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ABSTRACT: The Kramers-Kronig equations and the current methods used to apply them to
electrochemical impedance spectra are reviewed. Measurement models are introduced as a
tool for identification of the frequency-dependent error structure of impedance data and for
evaluating the consistency of the data with the Kramers-Kronig relations. Through the use of
a measurement model, experimental data can be checked for consisteacy with the Kramers-
Kronig relations without explicit integration of the Kramers-Kronig relations; therefore,
inaccuracies associated with extrapolation of an incomplete frequency spectrum are re-
solved. The measurement model can be used to determine whether the residual errors in the
regression are due to an inadequate model, failure of data to conform to the Kramers-Kronig
assumptions, or noise.

KEYWORDS: Kramers-Kronig relations, impedance spectroscopy, error structure, mea-
surement models, deconvolution

In principle, the Kramers-Kronig relations can be used to determine whether the imped-
ance spectrum of a given system has been influenced by time-dependent phenomena.
Although this information is critical to the analysis of impedance data, the Kramers-
Kronig relations have not found widespread use in the analysis and interpretation of
electrochemical impedance spectroscopy data due to difficulties with their application.
The integral relations require data for frequencies ranging from zero to infinity, but the
experimental frequency range is often constrained by instrumental limitations or by noise
attributable to the instability of the electrode.

The Kramers-Kronig relations have been applied to electrochemical systems by direct
integration of the equations, experimental observation of stability and linearity, or
regression of electrical circuit models to the data. Each of these approaches has its
advantages and disadvantages. This paper will review the Kramers-Kronig equations and
the methods used to apply them to electrochemical impedance spectra. This paper will
then suggest that the disadvantages associated with current methods used to check experi-
mental data for consistency with the Kramers-Kronig relations can be circumvented by
application of measurement models to impedance spectra.
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The Kramers-Kronig Relations

The Kramers-Kronig relations, developed for the field of optics, are integral equations
which constrain the real and imaginary components of complex quantities for systems that
satisfy conditions of causality, linearity, and stability [/—4]. Bode [5] extended the concept
to electrical impedance and tabulated various forms of the Kramers-Kronig relations.
Several transformations used in the electrochemical literature are shown. The imaginary
part of the impedancecanbeobtainedﬁomthewalpanoftheimpedance spectrum
through T
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where Z(w) and Z{w) are the real and imaginary components of the impedance as func-
tions of frequency w. The real part of the impedance spectrum can be obtained from the

imaginary part through
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if the high-frequency asymptote for the real part of the impedance is known, and through
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if the zero-frequency asymptote for the real part of the impedance is known. A relationship
between the phase angle ¢(w) and modulus |Z(w)] is also available, ¢.g.,
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In response to the integration limits, a fourth constraint, which the impedance approaches
finite values at frequency limits of zero and infinity, is commonly added. This constraint,
sometimes claimed to prevent application of the Kramers-Kronig relations to capacitive
systems, is in fact not needed because a simple variable substitution [5] can be used if the
- imaginary part of the impedance tends to infinity according to 1/w as w — w, (see also Ref

Review of Methods for Determining Consistency with the Kramers-Kronig Relations

The usual approach in interpreting impedance spectra is to regress a model to the data.
The models employed are typically linear and assume conditions of a sinusoidal steady
state. It is important, therefore, that the impedance response be characteristic of a system
that is causal, linear, and stable. The condition of linearity can be achieved by using
sufficiently small amplitude perturbations. The condition of stability requires that the sys-
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tem return to its original condition when the perturbing signal is terminated. An additional
implied constraint of stationary behavior may be difficult to achieve in electrochemical
systems (such as corrosion) where the electrode may change significantly during the time
required to collect impedance data. It is therefore of practical importance to the experi-
mentalist to know whether the data taken do in fact satisfy the Kramers-Kronig relations.
The approaches taken to ascertain the degree of consistency include direct integration of
the Kramers-Kronig relations, experimental replication of data, and regression of electri-
cal circuit analogues to the data.

Direct Integration of Kramers-Kronig Relations

The Kramers-Kronig relations provide a unique transformation that can be used to
predict one component of the impedance if the other is known over the frequency limits of
zero to infinity. The usual way of using the Kramers-Kronig equations, therefore, is to
calculate the imaginary component of impedance from the measured real component
using, for example, Eq 1, and to compare the values obtained to the experimental imagi-
nary component. Alternatively, the real component of impedance can be calculated from
the measured imaginary values using Eqs 2 or 3. The major difficulty in applying this
approach is that the measured frequency range may not be sufficient to allow integration
over the frequency limits of zero to infinity. Therefore, discrepancies between experimen-
tal data and the impedance component predicted through application of the Kramers-
Kronig relations could be attributed to use of a frequency domain that is too narrow as
well as to failure to satisfy the constraints of the Kramers-Kronig equations. The Kramers-
Kronig relations can, in principle, be applied with a suitable extrapolation of the data into
the unmeasured frequency domain. Several methods for extrapolation have appeared in
the electrochemical literature.

Kendig and Mansfeld [7] proposed extrapolating an impedance spectrum into the low-
frequency domain under the assumption that the imaginary impedance is symmetric, thus,
the polarization resistance R,, otherwise obtained from

R, = Z(®) - Z(0) = % N [_z_g_)] dx ©)

X

would be obtained from
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X

where ®m., is the frequency at which the maximum in the imaginary impedance is ob-
served. This approach is limited to systems which can be modeled by a single relaxation
time constant [8,9]. The limitation to a single time constant is severe because multiple
elementary processes with different characteristic time constants are usually observed in
electrochemical impedance spectra.

Macdonald and Urquidi-Macdonald [8] have presented an approach based on
extrapolating polynomials fit to the data. The experimental frequency domain was divided
into several segments, and the individual impedance components Z,(w) and Z{w) were
fitted to a polynomial expression given by
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which was extrapolated into the unmeasured frequency domain. The Kramers-Kronig
equation (e.g., Eq 1 or 3) was integrated numerically using the extrapolated piece-wise
polynomial fit for either the real or the imaginary component of the impedance, respec-
tively [10,11,12). While the extrapolation algorithm was applied successfully to a variety of
systems (including synthetic impedance data derived from equivalent electrical circuits
and experimental systems such as TiO;-coated carbon steel in aqueous HCVKCI solu-
tions), such extrapolation of polynomials is unreliable over a broad frequency range.

Haili [13] provided an alternative approach based on the expected asymptotic behavior
of a typical electrochemical system. For extrapolation to w = 0, the imaginary component
Z{w) was assumed to be proportional to w as w — 0 consistent with the behavior of a
Randles-type equivalent circuit. This approach would apply as well to a Warburg imped-
ance, which is also nearly proportional to  as @ — 0. The real impedance approaches a
constant limit which is the sum of the Ohmic solution resistance and the polarization
resistance. The extrapolation in this region involves only one adjustable parameter whose
value will approach Z(w,,;,) if Waiq is sufficiently small. At high frequencies, the imaginary
component was assumed to be inversely proportional to frequency as w — ® and the real
- component was assumed to approach a constant equivalent to the Ohmic solution resist-
ance R.. The method of Haili guarantees well-behaved extrapolation of the impedance
spectrum at upper and lower frequency limits with only five adjustable parameters. Haili’s
work confirmed the importance of extrapolating impedance data to both zero and infinjte
frequency when evaluating the Kramers-Kronig relations.

Esteban and Orazem, et al. [/4,15] presented an approach which circumvented the
problems associated with extrapolations of polynomials and yet avoided making a priori
assumption of a model for asymptotic behavior. Esteban and Orazem suggested that,
instead of predicting the imaginary impedance from the measured real impedance using Eq
I or, alternatively, predicting the real impedance from the measured imaginary values
using Eq 2 or 3, both equations could be used simultaneously to calculate the impedance
below the fowest measured frequency w,,. The low-frequency limit «, is an adjustable
parameter that is typically three or four orders of magnitude smaller than w,;,. The
calculated impedance, in the domain Wo =< 0 < Wy, “‘forces™ the experimental data set to
satisfy the Kramers-Kronig relations in the frequency domain wy < © < w,.,. The parame-
ter w, is chosen to satisfy the requirements that the real component of the impedance
spectrum attains an asymptotic value and that the imaginary component approaches zero
as @ — wy. Internal consistency between the impedance components also requires that the
calculated functions be continuous with the experimental data at w,,,. These requirements
cannot simultaneously be satisfied by data from systems that do not satisfy the constraints
of the Kramers-Kronig relations; therefore, discontinuities between experimental and
extrapolated values were attributed to inconsistency with the Kramers-Kronig relations.
The approach described by Esteban and Orazem [14,15] is different from other algorithms
presented here because the Kramers-Kronig relations themselves were used to extrapolate
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data to frequencies below the lowest measured frequency. Extrapolation of polynomials or
a priori assumption of a model was thereby avoided.

While each of the algorithms described here have been applied to some experimental
data with success, any approach toward extrapolation can be applied over only a small
frequency range and cannot be applied at all if the experimental frequency range is so
small that the data do not show a maximum in the imaginary impedance. The extrapolation
approach for evaluating consistency with the Kramers-Kronig relations cannot be applied,
therefore, to a broad class of experimental systems for which the unmeasured portion of
the impedance spectrum at low frequencies is not merely part of a “‘tail” but ins
represents a significant portion of the impedance spectrum. ,

Experimental Checks for Consistency

Experimental methods can be applied to check whether impedance data conform to the
Kramers-Kronig assumptions. A check for linear response can be made by observing
whether spectra obtained with different magnitudes of the forcing function are replicate.
Stationary behavior can be identified experimentally by replication of the impedance
spectrum. Spectra are replicate if the spectra agree within the expected frequency-depen-
dent measurement error. If the experimental frequency range is sufficient, the extrapola-
tion of the impedance spectrum to zero frequency can be compared to the corresponding
.values obtained from separate steady state experiments.
.. The experimental approach to evaluating consistency with the Kramers-Kronig relations
shares constraints with direct integration of the Kramers-Kronig equations. Because ex-
trapolation is required, the comparison of the dc limit of impedance spectra to steady state
measurement is possible only for systems for which a reasonably complete spectrum can
_ be obtained. Experimental approaches for verifying consistency with the Kramers-Kronig
relations by replication are further limited in that, without an a priori estimate for the
_ confidence limits of the experimental data, the comparison is more qualitative than quanti-
‘tative. A method is therefore needed to evaluate the error structure, or frequency-depen-
dent confidence interval, for the data that would be obtained in the absence of
nonstationary behavior.

Regression of Electrical Circuit Analogues

Electrical circuits consisting of passive and distributed elements satisfy the Kramers-
Kronig relations (see, for example, the discussion in Refs 16, 17, and 18). Therefore,
successful regression of an electrical circuit analogue to experimental data implies that the
data satisfy the Kramers-Kronig relations [79,20). This approach has the obvious advan-
tage that integration over an infinite frequency domain is not required; therefore, a portion
of an incomplete spectrum can be identified as being consistent without use of extrapola-
tion algorithms.

It should be noted that the regression is, however, sensitive to the weighting applied to
the data, an important consideration for impedance data which vary over many orders of
magnitude [21]. With no weighting (or unity weighting), the real part of the spectrum at
low frequencies and the imaginary part of the spectrum at intermediate frequencies are
emphasized. Information about physical processes that influence the spectrum at high
frequencies may therefore be lost. A better approach is to provide proportional weighting
to each data point, achieved by dividing the objective function at each frequency by the
experimental observation at that frequency. The processes that appear at high-frequency
are given the same weight in the regression as the processes that are important at low-
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frequency. The proportional weighting approach has the disadvantage that the regression
can be overly influenced by the portions of the spectrum that have the largest uncenai;nty.
The most desirable approach, therefore, is to divide the objective function at each fre- -
quency by the variance of the experimentaf observation at that frequency {27]. Normaliza-
tion by the variance will yield proportional weighting if the percent error is not a function
of frequency. The problem here is that consistency is determined by regression of a model, -
and the most reliable regression is obtained only if the frequency dependence of the error
structure of the data is known. Also, a priori knowledge of the error structure may be
needed to decide whether a given regression provides a *‘good fit.” As an alternative to g
priori knowledge of the error structure, Macdonald has recently suggested that model
parameters for error structure be included in the regression of a model to data {22,23].

Perhaps the major problem with the use of electrical circuit models to determine
consistency is that interpretation of a *“poor fit"* is ambiguous. A poor fit is not necessarily
the result of an inconsistency of the data with the Kramers-Kronig relations. A poor fit
could also be attributed to use of an inadequate model or to regression to a local rather
than global minimum (caused perhaps by a poor initial guess).

Application of Measurement Models

In this work, models are classified as being one of two types: process models or mea-
surement models. Process models are used to predict the response of a system from
physical phenomena that are hypothesized to be important. Regression of process models
to data allows identification of physical parameters based upon the original hypothesis. In
contrast, measurement models are built by sequential regression of line shapes to the data.
This type model can be used to identify characteristics of the data set that could facilitate
selection of an appropriate process model. }

The regression of measurement models as a means of determining consistency with the
Kramers-Kronig relations is an extension to the use of electrical circuit analogues. Be-
cause the model itself is consistent with the Kramers-Kronig relations, successful
regression of the model to a given spectrum implies that the data are consistent. Integra-
tion over zero to infinity in frequency is not required. The measurement model is com-
posed of a summation of lineshapes that will, with a sufficient number of terms, provide a
statistically adequate fit to any consistent data set. Use of the measurement model elimi-
nates the ambiguity in the interpretation of a *“‘poor fit”* to the data. Since the model will
provide an adequate representation of a consistent spectrum, failure to fit the data can be
attributed to inconsistency with the Kramers-Kronig relations. Another result of the ade-
quacy of the model is that the model can be used to identify the frequency-dependent error
structure of impedance spectra. The error structure can then be used to weight the data
during regression and to provide a means of deciding whether a given regression provided
a *‘good fit.” In this section, the measurement model is presented along with a demonstra-
tion of applicability to impedance data, its use in determining the frequency-dependent
error structure, and its use to determine consistency with the Kramers-Kronig relations.

Structure of Measurement Model

A simple measurement model was obtained for electrochemical impedance spectros-
copy [24] by analogy to the classical theories of optical dispersion in which the complex
dielectric constant is calculated as a function of the frequency of light [25,26,27). Since the
line shape of the Debye model for the complex dielectric constant was similar to that seen
for the complex impedance, an analogue of the multiple Debye model was used, i.e.,
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= A o)
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which corresponds to the Voight model (Fig. 1) in series with a solution resistance. The
time constant 1, for element k is equivalent to R,C, in the Voight model, and A, is
equivalent to R,. The impedance response of a single Voight element is usually attributed
to the electrical response of a linearized electrochemical reaction [28,29). Equation 9
satisfies one requirement of a measurement model in that it is consistent with the Kramers-
Kronig relations.

The tenets underlying the use of measurement models for impedance spectroscopy are:

(1) By including a sufficient number of terms, a general measurement model based on
Eq 9 can fit impedance data for typical stationary electrochemical systems.

(2) Because the measurement model does fit stationary impedance data, an inability to
fit an impedance spectrum can be attributed to failure of the data to conform to the
assumptions of the Kramers-Kronig relations rather than to failure of the model.
Thus, the measurement model can be used to assess the consistency of impedance
data with the Kramers-Kronig relations without integration.

Demonstration of Applicability to Impedance Spectra

The measurement model presented here is most effective in modeling systems that can
be modeled otherwise with passive elements such as resistors, capacitors, and inductors.
It is perhaps no surprise that, with only two elements, the measurement model can provide
a good representation of a circuit developed for painted metals that does not include
diffusion or constant phase elements [30]. The electrical circuit is presented as Circuit 1 in
Fig. 2. The fit to synthetic data obtained from a model for painted steel is presented in Fig.
3. The normalized sum of squares for this fit was found to be 2.055 x 10~' [24]. The
measurement model indicates that two time constants can be resolved from the synthetic
data, and this result is consistent with the circuit used to generate the synthetic data.

The appearance of a positive imaginary component of the impedance has been attributed
at high frequencies to the stray capacity of the current measuring resistor [3/] and at low
frequencies to adsorption phenomena at the electrode surface [28]. Transport based
models for this behavior are rare, and most electrical circuit models account for this
behavior by incorporating either an inductor or a capacitor with a negative value for the
capacitance. The measurement model was applied to pseudo-capacitive data reported by
Lorenz and Mansfeld {32] for corrosion of iron in 0.5 M H,SO,. Their model, shown as
Circuit 2 in Fig. 2, incorporated an inductor to fit the pseudo-capacitive response at low
frequencies. The Voight model can account for inductive behavior if the magnitude (A, is
allowed to have a negative sign. The regression to Circuit 2 is given in Fig. 4. The
measurement model indicates that three time constants can be resolved from the synthetic

FIG. 1—The Voight electrical circuit analogue corresponding to the measurement
model used in this work (Eq 9).
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Circuit 1;
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FIG. 2—Electrical circuit analogues for: (1) corrosion of a painted metal [30); (2)
corrosion of iron in 0.5 M H,S0, at the corrosion potential [32); and (3) hydrogen
evolution on LaNis [15]. .

data, and this result is fully consistent with the circuit. Complete agreement is obtained
because the circuit is composed of only passive elements (one inductor, three resistors,
and two capacitors). The residual sum of squares for this fit was found to be 3.221 x 10-'<.
The measurement model provides a good fit to data exhibiting an inductive response.

Additional measurement model elements were needed to provide a good fit to systems
which contain distributed elements such as are associated with mass transfer limitations
and frequency dispersion. In accordance with Eq 9, a measurement model is constructed
by sequentially adding k Voight elements with parameters A, and 7, until the fit is no longer
improved by addition of yet another element. This procedure is illustrated for synthetic
data obtained from the electrical circuit model proposed for evolution of hydrogen on a
LaNi; ingot electrode [15]. A diffusional resistance was observed in this system as a result
of the incorporation of hydrogen into the metal. The electrical circuit model presented as
Circuit 3 in Fig. 2 accounted for mass transfer of hydrogen with a Warburg element, and
three time constants are evident in the circuit analogue. The complex Warburg impedance,
given by
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can be derived from the solution of V¢, = 0 for a film of thickness & [28,29]. The time
constant can be expressed in terms of diffusivity and film thickness as Tw = 8%/D,. The
Warburg element is sometimes called a distributed element because it can be modeled by a
distribution of relaxation times [28). The optimal regression of the measurement model to
synthetic data from Circuit 3 in Fig. 2 required five Voight elements. The fit is presented in
Fig. 5, and the resultant residual sum of squares was 4915 x 10°".

The residual sum of squares obtained by fitting the measurement model to the synthetic
data is presented as a function of the number of Voight elements in Fig. 6. Figure 6 can be
used to show that a maximum of five Voight elements can be resolved from the synthetic
data because the sixth Voight element did not improve the quality of the fit. Figure 6 also
shows that, while visual inspection of Fig. 5 suggests that a fit obtained with three
elements might be acceptable (resulting in residual errors less than 0.1 percent), addition
of the fourth and fifth elements provided significant improvement in the residual error.
Several points must be made here. The average residual error with five Voight elements
was less than 2 X 10~ percent. The measurement model based on a summation of Voight
elements, therefore, provided an excellent fit, despite the fact that the circuit included a
Warburg element which has an impedance response that differs significantly from that

.obtained for a resistor and capacitor in parallel. The measurement model fit the synthetic
data to within seven significant figures; therefore, the measurement model can be consid-
ered to be statistically adequate to fit the corresponding experimental impedance data for
which only three or four significant figures can be expected. To explore the potential
influence of experimental error, random noise with a maximum amplitude of five percent
was added to the results of Circuit 3. The optimal regression of the measurement model
yielded only three Voight circuit elements as shown in Fig. 6. Only three elements could
be resolved because the contribution of the fourth circuit element was insignificant as
compared to the noise of the data. The normalized sum of squares obtained by regression
of the measurement model was slightly lower than the noise level which is shown as a
dashed line in Fig. 6.

The comparison of the measurement model to synthetic data, as presented in this
section, is meant to illustrate the applicability of the measurement model lineshapes to
models that have been developed for “‘typical™ impedance data. The summation of
lineshapes associated with the Voight model can be applied to data that can be otherwise
modeled by passive elements such as resistors, capacitors, and inductors. It can also be
applied to distributed elements such as Warburg and constant phase elements. The model
can therefore be used to identify the error structure of impedance data and to evaluate data
for consistency with the Kramers-Kronig relations.

Identification of Error Structure

The regression of a measurement model with four Voight elements is presented in Fig. 7
for three replicate impedance spectra obtained for an Ing.sGaossAs/GaAs superlattice
structure on a semi-insulating GaAs substrate [33). The three data sets are in good agree-
ment, although a larger degree of scatter is evident at low frequencies. The residual error
corresponding to Fig. 7 is presented in Fig. 8 as a function of frequency. The scatter
evident in the regression can be associated with the frequency-dependent error structure
of the data. In this data set, the scatter in the real part of the impedance is largest at high
frequencies where the real part of the impedance/has become small as compared to the
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synthetic data obtained from Circuit 3 (hydrogen evolution on LaNis [15)) as a function of
the number of Voight time constants employed in the model: (0) regression to synthetic
data; (A) regression to synthetic data with random noise added; and (dashed line) nor-

malized noise level. Taken from Ref 24 with permission of the publisher.

value of the imaginary component. Conversely, the scatter in the imaginary component is
largest at low frequencies where the real component is dominant.
The dashed line in Fig. 8 is given by

€= =0.01VZ + Z, an
such that the 95 percent confidence interval for the experimental data is estimated to be
Z, =272 + ¢ (12)

and
Z,=2 + ¢ 13)

The error for each component of the impedance was assumed to be one percent of the
magnitude of the impedance at that frequency. The value of one percent was suggested by
the specification of the Solartron 1250 frequency response analyzer for variance of the
results at 90 percent confidence using a *‘long integration mode”* with a signal greater than
0.02 percent of the range [34). The value used would, of course, be dependent upon the
instrumentation used as well as upon other aspects of experimental technique. Work is
continuing on identification of more complete models for the frequency-dependent error
structure (35). Given its simplicity, however, Eq 11 is in remarkable agreement with the
apparent error structure of the data. In the absence of replicate data, Eq 11 could provide
an estimate for the variance of the data. Normalization of data by the variance is preferred
in regression techniques because least reliance is placed on the least reliable data.

The a priori estimate of the error structure of the impedance data can provide a powerful
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tool when used in combination with the measurement model. For example, knowledge of
the frequency dependence of the expected noise level can be used to interpret the results
of “‘replicate’ experiments. The regression of a measurement model with seven Voight
elements is presented in Fig. 9 for eight consecutive impedance experiments on LaNi; at
the potential of —0.8 V (Hg/HgO), cathodic to open circuit [36,37]. The data presented in
Fig. 9 appear replicate, but examination of the residual errors in Fig. 10 reveals that,
though the residuals are within twice the standard deviation of the data, the standard
deviation of the data is much larger than the expected error structure. The solid lines in
Fig. 10 represent twice the standard deviation of the data, and the dashed lines show the
estimated error in the data using Eq 11. The errors are not random as would be expected
for a truly replicate data set; therefore, the impedance response indicates time-dependent
behavior. This analysis shows that the seven runs are not replicate and, instead, reflect the
condition of the electrode at different points in time. It is appropriate, therefore, to treat
these data as seven independent experimental spectra.

Identification of Consistency with Kramers-Kronig Relations

Most electrochemical impedance data do not adequately approximate the infinite fre-
quency domain required for direct integration of the Kramers-Kronig equations. Experi-
mental spectra can be evaluated for consistency using measurement models without
performing integration because measurement models satisfy the Kramers-Kronig relations
implicitly. To check for the consistency of the data, the measurement model is regressed
to the real or the imaginary part of the experimental spectrum. The model can then be used
to predict the other part of the spectrum (i.e., the real part if the regression was done to the
imaginary and the imaginary part if the regression was done to the real). From the esti-
mated variance of the model parameters, a 95-percent confidence interval can be found for
the model predictions using Monte-Carlo simulation. If the data are within the 95-percent
confidence interval, the system can be regarded as being stationary during the course of
the experiment. If a significant portion of the data falls outside of the 95-percent confi-
dence interval, the system is likely to be nonstationary. The details of the algorithm for
Monte-Carlo simulation are given in Ref 38. The random number generator used for the
simulation was taken from Ref 39. Five thousand simulations were performed at each
frequency to ensure that impedance values follow a Gaussian distribution.

Though the system changed over the period of seven experiments at —0.8 V (Hg/HgO),
the measurement model approach demonstrates that a pseudo-steady state approximation
applies for each individual run. The applications of the measurement model approach to
one experimental data set at —0.8 V (Hg/HgO) is presented in Fig. 11. The measurement
model was fit to the imaginary part of the impedance and the confidence interval was
predicted for the real part. The circles in Figs. 11 and 12 represent the experimental data,
the solid lines represent the 95-percent confidence interval for the model, and the dashed
lines in Fig. 12 represent the model for the error structure of the data. The imaginary part
of the residuals lie within the proposed error structure, indicating a satisfactory fit of the
model to the imaginary part of the data. The use of the error structure to indicate satisfac-
tory regression removes the possibility that a poor fit could be attributed to a local rather
than global minimum in the nonlinear regression. Since the real part of the residuals lie
within the confidence interval, the data can be deemed to be consistent with the Kramers-
Kronig relations. The sharp discontinuity in the residuals at 1000 Hz can be explained by
an inappropriate choice of frequency for change of current measuring resistor during the
course of the experiment. The measurement model approach can therefore be used to
suggest improvements to experimental design.
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A corresponding analysis is presented in Figs. 13 and 14 for experimental data obtained
at —1.1 V (Hg/HgO). The measurement model was regressed to the imaginary part of the
impedance and the confidence interval for the real part was predicted. A significant portion
of the real part of the spectrum lies outside the 95-percent confidence interval; thus, the
data do not satisfy the constraints of the Kramers-Kronig relations. These results are very
important for the analysis of the data because most physico-chemical models are devel-
oped under the assumption of a pseudo-steady state. These models cannot be used to
interpret nonstationary data. The results of the measurement model analysis can be used
to suggest changes in the experimental design or to encourage development of models
which take the time dependent-behavior of the system into account.

Conclusions

The use of measurement models is superior to the use of polynomial fitting because
fewer parameters are needed to model complex behavior and because the measurement
model satisfies the Kramers-Kronig relations implicitly. Experimental data can therefore
be checked for consistency with the Kramers-Kronig relations without actually integrating
the equations over frequency. The use of measurement models does not require extrapola-
tion of the experimental data set; therefore, inaccuracies associated with an incomplete
frequency spectrum are resolved. For the application to a preliminary screening of the
data, the.use of measurement models is superior to the use of more specific electrical
circuit analogues because one can determine whether the residual errors are due to an
inadequate model, failure of data to conform to the Kramers-Kronig assumptions, or
experimental noise.
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