Week Three Assignment I:

Transmission Line Measurement (TLM)

Purpose:

To determine the contact resistance between metal and semiconductor as well sheet resistance of the semiconductor layer.

Sheet resistance $R_s (\Omega/\square)$:

$$R = \rho \left(\frac{d_i}{A} \right)$$

(R: resistance measured between two contact pads, L: distance current travels, A: cross-section area, ρ: resistivity)

$$= \rho \left(\frac{d_i}{Zt} \right)$$

(Z: width, t: thickness)

$$= \left(\frac{\rho}{t} \right) \left(\frac{L}{Z} \right) = R_s \left(\frac{d_i}{Z} \right)$$

Transfer resistance $R_T (\Omega\text{-mm})$

Specific contact resistance $R_c (\Omega/\text{cm}^2)$

The blue rectangular are ohmic metal contact pads. (length: d_i, width: Z)

The big white rectangular is the isolation mesa of the semiconductor layer.

Way to measure:

Contact two metal pads with probes, apply a current between the contact pads and measure the voltage drop at the same time.

Use $V = IR$, we can estimate the total resistance between two metal contacts at certain gap. By measuring of resistance between metal pads for a set of different gaps, the following figure can be obtained:
When \(d_i = 0 \), the intercept of the line at y axis is \(2R_0 \). \(R_0 \) is the resistance between metal contact and the underlay semiconductor.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet resistance (R_s)</td>
<td>(\Omega/) (ohm per square)</td>
<td>Slope (\times Z)</td>
</tr>
<tr>
<td>Transfer resistance (R_t)</td>
<td>(\Omega-\text{mm}(\text{ohm} \times \text{width}))</td>
<td>(R_0 \times Z)</td>
</tr>
<tr>
<td>Specific contact Resistance (R_c)</td>
<td>(\Omega-\text{cm}^2) (ohm-length(^2))</td>
<td>((R_t)^2/R_s)</td>
</tr>
</tbody>
</table>

When \(R = 0 \), the intercept of the line in x-axis is \(2L_T \) (Transfer length).

For example:
The TLM gap spacing are 5 \(\mu \)m, 10 \(\mu \)m, 20 \(\mu \)m, 40 \(\mu \)m and 80 \(\mu \)m
If \(Z = 100 \mu \)m, the slope = 2 ; \(R_0 = 13 \Omega \), what are \(R_s \), \(R_t \), and \(R_c \) ?
Answer:
\(R_s = 2 \times 100 \mu \)m = 200 (\(\Omega/\))
\(R_t = 13 \Omega \times 0.1 \text{ mm} = 1.3 (\Omega-\text{mm}) \)
\(R_c = 1.3 \Omega-\text{mm} \times 1.3 \Omega-\text{mm} / 200 (\Omega/\)) = 8.45 \times 10^{-3} (\Omega-\text{mm}^2) = 8.45 \times 10^{-5} (\Omega-\text{cm}^2) \)