 = (2_ y'w"v )
amn

N ® (8.41)
0'1,(60 =(_2;]Wnln,
@ (8.42)
GI (w =(;m_}/n,rtl
oy, (w)=0. (8.43)
o, (@)=0. (8:44)
8.45
11, @)= 527 [ons @910, 0] G4
Oy, (w)=0 (8.46)

Oy,1, (w)=0 (8.47)
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(8.48)
2

®
1,@)= 5 s O+, O
where the condition for the equality of the Taylor series expansions for variances in real

and imaginary impedances is

oy, (@)=07, (@) (8.49)
o; (@)=0; (@) (8.50)
o, @)=0,, (@)=0 ®8.51)
oy, (@)=0y, (@) (8.52)

r‘r

Ov1, (a))z_dP}[j (@)- (8.53)
Equations (8.39)-(8.48) satisfy the conditions of equations (8.49)-(8.53).

By introducing noise transformed through the system into the correlation
functions, the correlation functions related to noise in the voltage signal are no longer as
simply described as for the Milocco and Biagiola experiment. 17 peaks will now exist at
time-shifts associated with the impedance function. The auto-correlation functions for
noise added to the current and the noise in the voltage resulting from the transformed
current noise is plotted in Figure 8.4. The system impedance had a characteristic
frequency of 10 kHz. A close-up around zero of the auto-correlation functions is shown
in Figure 8.5. The peak in the auto-correlation function of the transformed current noise
in the voltage was broader than the peak in the auto-correlation function of the current.
This broad peak decayed with a time constant consistent with the characteristic time-
constant for the system impedance. Thus, the integrand was non-zero at other time-shifts

than zero, and therefore, the conditions of equations (8.49)-(8.53) were not met. The

products of the auto-correlation functions and the trigonometric functions of the time-
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shift variable are shown in Figure 8.6. It is clear that the integrands for current are
essentially zero, while the integrands for voltage are not zero, and are not equal to each
other. As a result, the conditions of equations (8.49)-(8.53) will no longer be necessarily
satisfied. Note that when the variance vector is determined by calculating the sample
expectations of the observed replicate estimations of the complex components of the
current and voltage signals, the solution to the equality of the Taylor series expansions
for variances in the real and imaginary impedances given by equations (8.49)-(8.53) is
satisfied.

Further evidence of this result can be found through examination of Table 8.2 and
Table 8.3. The solution of the equality of the Taylor series expansions is tested for CASE
1 and CASE 3 by calculating the student’s t-test parameter for each equality (equations
(8.49)-(8.53)). Each component of the variance vector was calculated at each frequency
of the spectrum, and the t-test was applied to the spectrum of values. The conditions of
equations (8.49)-(8.53) for equality of the variances in the real and imaginary impedances
are satisfied generally by the functional variances for CASE 1, while they are satisfied
only for the functional variances in current for CASE 3. The current condition is satisfied
for CASE 3 since noise in that signal is purely additive. The functional variances in
voltage are not satisfied since the noise in that signal contains a transformed component.
Note that in both cases, the sample variances satisfy equations (8.49)-(8.53). Therefore,
the functional definition of variance cannot be arbitrarily applied to impedance spectra
with an expectation that the variance in the real impedance will be equal to the variance

in the imaginary impedance.



200

8.1.3 Sample Variance Based on Expectation of Discrete Measurements

The form of variance defined in the previous two sections is a functional variance.
This means that the variance in the impedance can be determined through one
measurement. The observation that the variances in the stochastic errors in the real and
imaginary impedances are equal has been made when the variances are calculated as
sample variances from replicate measurement of the stochastic errors.*® The previously
derived variances are not sample variances; rather they are the variances around the
expectation of the individual signals summed over each instance of time. The sample
variance can be derived by redefining expectation as an averaging of samples rather than
as an integral average over time.

Details of the following derivation can be found in Appendix B. The components of

the Taylor series variance vector determined using the definition of sample variance are

T T o
g TR s
-S| T{Z[[[(() E(n,_k])]—}s‘"(“’" st
7! )z%—/w{z[[[(() el ]}‘(wl cosfonltte.
o2l | & (8.58)

o, o) = 2L T {Z[["”(“ ﬂ}sm@u cos{an )y

[”V A (") E ”V A
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- w?/4rn* i i CR -[nl.k (“)—E("l./c )] -} n (8.59)

Tirts (@)= (v -1) '([ I‘). {AZ:l: | X [”l.k (v)- E(”l,/c )] sin{ancos(av dudy

o (o 2/471'2 2 1m/w7m/w{ X -[nV.k (“)—E(”V.k )] -}sm on)sin(ov)dudv (8.60)
o )== (V-1) !)' '([ k=1 % [ (v)- En, ) ( (o

(8.61)

2 2mje 2mfe

N [n” (u)- E("Vk )] ]

{Lzﬂ [”u() E(”IL)]}
oy, (o) 2 &2 42 T { ¥ My i ()= E(ny )] } (8.62)

@ /471'

_(NTI)_— sin(wr)cos(wv )dudv

o, (@)=

2| <l ()= Bl J | SIS K

w
‘ZV: [”VL(U nd
k

=13 [ Nk V) E”/A

Thus, the variance is calculated via integration of the average value of planar waves

(8.63)
Oy, ()=

il cos(wu )cos(awv)dudv .

constructed by the matrix product of two noise signals. In order to calculate these
variance components, the noise in each signal must be measured and stored for each
replicate measurement of the impedance. This method of calculation requires more data
storage than does the functional variance method. It will be shown, however, that this is
the appropriate manner to deal with variance in the complex components of the current
and voltage signals.
8.1.4 Simulation Studies of Variance Based on Expectation in a Sampling Sense

A LabView® code was constructed through which equations (8.54)-(8.63) were
calculated directly. Bode integration'® was used to calculate the integrals. Three cycles
of perturbation and response signal were used to calculate the impedance at each
frequency. The calculation was replicated 100 times. The corresponding three cycles of
the noise signals were stored for each frequency and each replicate measurement. The

components of the sample variance vector were calculated at 16 frequencies. Only one
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case was studied due to time restrictions associated with the numerically intensive
calculations associated with the sample variance vector. The one case studied consisted
of adding noise to the input and output signals, and allowing the noise in the input signal
to be transformed by the system into the output signal.

The ratio of variance in the real impedance to variance in the imaginary impedance
was calculated from the Taylor series expansions. The ratio was calculated using a
sample variance vector defined by equations (8.54)-(8.63) and using the sample
variances, covariances, and cross-covariances calculated directly from the replicate
estimates of the complex components of the perturbation and response signals. The F-
tests for the ratios are shown in Figure 8.7. The test is satisfied for both methods of
calculation. The student’s t-test parameters are listed in Table 8.4 and the test is satisfied
for the probability of five percent in both calculations.

The ratios calculated through the equations or through the replicate observations
appear to be equal as shown in Figure 8.7. This was tested by taking the difference
between and ratio of the ratios in impedance variances calculated using the two
approaches, and applying the student’s t-test over the spectrum. The mean difference was
equal to zero, and the mean ratio was equal to one (Table 8.5). Thus, equations (8.54)-
(8.63) provide means of calculating the variance vector for the Taylor series expansions
of the variances in the complex components of the impedance which result in excellent
approximation of the observed variances in the same components.

8.2 Variance as a Result of Phase-Sensitive Detection

A similar procedure can be used to calculate the variance of the stochastic errors in
the magnitudes of the voltage and current signals. Not all ten components of the polar

form of the variance vector for PSD can be determined through the procedure, since the
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magnitude and phase angles of the signals are measured independently. The magnitudes

of the two signals are calculated as

L [ 2anfo (8.64)
V(o) = Py IV51n(wt+¢V)squme ot +@,, Mt + !;n,, (¢)square(wr + 4, , )dt}
2mfew Qe (8.65)
@)= . { J.I sin(wt + ¢, )square(wr + ¢, , )t + J n, (t)square(wt + 4, , )dt}

where the first integral corresponds to the expectation value of the magnitude and the
second integral corresponds to any error in the evaluation resulting from the time-
averaging of the noise in the signal.

8.2.1 Variance Defined by Expectation Integration over Time

The functional variance of each magnitude can be written as the time-domain
expectation of the square of the difference of the magnitude and the expected value of the
magnitude. If the expectations of the noise signals are zero, then the functional variances

can be written as

s 1 M2/ 2w (866)
Oj = mE _ }[ _([”v (), (v)square(ex + ¢, )square(ay + 8, , Jdedy

, 1 M2amjar 2anfer (8.67)
op = mE _[ '([n ,(0)n, (»)square(ex + ¢, , )square(wy + 4, , )a'xdy:| .

Since the noise signals are considered as purely stochastic functions, then they are
uncorrelated with the square waves. Therefore, the phase angles of the two square waves
can be neglected, since they should not affect the value of the integrals.

The square waves can be written as Fourier series by

(8.68)

sin[(2k + 1)t ]

< |
square(wt) =Y T

k=0
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and introduced into equations (8.66) and (8.67) such that the variances are

S E[Z”"’ w2 "S5 m () (), () {sin[(zk +ax] }drdy} (8.69)

) G5 k1) +1) | xsin[(2/ + Dey]

0_2 _ 1 £ "Vj/wz‘l?j/wii I(x nl(y 51n[(2k+l)azt] o (8-70)
= 4r’n?/w? ° et (2k +1)20 +1) x sin[(2/ + 37 i
where the double summation is the result of the product of the square waves. The

expectations can be brought inside the double integrals and double summations. Upon

introduction of the definition of the auto-correlation function, the variances can be
rewritten as

2m/ e 2anf @

2 _ LI sin[(2k + Ljax] (8.71)
v —47r2n2/a)2 ‘([ { Vngn (r)égol(u+1)(21+1){xsm[(21+1)wv 4

2mje 2mfw © ® i 8.72
. 1 1 sm[(2k+1)a)x] ( )
oy = 4”2’12/0)2 ,([ { Ynn (r)§§(2k+1)(2[+1){x sm[(21+1)a7y] -
where
r=y-x (8.73)

Through the definition of the time-shift variable, z, the variance equations can be

expressed as the sum of two sets of double integral over separate domains

(4r n*/w? )0'|V| = o
(2afa)-z I {sin[(Zk + L] }dt

2mnjw o
{ dr (//n;'n,»( ) _[ Z,Z:(Zk-f-l)(ﬂ'i‘l) x51n[(21+1)a)(\?+ 1’)]
2mjw (Qmja)r

© = 1 sin[(2k + e (y 7)
+ I dt Wnyn;'(r) J. Z,Z(zk+1X21+1){xsm[(21+1)a’y] ]}4)’

0 0 k=
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(47r2n2/w2)o'ﬁl = (8:79)
2nfs @mfo)r » = 1 sin[(2k + L]
J‘ dr Y, (T) _[ Z Z (2k + 1X2[ + 1) {x sxn[(21 + l)a)(x + T)]}dx

0 0 k=01=0
2/ (@miolr » o sm[(2k+l)a)(y 7-')

1
+ I dr ¥ arn, (T) _[ IZ{Z(2k+1X21+1){xsm[(2[+1)w,V] ]}dy

0 0

Since the auto-correlation function is symmetric around zero, the variances can be
simplified. Note that the choice of summation variable (k£ or /) is arbitrary, and therefore
the first and second double integrals are equal if a negative time-shift is introduced into

the second double integral.

(27rzn2/a)1)0'[f,‘ = (8.76)
2mfe ("D'/ﬂl)'f x x . .

! dry, . ( _.- 2. ; T 1)(21 " I)sm[(Zk + Dax]sin[(2/ + oo (x + )l
(er*n*/w* o = (8.77)
271w (2anfw)-r L .

I',. dry,, \r (z) ?.[ ;;Z_o: Gk l)(21 )sin[(2k + Deaxc]sin[(2/ + Do (x + 7 )px

The product of sines can be written as the difference of cosines, making the inner
integration possible.

(472n /0 i, = (8.78)

o 47 W, ()
J’ (2mfw)-r 1 cos[(2k + l)alY (21 + 1)@(" + T)]
0

8 “"éé 2k +1)20 + 1){- cos[(2k + Vax + (21 + Do (x + z')]}

(4722 /0 oy = (8.79)

7

» o 1 cos[(2k + Lax — (21 + o (x + )] |
0 f ‘Ltgz(ZA+1)(21+ 1){—005[(2k+1)a2x+(21+1)(0(‘C+T)]}

The angular expressions can be simplified and the inner integral can be calculated
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ranfs A { 1 } (8.80)
v 8n-n12/w2 fdrwn,.n,.(f)z Yillk+r+1) (k-1)

0 k=0.k=!lI=0 X{Sin[(2k+l)a)r]+sin[(21+l)a)r]}

2/ . m{ 11 } (8.81)
Oy = 8,,:,,lz/wz [ arv,., @) X X k+1+1) (k-1)

° k0 o sin[(2k + Doz ]+ sin|(21 + Dot}

where the summation over & does not include the case where 4 is equal to /. Analysis of
the cross-covariance between the magnitudes in the voltage and current follows a similar
derivation except at the point at which the symmetry of the auto-correlation function is

employed. Therefore, the signal magnitude cross-covariance can be expressed as

W ey ()00, @) (8.82)

. L 2’”’;""(17 ) m[ 1 1 L
11~ {8z2n?/w?) 1 x Y S k++1) (k-1)]

k=0.k=l =0 x {sin[(2k + wr ]+ sin[(2/ + I)wr]}

The standard deviation in the phase angle measurement is independent of the

v

calculation of the signal magnitudes because the phase angle is reported as the controlled
value of the angle for which the PSD integral is maximum. Therefore, a natural
correlation between the magnitude variances and the variances of or covariances with the
phase angles does not necessarily exist. As a result, there is no expectation that these
integral results for the variances of the magnitudes should satisfy the equality of the polar
forms of the Taylor series expansion for variance in the real and imaginary impedances.

8.2.2 Variance Based on Expectation in a Sampling Sense

The sample variance can be derived in similar fashion as described for the FRA

measurement. The sample variance is determined by averaging the product of noise
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signals over each measurement interval. The three components of the Taylor series

variance vector that do not include a phase angle measurement are

pere | (Sl Bl Mo - o )] @8
I J. dudv ”’:' )
N o 0 k M:Z Gk 1;(2[ )sin[(zk + L)oo sin[(2/ + I)a)v]—
Oy = (1)
2mfer 2/ {Zv:[n’-M(u)—E(nl.m )Inl.m (V)—E(n,.,,, )]} (8.84)
J- _[ dudv ’":' )
2 o 0 -x > . 72 m sin[(2/k + L)au]sin[(2/ + I)cuv]_
“ 2m(N -1)/w
2mjw 2ajew {i [n, m (u ( n;, m In,, ” (v ”V i )]} (8.85)
I J- dudv ”':' 3}
] o 0 x g [Z T 1)(21 )sm[(2k +au]sin[(2/ + Dawv]
Sl = (N 1)

For details on this derivation, refer to Appendix B. Again, the standard deviation of the
voltage and current phase angles will be dependent upon the phase controller used in the
PSD measurement. Therefore, these integral results cannot be calculated and introduced
into the polar forms of the Taylor series expansions for the variances in the real and
imaginary impedances since the seven components of the variance vector that contain the
standard deviations in the phase angles are unknown.

8.3 Conclusions

The variance in the real and imaginary impedance are correlated to the complex
current and voltage through ten-term Taylor series expansions as shown in Chapter 6.

Thus, to determine analytically the variance in the real and imaginary impedance as a
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function of the noise in the constituent current and voltage signals, it was necessary to
analytically determine the ten components of the variance vector associated with the
Taylor series expansions. The components were determined for both the FRA and PSD
techniques.

Two definitions of variance were considered. One was a functional variance, and the
other was a sample variance. The functional variance was defined to be the variance of
the quantity with respect to its time-domain functionality. As the mean of a function is
proportional to the integral of that function, the variance of a signal was considered to be
the integral over time of the frequency-domain description of the square of the signal.
Since the frequency-domain description of the square of the signal was calculated as a
double integral over time, the functional variance was calculated as the triple integral
over time of the square of the signal. For covariances, the square was replaced with the
product of two signals. The sample (co)variance was calculated as the average of
replicate observations of the frequency-domain description of the square of the signal (or
product of two signals).

The ten components of the variance vector were calculated for both FRA definitions
of the variance. One hundred replicate measurements of the impedance were made at
each frequency. Each measurement of the complex impedance was made over three
cycles of the current and voltage signal. The long-integration convergence criterion was
met at three cycles. The functional variance determined for the reported impedance was
averaged over the 100 replicate measurements. The integral form of the sample variance
was calculated for the sample population of 100 at each frequency. A sample variance

was also calculated from the 100 observation of complex current and voltage.
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The variances in the real and imaginary impedances were calculated by taking the
vector product of an estimated variance vector and the appropriate Taylor series
coefficient vector. The variances in the real and imaginary impedances were equal when
the variance vector components were estimated as either form of the sample variances.
The ratio of the variance in the real impedance to the variance in the imaginary
impedance was a function of frequency when the functional variance was used to
calculate the components of the variance vector. The sample variance calculations were
similar to the variance estimation used in the Measurement Model Tools designed by
Orazem and co-workers.>® Their observation of the equivalence of the variances in the
stochastic errors in the real and imaginary impedances is consistent with the result of the
Taylor series expansions for variance using the sample variance estimation of the

"7 that the variances in the real and imaginary

variance vector. The proposal by Milocco
impedance were equal was stated for variances calculated in the functional form. The
results of these simulations suggest that the Milocco proposal only holds true if the noise
in the signal is not transformed by the system. When there was noise in the current that
was propagated into the voltage, the functional variances of the real and imaginary
impedances were not equal.

Simulations could not be performed to determine the variance vector for the PSD
definitions of the variance since only the three components of the vector which are
independent of phase angle can be determined analytically. The other seven components
would be set by the noise associated with the phase angle controller. This is another

example of the inability of the PSD technique to measure impedance that have equivalent

variances in the real and imaginary components. It was shown in the previous chapter
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that the equality of the variances in the complex impedance components was a result of
the satisfaction of a set of six equality conditions. These conditions can not necessarily be
met if the error in the phase angle of each signal is independent of (not from the same

source as) the error in the magnitude.



Table 8.1: Student’s t-test results for ratio of variance in real impedance to

variance in imaginary impedance calculated through Taylor
series expansions for variance in complex components of the
impedance.  Variance vector was calculated as functional
variance (F) through the integral equations and as sample
variance (S) from observed replicate values of the complex
components of the voltage and current signals
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CASE | VARIANCE tealc t0.025,n-1 teatc/ t0.025.0-1
1 F 1.289 1.987 0.649
1 S 0.587 1.987 0.296
2 F 12.1 1.987 6.11
2 S 0.787 1.987 0.396
3 F 10.9 1.987 5.48
3 S 0.391 1.987 0.197
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Table 8.2: Student’s t-tests for trivial solution conditions for equality of variance
in the real and imaginary impedances described by the linear
Taylor series expansion. Calculations were conducted for the
CASE 1 scenario, noise added to the input and output signal,
without input noise transformed by the system.

FUNCTIONAL VARIANCE SAMPLE VARIANCE
RATIO tcalc tcalc/ t0.025.n-l tcalc t<::1Ic/ t0.025.n-l
ol /G; =1 1.687 0.849 0.375 0.189
r J
o2 /02 =1 0.479 0.241 0.175 0.088
f, g
Sy /ayj,j —1 0.664 0.334 0.868 0.437
Sy, [0, =1 - - 4.72 2.38
Oy, =0 - - 1.411 0.710
. =0 - - 0.494 0.248
1

Table 8.3: Student’s t-tests for trivial solution conditions for equality of variance
in the real and imaginary impedances described by the linear
Taylor series expansion. Calculations were conducted for the
CASE 3 scenario, noise added to the input and output signal, with
output noise including input noise transformed by the system.

FUNCTIONAL VARIANCE SAMPLE VARIANCE

RATIO teale t<:alc/ £0.025.n-1 Leale tcalc/ £0.025.n-1
o Joi =1 10.7 5.40 1.087 0.547
0'12,/0'12j =1 0.0833 0.0419 0.961 0.484
oy /O'V,-Ij =1 10.9 5.46 1.189 0.598
5y [0, =-1 - - 1.474 0.742
o, =0 - - 1.760 0.886
o,, =0 - - 1.473 0.742

I




Table 8.4: Student’s t-test results for ratio of variance in real impedance to

variance in imaginary impedance calculated through Taylor
series expansions for variance in complex components of the
impedance. Variance vector was calculated as the analytical
sample variance (A) through the integral equations and as sample
variance (S) from observed replicate values of the complex
components of the voltage and current signals
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VARIANCE tealc t0.025,n-1 teate/ 0.025.0-1
A 0.907 2.131 0.426
S 1.016 2.131 0477

Table 8.5: Student’s t-test results for the difference between and ratio of the ratio

of wvariance in real impedance to variance in imaginary
impedance calculated through Taylor series expansions for
variance in complex components of the impedance. The variance
vector was calculated as the analytical sample variance through
the integral equations and as sample variance from observed
replicate values of the complex components of the voltage and
current signals

Operation Lealc 10.025.0-1 teaic/ 10.025.n-1

Difference 0.806 2.131 0.378
Ratio 1.132 2.131 0.531

log(Ratio) 1.160 2.131 0.544
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Figure 8.1: F-test for CASE 1, in which noise was added to input and output
signals and not transformed through system. Functional variance
is calculated through the derived integral equations, while the
sample variance was calculated by sample expectation of the
observed replicate calculations of the complex components of the
voltage and current signals.
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Figure 8.2: F-test for CASE 2, in which noise was added to input signal and
transformed through system. Functional variance is calculated
through the derived integral equations, while the sample variance
was calculated by sample expectation of the observed replicate
calculations of the complex components of the voltage and
current signals.
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Figure 8.3: F-test for CASE 3, in which noise was added to input and output
signals and transformed through system. Functional variance was
calculated through the derived integral equations, while the
sample variance was calculated by sample expectation of the
observed replicate calculations of the complex components of the
voltage and current signals.
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Figure 8.4: Auto-correlation function for noise in current signal and transformed
noise in voltage signal from the noise in current for a Voigt
element transfer function with a characteristic frequency of 10
kHz.
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Figure 8.5: Close-up around zero of the auto-correlation functions for noise in

current signal and transformed noise in voltage signal from the
noise in current for a Voigt element transfer function with a
characteristic frequency of 10 kHz.
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Figure 8.6: Integrands functions for the variance in real and imaginary voltage
and real and imaginary current. (a) Integrand in voltage is
significantly different than integrand in current. (b) Integrand
for real voltage is different that integrand for imaginary voltage.



220

0.3 r ]
;.‘ 0.2 ; Q .
< %
>=_ 0.1 = & S ]
< % R ]
(@) i i
3 0 Ff ] Q o B B o ]
| - & i
«>-01 } ]
N - -
5 - o] .
o~ B = -
8% :
o - O Integral Form of Sample Variance ’
2 3 - .
- X Sample Variance from Replicate Components;
0.4 L :

1 100 10000 1000000

Frequency, Hz

Figure 8.7: F-test for sample variance simulation, in which noise was added to
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calculations of the complex components of the voltage and
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CHAPTER 9
CONVERGENCE OF THE STANDARD DEVIATION OF
IMPEDANCE AT A SINGLE FREQUENCY

Some researchers have suggested that integrating over a large number of cycles can
reduce errors in complex spectroscopy measurements.''® As the number of cycles of
integration increases the noise level in the measurement should decrease.' 16117 This result
was found when the variance in the stochastic errors was determined using the functional
definition of variance reported in Chapter 8. It has not been reported for sample variance.
One implication of this result is that the choice of auto-integration criterion is arbitrary
and that the noise level can be made insignificant by reducing the criterion. A simulation
was conducted to determine if the standard deviation approaches zero asymptotically or
some non-zero value as the number of cycles over which the complex impedance is
measured becomes large. Several criterion were considered to determine the asymptotic
behavior of the errors in the impedance and the standard deviations in the voltage,
current, and impedance as a function of the number of cycles over which the signals were
integrated.

An iterative criterion, C,, was calculated as difference between the average

magnitude calculated over the current number of cycles and the average magnitude

calculated over the previous number of cycles.
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C, =(2), —(Z),_,- 9.1)
Here the average is represented by the angle brackets, and the subscript letter of the
bracket represents the number of cycles over which the average is calculated (n being the

current number of cycles). Two impedance convergence ratios were calculated. The first,

C z,» Was the ratio of the standard deviation of the magnitude of the impedance to the

average magnitude of the impedance calculated over the current number of cycles.

_ iz ©2

CZp.n - <|Z|>n -

The second, C z.» was the ratio of the standard deviation of the impedance magnitude to

the magnitude of the average values of the real and imaginary impedance calculated over

the current number of cycles.

Czon= >
\/(Z,)i +<Zj>,,

The same two convergence ratios were calculated for the current and voltage

(perturbation and response) signals by
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Ol (9.4)
o,
C,c,,, O|t|n 9.5
(1 r)i * <[ />,-,
- G| (9-6)
(v,
c, = O|.n . ©.7)

The FRA and PSD techniques listed in Chapter 5 were applied to the same pair of
current-voltage signals, and the impedance was calculated over 200 cycles. Each of the
convergence criteria described in equations (9.1)-(9.7) was calculated for each cycle at
each frequency for each technique and saved to file. The ratio criteria did not approach
zero as the number of cycles became large.

The mean and median values of the iterative criterion defined by equation (9.1) is
shown as a function of cycle number in Figure 9.1 for the FRA calculation and in Figure
9.2 for the PSD calculation. The mean and median were calculated at each cycle number
over all frequencies calculated in the spectrum. The maximum and minimum values over
all the frequencies at each cycle number is also plotted. The mean of the ratio defined by
equation (9.2) as a function of number of cycles is plotted in Figure 9.3 for the FRA
calculation using Bode quadrature and in Figure 9.4 for the PSD calculation. The mean
was calculated at each cycle over all frequencies. Only the ratios calculated for the FRA
technique (with Bode quadrature) and PSD technique are shown since these are the two
simulated techniques most likely to be used in marketed impedance spectroscopy

instrumentation. It is clear that the ratio reaches an asymptote bounded by the maximum
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and minimum values of the ratio determined over all frequencies. The mean of the ratio
defined by equation (9.3) also reaches a non-zero asymptote as illustrated in Figure 9.5
for the FRA calculation and in Figure 9.6 for the PSD calculation. The minimum value of
the ratios from all the frequencies as the cycle number becomes large also does not reach
zZero.

The means of the ratios defined by equations (9.6) and (9.7) are shown as functions
of cycle number in Figure 9.7 and Figure 9.8 for the FRA determination method and in
Figure 9.9 and Figure 9.10 for the PSD technique, respectively. The means were again
calculated over all frequencies at the cycle number. Note that the ratios all converge to a
non-zero value. The convergence criteria in current behave similarly to the voltage
criterion and are not shown here.

As a result of these calculations, it can be concluded that the “long-integration”
convergence criterion of one percent is a reasonable one, since at most, one could expect
maybe an order of magnitude better in integral convergence. Second, the variance in the
measurement of any signal does not converge to zero as the number of cycles is
increased, which is contrary to the described results of the Milocco group.' '7 Therefore, it
is appropriate to deal with a definition of error structure variance that provides for a finite

value as the number of cycles over which the impedance is measured goes to infinity.
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Figure 9.1: Convergence of impedance calculated using the FRA algorithm

as a function of cycle number as defined by equation (9.1). Ata
given frequency, the average value of the impedance was
calculated over all cycles up to the value of n. The plotted mean,
median, maximum, and minimum was then calculated at each
cycle number n over all frequencies in the spectrum.
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Figure 9.2: Convergence of impedance calculated using the PSD algorithm

as a function of cycle number as defined by equation (9.1). Ata
given frequency, the average value of the impedance was
calculated over all cycles up to the value of n. The plotted mean,
median, maximum, and minimum was then calculated at each
cycle number n over all frequencies in the spectrum.
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Figure 9.3: Convergence of impedance calculated using the FRA algorithm

as a function of cycle number as defined by equation (9.2). At a
given frequency, the average value of the impedance was
calculated over all cycles up to the value of n. The plotted mean,
median, maximum, and minimum was then calculated at each
cycle number n over all frequencies in the spectrum.
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Figure 9.4: Convergence of impedance calculated using the PSD algorithm

as a function of cycle number as defined by equation (9.2). Ata
given frequency, the average value of the impedance was
calculated over all cycles up to the value of n. The plotted mean,
median, maximum, and minimum was then calculated at each
cycle number n over all frequencies in the spectrum.
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Figure 9.5: Convergence of impedance calculated using the FRA equation
(9.3). At a given frequency, the average value of the impedance
was calculated over all cycles up to the value of n. The plotted
mean, median, maximum, and minimum was then calculated at
each cycle number n over all frequencies in the spectrum.
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Figure 9.6: Convergence of impedance calculated using the PSD equation

(9.3). At a given frequency, the average value of the impedance
was calculated over all cycles up to the value of n. The plotted
mean, median, maximum, and minimum was then calculated at
each cycle number n over all frequencies in the spectrum.



231

Maximum

0.004 - Minimum :
0.003 F
0.002 | —— Mean
0.001 — Median

ot

0 50 100 150 200
Cycle

Figure 9.7: Convergence of impedance calculated using the FRA equation

(9.6). At a given frequency, the average value of the impedance
was calculated over all cycles up to the value of n. The plotted
mean, median, maximum, and minimum was then calculated at
each cycle number n over all frequencies in the spectrum.
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Figure 9.8: Convergence of impedance calculated using the FRA equation

(9.7). At a given frequency, the average value of the impedance
was calculated over all cycles up to the value of n. The plotted
mean, median, maximum, and minimum was then calculated at
each cycle number n over all frequencies in the spectrum.
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Figure 9.9: Convergence of impedance calculated using the PSD equation

(9.6). At a given frequency, the average value of the impedance
was calculated over all cycles up to the value of n. The plotted
mean, median, maximum, and minimum was then calculated at
each cycle number n over all frequencies in the spectrum.
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Figure 9.10: Convergence of impedance calculated using the PSD equation
(9.7). At a given frequency, the average value of the impedance
was calculated over all cycles up to the value of n. The plotted
mean, median, maximum, and minimum was then calculated at
each cycle number n over all frequencies in the spectrum.



CHAPTER 10
CONCLUSIONS

A new complex spectroscopy technique, Rotational Electrophoretic Spectroscopy,
for the characterization of particles in suspension was developed which integrates
electrochemical impedance spectroscopy and UV/Vis light scattering. In support of the
development of RES, a program of numerical simulations and statistical analysis was
conducted for the assessment and characterization of errors in spectroscopy
measurements. Implications can be drawn from the results of this program that apply to
general applications of complex spectroscopy measurement techniques, such as complex
viscometry, acoustophoresis, and electrohydrodynamic impedance spectroscopy.‘ '8

10.1 Rotational Electrophoretic Spectroscopy

Complex spectroscopy techniques are employed in a diverse range of disciplines for
a broad array of applications. In comparison to time-domain measurements with a single
measurement at a single time, the complex measurement contains two pieces of
information at each frequency. Proof of concept was established for a new complex
spectroscopy technique for characterization of a joint property distribution of particles in
suspension. This joint property distribution included particle size distribution, zeta
potential distribution, particle shape, and surface charge heterogeneity. The technique,
termed "Rotational Electrophoretic Spectroscopy,” measured the transfer function defined
by the ratio of frequency-domain electric field (perturbation) and photodiode (response)

signals. The photodiode signal was proportional to the light forward scattered by an
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ensemble of non-spherical particles responding to the applied electric field by rotational
electrophoresis and induction of a dipole moment.

The rotation of rod-like particles was confirmed by observation through video
microscopy of frequency-dependent rotation of suspended particles under an alternating
applied field. The assumption that the rotation of particles was a reversible process was
verified by using an oscilloscope to monitor the photodiode response. Relaxation
processes in response to a square wave potential input were observed to be repeatable.
The rotation of particles was observed in the presence of a superimposed flow field,
which confirms the suitability of this approach for on-line sensing.

Measurement of the Rotational Electrophoretic Spectroscopy transfer function was
accomplished using Fast Fourier Transforms on digitally stored pairs of applied voltage
and photodiode response signals. The magnitude of the transfer function was determined
at the frequency of the applied voltage signal. Power spectral analysis of the perturbation
and response signals provided evidence of a linear response of the light scattering signal
to a perturbation in the rotational electrophoretic driving force. The out-of-phase
component was not independently assessed because of the low signal-to-noise level in
that component.

The RES measurement is extremely difficult to conduct. Oscillations in the light-
scattering signal have the same signal level as the noise in that signal. Thus, visual
verification of sinusoidal oscillations in the photodiode signal on an oscilloscope could
not be made; FFT analysis was required for that verification. The measurement technique
was unable to conduct reliable and repeatable measurements of the borosilicate

suspension using the RES system. However, the particulate response was observed
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several times using video microscopy, and the transient response in the photodiode signal
was observed on several occasions although it could not be reliably reproduced.

The technique shows promise as a tool for characterization of particles in suspension.
The biggest hurdle to overcome is improving the signal-to-noise ratio of the
measurement. Some ideas for increasing the signal level or minimizing the noise level are
presented in Chapter 3.

10.2 Characterization of Frequency-Domain Errors

Complex Nonlinear Least Squares (CNLS) regression techniquc:ss'l7 have been
employed to estimate the parameters of complex impedance models. CNLS can not fully
capture the features of impedance spectra unless appropriate weighting strategies are
implemented. Several different strategies have been suggested in the literature. The
primary differences between them deal with the correlation between the noise level in the
real impedance and the noise level in the imaginary impedance.

An important point that has been missed in this controversy, however, is the
evolution of the noise in impedance spectra. The errors in measured spectra are the result
of errors in the measurement technique and errors that have been transformed from the
measured time-domain signals to the calculated frequency-domain quantities. Thus,
studies were conducted to determine the distribution of frequency-domain errors, the
relationship between the variances in the complex impedance components, and the
relationship between the frequency-domain errors and the noise associated with the time-
domain signals under study and with the employed measurement technique.

Several conclusions can be drawn from the results of these studies. The first is that
errors in impedance spectra are normally distributed as long as the measurement

technology satisfies the Central Limit Theorem. This requirement is satisfied if the



238

instrument employs signal integration or averaging. For example, the Solartron
Instruments 1250 FRA and 1260 Gain Phase Analyzer use algorithms that satisfy the
Central Limit Theorem requirements for normal distribution of errors in spectra. Also, in
practice, the variance in the real impedance is equal to the variance in the imaginary
impedance. The variances were not equal for the PSD technique, but this was the result of
the bias introduced from the independent measures of magnitude and phase angle. Thus,
the assumptions associated with the derivation of Durbha et al.’ which demonstrated that
the variances in the real and imaginary parts of the impedance were equal as a result of
the satisfaction of the conditions of the Kramers-Kronig relations are valid for frequency
response analysis but not for phase-sensitive detection. The results of the simulations
described in this document also support that another implicit assumption associated with
that derivation was that there was no error in the frequency at which the impedance was
measured.

The variance in the complex impedance cannot be described simply in terms of the
variances in the current and voltage signals. It is necessary to account for all of the
correlation between the four complex components from the two signals. Correlations
between the complex components of the constituent signals were estimated. The errors in
the real and imaginary impedance were not correlated when the FRA technique was used
for impedance calculation. The same errors were correlated when the PSD technique was
employed for determination of the impedance. This result was consistent with the
experimental finding that the errors in the real and imaginary impedance were not
correlated when there was no bias error contribution to the impedance error structure.” A

set of conditions on the ten variances of the Taylor series was observed for the equality of
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the Taylor series expansions for the variances of the real and imaginary impedances.
Therefore, not only are the variances of the stochastic errors in the real and imaginary
impedances equal, but the relationship between the ten components of the variance vector
is known. Namely, the variances in the stochastic errors in the real and imaginary voltage
are equal. The variances in the stochastic errors in the real and imaginary current are also
equal. The covariances between the real and imaginary current and real and imaginary
voltage are equal to zero. The cross-covariances between the real current and voltage and
between the imaginary current and voltage are equal. And, the final two cross-
covariances are of equal magnitude but opposite sign.

Replicate measurement of impedance spectra is required to determine accurately the
impedance that generates errors in the real and imaginary impedances for which the
variances are equal. Determination of the variance from a single measurement of a signal
will not necessarily satisfy the equality. Therefore, the error structure described by
functional variances of the real and imaginary impedances does not apply to all systems
or spectra. Thus, the results of these simulations suggest that the approach taken by the

6974118 which incorporates an experimental

laboratory of Prof. Mark E. Orazem,
determination of the variances from replicated measurements, is the most robust of the
published methods for measurement and interpretation of impedance spectra. Frequency
response analysis, Lissajous parameterization, and to a lesser degree fast Fourier
transforms of white noise signals are preferable techniques for measurement of complex
impedance spectra because they do not introduce the bias error associated with the PSD

technique. Error structure weighting of CNLS regressions should be used, and the error

structure should be a function of the variances in the stochastic errors in the real and
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imaginary impedances. In order to determine the error structure of the measurement,
replicate spectra must be taken. Sample variance must be used for the error structure, or

the weighting strategy may fail for non-simulated systems.



CHAPTER 11
SUGGESTIONS FOR FUTURE WORK

This document has focused on two primary points of research: the development of
Rotational Electrophoretic Spectroscopy and the propagation of errors into complex
spectra. As a result, suggestions for future work must be divided between these two
thrusts.

11.1 Rotational Electrophoretic Spectroscopy

This technique is still under development. The current status of the technique is that
the physics behind the technique are verified and observed, but the RES measurement is
neither reproducible nor reliable. Further work is required to fully realize the technique.
First of all, 2 more robust UV/Vis spectroscopy system is required. Ideally, a multi-
wavelength spectroscopy system would be used for the optical sensing. A fast A/D card
on a PC would allow a large number of wavelengths to be sampled over time. FFT
analysis could be applied to the time signal for each wavelength, and the best signal to
noise ratio could be quickly ascertained. Presently, an A/D card would have to be
programmed by the researcher to perform in this manner. Available UV/Vis
instrumentation is not designed for this purpose.

A better cell design may be required. One possible cause of the poor signal-to-noise
ratio in the current RES design may be the translational motion of the suspended particles
due to the application of an electric field. A cross flow cell may be required to minimize

the translation mobility of particles. In principle, a pressure gradient could be applied
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across the cell so that the fluid in the sampling chamber has a velocity equal and opposite
to the translationally mobile particles.

11.2 Propagation of Errors into Complex Spectra

Simulations were conducted to answer the questions posed in this portion of the
dissertation. They were employed to determine the influence of instrumentation on errors
in complex spectra, the relationship between the errors in complex spectra and errors in
the constituent complex perturbation and response signals, the propagation of colored
noise in the time-domain into the frequency-domain, and the integral transformation of
time-domain errors into the frequency-domain. At this point, little experimental evidence
is available to support these results.

Thus, the focus of future research on this topic should be on gathering experimental
data to test the results of the simulations reported here. Certainly, the influence of
instrumentation on the error structure of impedance measurements can be determined by
measuring the impedance on the same pair of current and voltage signals using both an
FRA and a lock-in amplifier (for PSD). The pair of signals can be treated simultaneously
with both instruments by splitting the signals and then passing each split signal through a
high impedance voltage follower to minimize the effect of ground loops between the
instruments. The error structure of the complex frequency-domain transforms of the
current and voltage signals can also be determined by either measuring the complex
signals individually or simultaneously using a multi-channel FRA (such as the SI 1254).
The propagation of colored noise is more difficult to determine experimentally, since the
noise in impedance experiments is not normally a controlled quantity. However, various
distributions of stochastic noise can be added to the current and voltage signals using a

digital-to-analog card on a computer and two operational amplifier summer circuits. The
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integral transformation of time-domain errors is also difficult to determine
experimentally. One approach would be to capture the voltage and current signals from
impedance measurements onto a PC hard drive. Each signal could be regressed to a
generalized sinusoidal wave. The regressed wave could be subtracted from the respective
signal; the difference would be the noise in the signal. The noise could then be integrated
via the equations in Chapter 8. These experiments could be extended to a variety of
spectroscopies including dielectric spectroscopy, complex viscometry, acoustophoresis,

and electrohydrodynamic impedance spectroscopy.



APPENDIX A
TAYLOR SERIES EXPANSION OF VARIANCE

This appendix provides the reader with the details of the derivations presented in
Chapter 6. Many steps in the derivations are presented here so that the reader does not get

lost in the algebra of the manipulations.

A.1 Variance of Real and Imaginary Impedance from Complex Taylor Series
Expansion of Complex Impedance

The variance in the complex impedance can be written in terms of variances and co-

variances in the complex current and voltage as
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The complex variance can be expanded into its rectangular coordinate representation as
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The complex quantities that result from the partial derivatives in the Taylor series can be
written as
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The results of equations (A.3)-(A.5) have been used to determine equations (6.17) and

(6.18) of Chapter 6.
A.2 Variance of the Real and Imaginary Impedance from the Real Taylor Series
Expansions of the Impedance Components
The variances in the real and imaginary impedance can be written as a function of

the variances of and covariances between the complex components of the current and

voltage signals by
aZr Zr : 2 aZmr i 2 (A6)
o; + o7,
ovj /4 g ol ; J
(6

o 82 (07,
Vrlr ov, |or, |
(a

az" Yoz,
ov, | ovj

, }
+2(az az,},

0
a2,
al,

o7, oz Yoz,
vi, 2 11;
ol 7 ol | ol; g
VAN

ov. | o



246

- 2 ~ 2 ~ 2 ~ 2 (A'7)
) oZ; ) oZ; 5 oZ; ” 0Z; 5
A FT7 RO IF 77 R TR I T

(02, Y oz, ) (02, Yoz, (0, Y oz,
+2] —2 Lo, v+ — |- b, +2] L b,
ov, | ov; |7 \ev. et [ av, | el i

r

(0z, Yoz, ) (0Z, Yoz, (oz, Y oz,
+2 o, v — | =P, +2 L1
ov, | ar, | “\ew, |ar, [ e, |ar, |

\ \ 4

\ A J A

where Z . represents the expectation value of the impedance.

From this point, all variables besides the variance and covariance terms will be
considered as the expectation values. The carets and subscripts will be dropped. Then, the

individual derivatives can be written as
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Then, the squares of all these derivatives are
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These results have been introduced into equations (A.6) and (A.7) to produce equations

(28) and (29) of Chapter 6.
A.3 Vector Representation of Variance in Impedance

In Chapter 6, the question was raised as to the equivalence of the two methods of

Taylor series expansion. The following equality was tested to answer that question.

D=A,-A,. (A.36)

The difference of the two vectors on the right hand side of the equation can be written as



2 2
-1,

(Irzﬂ"[jz)z

2 2
-,

(Irz"'[jl)2

vi-v?

a1, Xp W1, +v, 1 -4t Xv, v, 1, -v.1,]

(1,2 +1, f—

+

(1+1)3
)

1 A,

v:iov;

J

o, Y, W1, +v,1, ]+ 41, YV, W7 1,

(1, w12 |

e12)

( .1, +v,1,]

([ +[)3
—4{t} 1, -v0,F

al.I,

([rz*‘[jz)z

A

([r +1; )4

ayi +viva, +vi)vap1,

([rz*'[jz)2

L8 Xt Y1, +v,1,F -8

(Irl*'ljl)3

81, e, W1, -v,.1,]

W1, 27,1,

([ +1)4

A2 Ypr, +v, e g, X, Y0, -0

(Irz*'[jlf

WL, =201,

(I +1)3

a1, X1 W, +v 1, ]+4( vt -v.1,]

(1,2 "'[jz)2

20,0, =2V,

([ -f-[)3

o, X, W1, +v,0, -4 2,1, -v,0]

(Irz“'"ljz)2

W, 20,1,

(I 4—[)j

Al s N )

i ([rl‘*'ljz)2

([r "'112)3

The first element of the difference of the two vectors can be written as
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([2+12)2 ([2.;.12)J
81, X1, .1, +v, 1, F =80\t ,1, -v.1,F
([r +1;" )4
(av v 1% +8V, 7,12 +av, v, 0f
SETA SRR ) B SV B PR A A
SV R ) W R A N A A 4
1

4 2,3 2,3 2,2
S . A2 AR 70 i) gEY 1 4y g R A G ey

A, (5)-A,(5)=

A

([r +[j) vt 2, ;3 2, 73 4
4V VL AV LT AV -4V

+8V,2 1 + 16V, V22 +8V LT

—8V 212, +16V, V1,02 -8V, 1]

a4 {V,Vj1,4 N APRE N —6V,Vj[,2[j2}
RN R R E AT A ARSI A S A B

(w1 +v2r 2, -v2 -y, 2) |
{— (v, r,20 +v 20 =20~V j‘)}

—4
(r,2 417 { (@2rn, +vvy 2 4v )
SR AR AN AR AR J
_4[([r2 -IfXZrZ,- )_ (1,1j erz "ij)]
([r2 "‘112)2
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wr, vl ALr, v ea@ Yo o0, -va] (A4

(1,2+1rj2)Z B (1,2+1j2)3

@v,1, +2w,1,\I,> +1 jz)}

A, (7)-A,(7)=

1

(2+17) —dp,1? 47,171
I, +1; _4[ler21j_Vr[r[j2]

-2

] ("r2 ““Ijz)3
___—2 [(Vr[r3 + VJ.I,ZIj)—(V,I,Ijz VI )I}
) (1,2 +1,-2)3 {‘*‘ [Z(I,IJ-XVJ-I, —Vr[j)]

- —2[(1r2 _Ijzxzr)*‘z(lr[szj)]

i (Irz*’[jz)2

3 3 2 2
V.r®-vir®+w,r2n,-w,17)

w1, w1, AL v v (49
(r,2+17) (r,2+1,f

r 7

2 {[(V;l 2 v v j3)]}
ENRASC AR ARAP)
AR AR ENA)

( . +[j2)3

A (B)-A,6)-
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_w; ZVI AL, W, +v,1,]-alt,2Jr 1, -v,1]  (A46)

’ ( ([ +[ )’
VI -V, 4V, VL I}
- —W L, -2V 00 2,0 -2V

{VI -3V;1.1; -3V[ [ +V.I, }

(I +1; )3
VI Syt~ ?)
)’ 2011, \v, 1, +v,1 )]
2[(12 1,2 )-200.1,)z,)
([r2+11 )3
A,(10)- A, (10)= WL, WL e, v, )-a e o0, -v,0,] (A4D
(Irz“"ljz)- (l,2+1j2)3
2 VI +V I VI +V L
(Irz 4-11.2)J —2V,Irlj2 —2Vj1j3 +2Vj1r2[j —2Vr[r[j2
2
(1.2 +172f
2 {[(VI +VI, 1) (.1, 1}.2+VJ_11_3)]}
ARG 11)(V1—V1)]
=2[(1, ~12)z)+21.1,)z, )]
(1,2+1j2)3

Thus, equation (A.37) can be rewritten as

3 3 2 2
12 v+, 0, -3v,007)




(.
i
o2 -2

NN S 7
SRR 4[12 -1, }ZZ ez -z2)|
’ 2|1, Z)+2(II Z]
2r.2-1,%)z,)- 2(11Xz)
21-—1~Zj) 2Ar.1,)z,)
21,2 -1,2(z,)+2(t.1,)z;)

b 1)2,2,)

I XZ —zf)+4(
2\z, —Z,’)+4(1,1jXZ,Z,)
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(A.48)

that is the result reported in Chapter 6. This vector can be used to test the equality of the

difference between the variances in the stochastic errors in the real and imaginary

impedances with zero. The ratio of the two variances can be compared to unity via the

individual expressions for the real and imaginary coefficient vectors.



APPENDIX B

DERIVATION OF VARIANCE IN FREQUENCY-DOMAIN
ERRORS FROM ADDITIVE ERRORS IN TIME-DOMAIN

This appendix provides the details of the derivations presented in Chapter 8. More
steps are presented here than are probably required to follow the derivation, but the
additional steps save the reader from getting lost in the algebra of the derivation.

B.1 Variance for Frequency Response Analysis

The complex components of the current and voltage signals measured using

Frequency Response Analysis can be written

® sz/ai @ 2w (B. 1)
V(w)= Py _[V sin(wt + ¢, )sin(we )dt + — In,,- (¢)sin(at )dt
m 2m
2:171/(:{ 2mfw (B-z)
V; (0)= 5(0— I V sin(wt + ¢, )cos(wt )dt + 2 In,, (¢)cos(wt )dr
m 2m
2mjw 2mfw (B.3)
[ ()= —2@— j[sin(wt + ¢, )sin(wt )t + -2 J'n, (¢)sin(cr )t
m 2m
2mjw 2mfw (B.4)

1 (w)= % Iisin(wt + @, )cos(mt )dt + -2—6:”— In, (t)cos(wt )t
0 0

where the limits of integration are zero to the time associated with an integral number of
cycles. The expectation of the error resulting from the difference between the observed
value of a signal and its expected value will be simply the expected value of the integral

of the product of the noise signal and the reference signal since the expectation can move

into the integrals of equations (B.1)-(B.4)

257
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M2x/w ] (B.5)

Elsy, @)= £, (@)-7. (@)= | [n, ()sin(wr)d:

0

R l (B.6)
Ele, @)= £, @), @)|= 2| [y (cos(arke

0

A . 2/ (B.7)
Ele, (@)= Ell, (0)-1,(0)=E f n,(t)sin(a)t)dtjl

) [ 21/0 (B.8)
E[a,j (w)]z E[[j(w)—lj(a))]= E J{n,(t)cos(a)t)dt}

B.1.1 Variance Defined by Expectation Integration over Time

At this point, two definitions of the variance can be studied. One is the sample
variance based upon repeated measurements of the integrals. The other definition is a
functional variance, that is, the variance of the function with respect to its time-domain

expectation defined by''®

(B.9)

EF @)= ——[ s (e

T b—qe

The variance of the stochastic errors of each component of the two signals can be written

(B.10)

2r/w /e 2
E[o,%r(a))]=E{I:[ In,,(t)sin(a)t)dt}—E J-n,,(t)sin(a)t)dtﬂ }

2rfw N\ [21/e 2 (B.11)
Elo? ()]= E{H [n, (t)cos(a)t)dt)— g [n, (t)cos(a)t)dtﬂ }

(B.12)

2/w 21/o 2
E[O',Zr ((o)]z E l:[ In, (t)sin(a)t)dtJ— E _[n, (t)sin(a)t)dt:l:l

0 0
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27/w 2w 2 (B.13)
Elo? (@)= E{[[ [n ()cos(a)t)dt]— [ [n ()cos(wz)dt]”

0 0
If the expectation in the noise signals is zero, then the variance of each signal component

and the cross-covariances between the different components of the signals can be

written' '

~
)

(B.14)

2zfw 7
E[O':‘-r(a))]=E{ In,,(t)sin(wt)dt ;

2/ 12] (B.15)
E[O',Ei(w)]:E{l: Iny(t)cos(a)t)dt >

12) (B.16)

IJ
v}

(B.17)

[ 2r1/w T 27/ (B 18)

E[O',,r,,j (a))] = E{ _fn,, (¢)sin(wt )t In,, (t)cos(a)t)dtJ}
270 M 27/ T (B 19)

E[cr,r,j (w)]: E{ J'n,(t)sin(a)t)dt In,(t)cos(cot)dt }
M2x/w N 275/e 7 (B.ZO)

E [o-‘,r . (a))]= E{ fny (¢)sin(ct )t Jzn ,(t)sin(we )dt }
21w N 27/ (BZ 1 )

E[O'Vr,j (a))]= E{{ _[/n,, (t)sin(cot)dt f ( )cos(a )t }
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S T2r/e (B.22)
Ep,, (@) E{ f n, (¢)cos(we )de f n, (t)sin(a)t)dt:l}

[ 27/ M 2x/e (B23)
E[o-,,/ ./ (a))]= E{ [ny(t)cos(ee)dt | [n, (t)cos(cot)dt]}

These ten products of integral can be rewritten as double integrals, i.e., ''®

JRRECEVREE (B.24)
o} (0)= E{[Mznz IT jny(xn(y)sin(msm(w)dmy]

0
e 2mfe (825)
o} (w):E[ T o o cos<wx)cos(wy)¢xdy}
473n?
s B mfw 2mie (826)
)= [T Tttt oot |
| o o0
. p? REeimo (B.27)
o)) | T Tt esaryetontss
4r°n 5 0
[ w? Yoo (B.28)
aw.(w)=s( 1] jny(rw)sm(m)cos(wwdy}
4 | 4r-n 0 0
(2 Eeime ] (B.29)
o, @)= =2 || [ (o, (v)sin(ax)cos(ay Jixdy
4 _\47z n"Jo % ]
[( 2 /oo i (B.30)
01, @)=E| =2 [ [ [ (e, ()sin(ea)sin(ay sy
_k4” m)o o N
"( ol e (B.31)
o-V [/ (Cl))=E 2 2 I J-nV (X)I (y)sm(a)x)cos(wy)dxdy
_&47r n-J o
s w? Yoo ] (B.32)
GV-I,(w)zE ~—5 3 I J. v (), (v)cos(ax)sin(ay Jdxdy
4 _\47r n"jo o |
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(B.33)

@)= [T T oo oo

Each double integral can then be evaluated to reduce each equation to a single

integral.''® If a difference variable is defined to be

rT=y-x (B.34)

and the correlation function is given by

W iny (@)= E[n, (x)n, (7)), (B.35)

then equation (B.24) can be rewritten as

4r’n? o

N " 2/ e 2mfw)r (B.36)
op ()= { I I dry,.,. (7) Isin(azx)sin(w(x-&- 7))dx

o B (2m/w )t
+( TJ. AT, (7) ISin(@)Sin(w(y‘T))dx

4rn?

Since the correlation function in equation (B.36) is actually the auto-correlation function,

and since

Vi n,y (Z’) =Vnn, (" Z‘), (B.37)

the integral can be rewritten as

2 e (2mfu)-r (B.38)
ot (o) =[ @ ]' I dry, .. (t) Isin(arr)sin(w(x+ ))dx.
0

2r°n” 0
Upon substitution of the trigonometric identity for the product of two sine waves into the

second integral of equation (B.38), the variance in the real component of the voltage

signal can be rewritten as

PERLT Qafo)r .
0';2; (@)= ( ]ZJ! AT ¥ 0, (r) i“ [%cos(a)r)—%cos((o(Zx+z'))}¢r. (B-39)

27%n o
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The second integral can be calculated, and the variance in the real component of the
voltage signal is therefore''®

o (@)= (-2%; )bzmd 17 (r)[(l —Efﬂ]cos(mp [ﬁ}m@)} . B9

m

Equation (B.25) is simplified following a similar procedure. The derivation proceeds
through the substitution of the auto-correlation function and transformation of variables.

The variance integral can be rewritten as

(afw)r (B.41)

oy (@)= ( o Jlﬂ}/w dry,,, (7) J’cos(azx)cos(co(x +7))dx.

2 2
2z°n° 0

The trigonometric identity used for substitution in the second integral is now for the
product of two cosine signals. Equation (B.41) can then be simplified by estimating the
second integral. The result is' 16

R

2m m

Finally, the covariance between the real and imaginary components of the voltage

signal can be written in terms of the transformed variables and auto-correlation function

as

Tn"

2 J"‘"/‘” .(2""/‘”)’”[sin(a1\t)cos(a)(x+ 7)) 5 (B.43)
Yk

o~
Nw)= d
v, (@) (2 2,2 -([ £ Vngny ®) + cos(ax )sin(w(x + 7)

This can be rewritten by substituting the trigonometric identity for the sine of the sum of

two angles

2r<n”

2 JZm/w (2mfw)-r (B.44)

Ty, ()= (__a): ~ I dry, . (7) Isin(a)(Zx +7))dx.
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The second integral is identically zero; therefore the covariance between the real and

imaginary components of the voltage signal is equal to zero, i.e.,''®

5y, (@)=0. (B.45)
Similar results can be estimated for the variances of and covariance between the real

and imaginary components of the current signal. The results are''®

. (o Y° ( 1 ] (B.46)
o, ()= 2 J- At ¥, ,, (T{ l—ﬂJcos(a)z')+ L sin(wr)
\2m ) . 2m \ 27 ]

(o Y7 ( (1) ! (B.47)
0',2, (a))= L I dr Y ayn, (z‘{ l—ﬂjcos(a)r)— 1 sin(a)r)
/ \27m ) . 2m \ 27m i

o, (@)=0. (B.48)

The four cross-covariances can also be estimated in similar fashion. Equation (B.30)
can be rewritten after the transformation of variables and introduction of the cross-

correlation function as

w? Yo (2-’17'/0').-1' . (B.49)
o,, (@)= [4”2’12 ] I dry,,, (t) Ism(arc)sm(a)(x +7))dx
0 0
»* P (2mjw)r :
+{ - ] 1 de () [sin(ansin(oly - o))ix
4r~n 0 0

For the cross-correlation function,

‘/,n'.‘ng (T) = ’//anA (_ Z'), (BSO)

therefore, the cross-covariance can be reduced to

2 2m/w 2mfe)-r (B-S 1)
Oy (a)) = [4:2’12 ] I dr [W,,V,,, (r)+ Y mye (z')]‘ Isin(azx)sin(co(x + r))dr ;
0 0

The second integral is calculated through the substitution of the appropriate trigonometric

identity simplifying equation (B.51) to
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e ly/m eny ( ) '//n,ny (T)JX (B.SZ)

o, (@)= ( jj‘ dr [(1_%Jcos(mr)q-(-zlgjsin(wr)]'

The other three cross-covariances are determined via the same procedure, and therefore,

equations (B.31)-(B.33) can be rewritten as

Oy, (@)=0 (B.53)
oy, (@)=0 (B.54)
Wy @)+, ()] (B.55)

R O e |

The cross-covariances in equations (B.53) and (B.54) are zero because of the integral of
the sine of the sum of two angles as seen in equation (B.43).

B.1.2 Variance Based on Expectation in a Sampling Sense

The sample variance can be derived by redefining expectation as an averaging of
samples rather than as an integral average over time. This can be related to the sample

variance description of impedance errors of Orazem, et al.> by defining

2mfw 2mf } (B.56)

[V (a) { JVsm(a)t + ¢, )sin(at )dt + Iny (¢) sm(a)t)dt

2mfw 2mfew :l (B.57)

[V (@) ] l: IVsm(cut + ¢, )cos(at )dt + In,, (¢)cos(awt )dt

2mfw 2mjw } (B.58)

E[I, (a))] = El: Ifsin(wt + ¢, )sin(at )dt + In, (¢)sin (et )d:

2mfe 2mjw :| (B,59)

[I (co] |: I[ sin(wt + ¢, cos(a)t)dt I n, (¢) cos(a)t)dt

0
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The expectation value of the first integral will just be the value of the first integral since
each term in the integrand is fully described in a deterministic sense. The trigonometric
term in the second integral is deterministic, therefore, the expectation is applied only to

the noise signal, i.e.,

Ey,(o)]= 2,}/ P sin(ar + 4, )sin(ar)ds + ij/z[ny in(ock (B.60)

2] S .
E [Vj (a))] = J./I} sin(wt + ¢, )cos{we )dt + IE [, (¢)]cos(at e (B.61)

2mjw 2mfw (B.62)
E[l, (@)= j[ sin(wt + ¢, )sin(wt )dt + IE[n, (¢)]sin(eot )at
0 0

E[Ij (a))] = Mj’/? sin(wt + ¢, )cos(wt )dt + ij/wg[nl (¢)|cos(et)dt (B.63)

The sample variance of each signal can then be written

o} ()= E{Y, (0)- £, () } (B.64)
o} (0)=Efr,(0)- E[V, ()]} (B.65)
o} (@)= Ef1, (@)~ £, ()]} (B-66)

o (@)= E{1,(0)- E[1, ()]} (B.67)
Upon substitution of equations (B.1)-(B.4) and (B.60)-(B.63) into (B.64)-(B.67), the

variances can be written

2nfe 2 (B.68)
o (w)= E{{ I{n,, (e)- E[n,, (t)]}sin(wt)dt} }



2mfw
O'V ()= {[ j{”v (£)-

o2 o)=zl] Z?/‘{”n,(:
r—2’.:1:71/ru
o? @)=E{| [l 0)-

The square of each integral can be rewritten as a double integral, i.e.,

o; (@)= { 77{” ’MJ/({Hn ()= E[n, (@)n, (v)- E[n, (v)l}sin(wu)sin(wv)dudv}

2mfo 2mje

O',"tj ()= E{ I I{ny (u)- [n,, (u ]}{n,, (v)- [n,, (v)]}cos(am)cos(wv)dudv}

0 0

] (w)=5{27w T b, )~ D, )i, ) [(v)]}sin(a)u)sin(a)v)dudv}

0 0

2amfw 2mfe

cr,zr (w)= E{ I I{n, (u)- E[n, (u)]}{n,(v)— E[n,(v)l}cos(a)u)cos(wv)dudv}

0 0

[n, ()} cos(wt)dz} 2 }

Eln, (0)]sin(ax ) }

Eln, ()} cos(at dr -}
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(B.69)

(B.70)

(B.71)

(B.72)

(B.73)

(B.74)

(B.75)

It is important to note, at this point, that the expectation that is applied within the

integrand implies a summation over time, whereas the expectation applied to the double

integrals refers to a summation over replicated frequency-domain measurements.

Therefore, the expectation in the integrand will be referred to as £, and the expectation

applied to the double integrals will be referred to as £, . Equations (B.72)-(B.75) can be

rewritten
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oy, (@)= z,,},,,, 2:]-./2.[ {n, (), (v)}sin(ou)sin(wv)dudy (B.76)

2mjo 2mfw

- J. .[Ef {nV (V)E, [”V(u)l}Sin(aﬂl)Sin(m)dudv

2rnfw 2mif @

— | [E {n, ()E, In, (v)]sin(an)sin(ev )dudv

2mfe 2amfe

* f IEI {E,[n, (W), [, (v)}sin(eu)sin(ev)dudv

2m/e 2mnfw .
oy, (@)= j I/E {ny (w)ny, (v)}cos(wu )cos(wv )dudv (B.77)

2mfe 2w
- I I E, {n,,(v)E, ["V(U)]}COS(wu)cos(wv)dudv

2mfe 2w

- [ [E Any ()E [y (v)cos(au)cos(@v)dudv
2o 2] @

* J. IEI {El [”V(“)lEr ["V (V)]}COS(wu)COS(m)dudv

0 0
2m/w 2mjw B.78
ot (@)= | |Eln,lun (sin(en)sin(av)dudv (B:78)

0 0

2mfw 2mfw

- | [EAn,(V)E [n, (u)}sin(wu)sin(ev)dudv
2mfw 2mje

B .[ .[ E {n,(u)E,[n, (v)}sin(eu)sin(wv)dudy

2mfw 2mfe

+ _[ IE AE[n, (@)E,[n, (v)}sin(eu)sin(wv)dudv

0 0
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, 2mfe 2mofw (B.79)
o; (w)= j J' E {n, (u)n, (v)}cos(an)cos(wv)dudv
0o 0
2mfw 2mfe

- J- J. E {n,(v)E,[n, (u)}}cos(wn ) cos(awv)dudv
2/ )

B I J. E {n; (u)E, [n, (v)]cos(wu)cos(av)dudv
2mfw 2mnfw

I _[E AE,[n, W)E, [n, (v)] cos(an)cos(ewv)dudv

0

If the time-domain expectations of the noise signals are equal to zero,

E [n, ()= E [n, ()] =0, (B.80)

and the frequency-domain expectation is written for N sampled noise signals as

(B.81)
n X (t Zn Xk (t
then equations can be rewritten as
2mjw 2mje [ N (882)
2 l . .
o; (@)= ~ I I {Z [n,,.k (u)ny 4 (v)] sin{awu)sin(wv)dudv
0 0 L&=l
2afe 2miw (N (883)
o7, (w):% j I {Z ny (g, , v)]}cos(wu )cos(awv)dudv
0 o k=l
2w 2mfo (N (884)
o; ()= L J. I {Z a7 () n, W ]}sm(a)u sin(awv)dudv
’ N 0 0 U&=l
2mfw 2mfe (N (B.SS)

ol (@)= —]%/— { I [, 4 (), (\)]} cos(au )cos(av)dudv.

0 k=l

Through a similar derivation, the other six covariances and cross-covariances of the

Taylor series variance vector can be determined by

(B.86)

@)= | ] {3l Ol sifoneostonha

0 k=l
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2mfw 2mnfo (B.87)
o, (a))zi I J- { n,k(u (v ]}sm(a)u cos(wv )dudv
N 6 o =
2mfe 2mife (388)
oy ((o):% J. I {Z ny (u)n,dv)}sm(wu sin{awv )dudv
(i 0 Lk=l
2mfw2mie ( § (B 89)
oy, (a))=i j J {Z ny  (wn, (v }sm(a)u cos(av)dudv .
’ N 0o o k=l
1 2mfjo 2mie [y (890)
Sy, (co):N J' J {Z ny (u)n, A(v)}cos(cou)sm (v )dudv
0 0 k=l
1 2mjw 2mio [ N (8.91)
@ =k | | {3 bs sl ostoneostomhts
0 0 &=l
In complete form, the components of the variance vector would be
N (B.92)
oy (w)= —l— f j Z ny )y (v)}sin(ew)sin(ov)dudv
N 0 0 k=!
5 2mfe 2mfe
- I I Z[y,,, ) ]sm(am)sm(a)v)dudv
N 0 0 4=l
1 /Dl ‘Dl N
— I I > pr i sin(wu)sin(wv)dudv
N 0 0 k=l
2mlo2mie N (B.93)
2 1
o @)= [ | Sl eos(an)cos(on)iuay

0 o0 k=1
2mfw 2mfo N

_2 J' J' Z[#"r'kn,,_k(u)]cos(am)cos((uv)dudv

N 0 o k=1

1 2mfw2miw N

N I I > u} . cos(wu)cos(wv)dudv

N o o k=
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(B.94)

2o 2l | (B.95)
o7, (a))=i I I i[n, (@), (v)]cos(an )cos(wv)dudv

0

L I I > m; i cos(wu)cos(av)dudv
N 0 0 k=l

~
g
e
I~
3
S

[,  ()n,  (v)]sin(en)cos(ov)dudv (B.96)

Q
N
S

1l
2|

§ o

=,
g

S
2
9

z |~

[0y 4714 () Jsin(o )cos(eov)dudv

g

|

z |~

[, 4711 5 (v)lsin(w)cos{ev)dudv

[

9 L
ot ot ot ot
e
o

)
&)
[

M= iM=z iM= iD=

=N

 sin(ou )cos(wv)dudv

+
|~

758

[
g
g
~
§ o—3
g
bd
o

B

[n re@ng . (v)]sin(wu)cos(a;v)dudv (B.97)

\q
S

|
z |-
M=

Eod
1l
—

§ ov—§

u
~
e
9

[,u,,l ony e (u )]sin(wu)cos(a)v)dudv

|
z |~

[
S}
(%)
g

[ﬂn, WM (v)]sm(a)u)cos(a)v)a’udv

|
z |~

O‘—wi 0'——:& ©

8
18
e

M= IM= D=

i sin(au )cos(av)dudv

+
r®
=N

Z |~

bl
1]
—_



/:ZZ: [#,,,, Kk (u )]Sin(a)ll )sin(wv)dudv
é [,u,,, wny i () ]Sln(wu )sin(cwv)dudy

+% 2[ ‘([ AZIZ:[#"' Ly,,{Jsm(wu)sm(wv)dudv
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These ten components are presented as the sample variance vector in Chapter 8. If the

signals are discrete (digital), then the calculation of each component would require the

construction of three-dimensional arrays: one dimension in time, another dimension in

time (for the squaring of the integral) and a final dimension for the replicate

measurements of the signals. The double integration would be conducted over the first
two listed dimensions, and then averaged over the third dimension of the array.
B.2 Sample Variance as a Result of Phase Sensitive Detection

A similar procedure can be used to calculate the variance of the stochastic errors in

the magnitudes of the voltage and current signals. Not all ten components of the polar

form of the variance vector for PSD can be determined through the procedure, because

the magnitude and phase angles of the signals are measured independently. The

magnitudes of the two signals are calculated as

(B.102)
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0

273

(B.103)

where the first integral corresponds to the expectation value of the magnitude and the

second integral corresponds to any error in the evaluation resulting from the time-

averaging of the noise in the signal.

The sample variance can be derived in similar fashion as described for the FRA

measurement. To begin, the expectation of the magnitude measurements must be

defined. This expectation is through the time-domain integration, and the result is

[ 2mfw

E[r(o)]=7 + 2mi ” J. Eln, (¢)|square(et + ¢, , )t
2mfw

Eﬂl(coﬂ =1+ 271711/0) jE[n, (t)]square(a)t +o,, )dt:|

(B.104)

(B.105)

Again, the phase angle of the square wave in the noise signal integral can be neglected

because the square wave should be uncorrelated with the stochastic noise signal. The

sample variance of each signal can then be written as
o2 (@)=, {7 (@)~ E[r @)}
o2 (@)= E, (o) - E[1()[F}

S (@)=E, {ﬂV(a)] -E, ﬂV(a)]]]]I(a)X -E, ﬂ](a))]]}

(B.106)

(B.107)

(B.108)

Upon substitution of equations (B.102)-(B.105) into (B.106)-(B.108), the variances can

be written as



The squares and products of these integral can be rewritten as double integrals.
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The product of differences in the integrands can be expanded to provide the sum of

integrals as
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The remaining expectation can be written as an average of samplings, and the square

waves can be rewritten in their Fourier series expansions.
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As noted in Chapter 8, the entire variance vector cannot be determined for the PSD

technique because the phase angle is determined independently of the magnitude of a

signal. Thus the seven variance vector components that correlate the phase angle can not

be explicitly determined.
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